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Abstract

Traditional CNN-based text recognition problems have
either been single-character classification like MNIST or
complex, stateful full-word classifications like the LSTM ap-
proach in Graves et al. I explore a stateless approach to
word recognition by using Faster R-CNN’s region proposal
network in conjunction with a heuristic to produce word la-
bels from region proposals. While the results are promising
for word images that have characters with very little over-
lap, they fall short for cursive word images, where individ-
ual characters require surrounding context to be identified.

1. Introduction
Optical Character Recognition (OCR), or the process of

identifying letters and words for images of handwritten or
typed characters, is a heavily researched area. While OCR
is widely used, there is not a generally accepted, contempo-
rary method for performing OCR. Moreover, commercial
OCR platforms often take in a large amount of training data
on an individual before testing the individual’s handwritten
text. It is uncommon for OCR platforms to perform well
on handwriting from an individual for which training data
is nonexistent.

Hidden Markov Models[17] have traditionally been the
underlying platform for older OCR software, due to the way
HMMs exploit spatial-temporal information and expert in-
formation. Yet since HMMs are generative models, they
require some prior modeling of the hidden variables in the
word classification problem, whereas discriminative mod-
els like neural networks need only retain information per-
tinent to the word classification variables themselves. Fur-
thermore, while HMMs are stateful, they depend only on
the current state, and do not incorporate information from
characters earlier or later in the word image.

Convolutional neural networks (CNNs), on the other
hand, also require training data to classify images but of-
ten perform well on new images due to their complex model
weights. Single-character recognitions use relatively simple

CNNs [2, 11] to achieve high accuracy. Yet word (multi-
character) recognition is much more complex, due to both
the tasks of per-character detection and the spatial informa-
tion on character order. In order to achieve word recogni-
tion, neural networks must also perform object detection in
conjunction with object classification.

In 2009, Long Short-Term Memory (LSTM) systems
such as that from Graves et al. have been found to achieve
high accuracy rates as well [5, 16]. These systems incor-
porate bidirectional image information to predict the next
character in the image. On the Unipen [6] word dataset,
an HMM model had a 64.5% word accuracy classification,
whereas the LSTM model had approximately a 74.1% ac-
curacy.

While LSTMs have been relatively effective in the word
classification problem, object localization has greatly im-
proved since Graves et al. [4, 14]. In this project, I explore
the feasibility of a stateless CNN architecture in word de-
tection. In particular, I want to see whether an object seg-
mentation followed by character classification approach is
sufficient for word recognition.

I adapt the object detection and classification model,
Faster R-CNN [14], to train on words and characters. Then,
I make the assumption that English words are read from left-
to-right to decide the ordering of characters from the Fast
R-CNN output. As a result, my main contribution in this
project will not be designing a complex CNN, but rather
seeing the feasibility of an existing architecture given the
correct data.

In this paper, I demonstrate that an object detection
approach is sufficient for identifying printed, non-cursive
words but falls short of handwritten cursive words. In Sec-
tion 2 I describe how I process the dataset to feed into
Faster R-CNN, the Faster R-CNN architecture itself, and
the heuristic to create word labels on the Faster R-CNN out-
put. I then discuss experiment results in detail in Section 3
and conclude in Section 4.

2. Approach
The main obstacles in this research were finding a dataset

that had the right labels for any region proposal neural net-
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work. Most region proposal networks require bounding box
information, which is absent in all of the existing word
databases. Since hand-labeling bounding boxes is time-
consuming, I also describe how I incorporated computer-
generated word images to train the neural network. I then
discuss the Faster R-CNN architecture and the word gener-
ation heuristic, followed by a short discourse on appropriate
metrics for word accuracy.

2.1. Dataset

There are several datasets that provide single-character
images or multi-character (word) images [2, 11, 12]. The
MNIST dataset is comprised of printed numerical dig-
its [11], while the Chars74K dataset has mostly printed
characters and words, as well as a small set of written digits
and characters [2]. The Unipen [6] and IAM [12] datasets
have a plethora of multi-character word images, though they
do not come in the bounding box format that is required
of region proposal networks. However, the Unipen dataset
is intended for online word recognition—that is, real-time
recognition per character over time. Table 1 summarizes
these datasets.

Computer-generated words. For this project, I identify
the bounding boxes of the handwritten word images from
the IAM dataset. Yet due to the time constraints of this
project, I also use computer-generated word images to train
and test my model. Some word images from this dataset are
shown in 1a and 1b.

I generate word images using the Chars74K handwritten
character images. I first find the bounding boxes per char-
acter, then I concatenate the character images with some
amount of overlap and generate words obtained from the
IAM word dictionary. The initial set of computer-generated
words (so-called clean computer-generated characters) have
minimal inter-character overlap, and the size of the charac-
ters are not resized to equal scale, nor are letters that extend
above and below the handwriting line (e.g., ‘h’, ‘l’, ‘g’, ‘p’,
etc.) are not scaled correctly (Figures 1c and 1d).

To correct for the unnaturalness of the clean computer-
generated word set, I generate an additional set of words
(noisy characters) that look closer to a handwritten word
by shifting and scaling indidivual characters and increasing
the inter-character overlap. I also add noise to the image to
imitate the noise levels of the IAM dataset words (Figure 1e
and 1f).

Table 2 summarizes the data used in this project. Figure
1 shows sample word images from these project.

2.2. Framework

The Faster R-CNN model [14] for object detection and
classification is the main model used in this project. This
model incorporates a region proposal network (RPN) to
suggest bounding boxes for objects within an image [14],

Dataset Handwritten Typed
Words Characters Words Characters

Chars74K × 3410 1000 70697
IAM 115320 − × ×

Unipen 13119 − × ×

Table 1: Existing datasets. Characters are alphanumeric and
case-sensitive. IAM and Unipen consist only of words.

Word Type Train Test
Handwritten 266 29

Computer (clean) 2000 500
Computer (noisy) 2000 500

Total 4266 1029

Table 2: Dataset used in this project.

(a) Handwritten (immortal). (b) Handwritten (queue).

(c) Clean (collapse). (d) Clean (morality).

(e) Noisy (probably). (f) Noisy (moods).

Figure 1: Sample images (image type and word label).

followed by Fast R-CNN, which takes the bounding box in-
put to classify each box into a set of object classes [4].

Faster R-CNN. The RPN in Faster R-CNN (Figure 2a)
uses the output from the last convolutional layer and slides
a small n × n window across to produce m sliding win-
dows. Then, k anchors are assigned per sliding window,
where each anchor specifies a different scale and aspect ra-
tio for region proposals centered at that sliding window. In
the Faster R-CNN architecture, n = 3 and k = 9. Then,
the sliding window is passed through a layer to produce a
lower resolution intermediate layer, which finally outputs
region proposal defined by two layers, cls and reg. The cls
layer gives a score of whether or not an object exists within
each of the k anchors, while the reg produces the bounding
box for the region proposal, defined by 4 coordinates (xmin,
ymin, xmax, ymax).

The Faster R-CNN passes the mk region proposal out-
puts from the RPN into the Fast R-CNN network (Figure
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(a) Region Proposal Network (Figure from Faster R-CNN [14]). (b) Fast R-CNN network (Figure from Fast R-CNN [4])

Figure 2: The Faster R-CNN network. (a) Region Proposal Network (RPN). The sliding windows output by the last
convolutional layer are fed into the RPN to produce k = 9 anchor boxes (3 scales, 3 aspect ratios). Each of these anchor
boxes is fed into a box-regression layer (reg) outputting the coordinates of k boxes (4k outputs) and a box-classification layer
(cls) outputting whether or not the k boxes contain objects (2k outputs). (b) Fast R-CNN. Each Region of Interest (RoI)
proposal is pooled then fed into the fully connected layers and classified independently.
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Figure 3: Overview of CNN training procedure and Faster R-CNN architecture. Local response normalization
(LRN) [10] is performed on the first two convolutional layers, and the output of the RPN feeds into RoI pooling to pro-
duce equally-sized output prior to the fully connected layers.

2b) to produce mk softmax classifications per image. The
RPN output is first passed through an RoI pooling layer [7],
which scales each region proposal into equally sized inputs
to feed into the fully connected layers for classification.

I utilize the approximate joint training procedure to si-
multaneously train RPN and Fast R-CNN. The RPN and
Fast R-CNN share convolutional features, whose backward
passes are calculated as the combination of the RPN and
Fast R-CNN loss. For each forward pass, the region propos-
als are treated as fixed and pre-computed. The RoI pooling
layer, whose input is both the convolutional feature and the
bounding box proposals, thus avoids computing the non-
trivial derivative with regards to the bounding box propos-
als.

Training procedure and architecture. Figure 3 shows
the training procedure and final Faster R-CNN architecture.
I begin with the VGG CNN M 1024, the VGG medium ar-
chitecture with last fully-connected layer dimension 1024
from the Caffe Model Zoo [1, 9]. This pre-trained CNN

is then appended with the RPN to create a Faster R-CNN
and trained for 70,000 iterations on the Pascal VOC 2007
dataset [3], a standard image dataset for detecting 20 classes
of objects in various images.

Finally, I use transfer-learning and train the network on
my word image dataset, which has 62 classes todal (10 nu-
meric digits and 26 upper- and lower-case English charac-
ters). The output of Faster R-CNN for word image is a set
of region proposals each specified by 4 bounding box coor-
dinates, class label (alphanumeric: 0-9, a-z, A-Z), and con-
fidence, where confidence is the probability of the top class
label.

2.3. Word generation

I want to generate words with associated confidences
from the set of region proposals output by Faster R-CNN
for each image. The process of generating words is de-
scribed as follows but are also illustrated in Figure 4 for
convenience.
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(a) (b)
x-coordinate Class Confidence (xmin, ymin, xmax, ymax)

139 c 0.995 (21, 339, 257, 547)
343 l 0.994 (225, 77, 462, 547)
713 a 0.992 (459, 146, 967, 547)

1046 i 0.990 (986, 141, 1107, 524)
1313 m 0.853 (1114, 310, 1513, 547)
1325 h 0.444 (1069, 232, 1582, 546)
1373 n 0.846 (1197, 316, 1550, 547)
1703 e 0.994 (1485, 250, 1921, 547)
2145 d 0.996 (1893, 33, 2398, 547)

(c)

Word Confidence Edit distance
claimed 0.967 0
clained 0.966 1
claihed 0.909 1

(d)

Figure 4: Word generation heuristic. (a) Initial word image. Ground truth word is “claimed.” (b) Image with bounding
boxes. The green X’s mark the center of masses. Note that the characters ‘m’ and ‘n’ overlap. (c) Character data. After
performing NMS and confidence-thresholding (threshold 0.4) the characters are sorted by the x dimension of the bounding
box’s center of mass. (d) Word proposals. The words are sorted by average character confidence; edit distance from the
ground-truth is also shown.

I first remove some overlapping bounding boxes via a
non-maximum suppression (NMS) algorithm [13]. Then
I further eliminate the bounding boxes by removing those
with low confidence. I order the remaining bounding
boxes by center-of-mass with increasing horizontal dimen-
sion (centered x coordinates left-to-right). I group together
bounding boxes whose centers of mass are contained within
each other (Figure 4b).

I then string together the characters from left-to-right,
permuting if the next character can be selected from the
groups created in the previous step (Figure 4c). These
words are then assigned the average confidence of the char-
acters’ region proposals (Figure 4d). The top word and the
top five words are proposed as possible word choices for
this word image.

Edit distance. Since the characters in a word image are
classified independently, my metric for accuracy should not
simply be the word with top confidence. Instead, I should
look for a more nuanced measure based on the number of
accurate characters in a proposed word, as compared to the
original ground truth character. I thus also measure the Lev-
enshtein edit distance of each proposed word [8]. The edit
distance is the minimum number of operations required to
transfer one character string into another by adding, remov-
ing, or changing characters. The edit distance between two
words a and b is given by leva,b(|a|, |b|), where |a| and |b|

are the respective word lengths, and

leva,b(i, j) =


max(i, j) ifmin(i, j) = 0

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1 otherwise.
leva,b(i− 1, j − 1) + 1(ai 6= bj)

For example, in Figure 4d the edit distance of the
third proposal, “claihed,” to the ground-truth word is one
character—by changing the ‘h’ into an ‘m’, we can recover
the original word “claimed.”

3. Experiment
I test the performance of the Faster R-CNN network it-

self and also the accuracy of the word generation based on
Section 2.3’s heuristic.

3.1. Experiment setup and results

To evaluate my word recognition system (Figure 3),
I first obtained a Faster R-CNN architecture based on
VGG CNN M 1024 trained on Pascal VOC 2007 for
70,000 iterations, then trained the model on the hybrid IAM
and Chars74K training dataset (Table 2) for 40,000 itera-
tions. Finally, the trained model was tested on the hybrid
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IAM and Chars74K test dataset. All methods were im-
plemented with Caffe [9] and were trained on a NVIDIA
GRID K520 GPU. Figure 5a shows the training loss on the
word image dataset; the final network took approximately
12 hours to train.

(a)

(b)

Figure 5: Model performance. (a) Loss function over 40k
iterations. The total loss (Total) is the aggregation of the al-
phanumeric classifier (Alphanum classifier), the RPN loss
(Bounding box), cls for whether the region contains an ob-
ject (Box is object), and the reg for the bounding box coor-
dinates (Coordinates). (b) Average precision (AP) on test
set. Only lowercase characters (a-z) are shown; ‘q’ and ‘z’
were not in the test set.

The average precision (AP) metric is used primarily in
the VOC 2007 competition [3, 15] as a metric for object de-
tection. AP relates the order and confidence of the classifi-
cation proposals per bounding box to the classes themselves
across all images. The APs of each class for the test dataset
is shown in Figure 5b. The mean average precision over all
alphanumeric classes is 0.8965, with the lowest AP being
‘x’ (0.636) and the highest APs being ‘y’ (0.9715) and ‘d’
(0.9621).

Dataset Image Top-1 Top-5 Avg. Avg. edit
Type Acc. Acc. Confidence distance

Train
All 0.617 0.660 0.952 0.553

Hand 0.223 0.312 0.775 1.61
Clean 0.778 0.823 0.967 0.271
Noisy 0.509 0.544 0.960 0.694

Test
All 0.603 0.655 0.957 0.575

Hand 0 0.138 0.776 2.48
Clean 0.780 0.834 0.968 0.260
Noisy 0.462 0.506 0.956 0.780

Table 3: Word accuracy results. The average confidence
and edit distance are for the top-1 word.

The output of the Fast R-CNN network was then fed into
a series of Python scripts to produce final word proposals as
described in Section 2.3. Table 3 shows the top-1 and top-4
accuracies, as well as the edit distance accuracies, for both
the training set and the validation set. The results are listed
by the three types of images: handwritten, clean computer-
generated, and noisy computer-generated.

3.2. Analysis and comments

As shown in Table 3, the model performs very subop-
timally when the top confidence word proposal is consid-
ered. Including the top five word proposals gives a better
result. Evidently, the classifier performs best on the clean
computer-generated word images, which have little inter-
character overlap and no noise. Noisy computer-generated
word images gave considerably lower accuracies, whereas
handwritten word images performed the worst.

The edit distance metric gives a better notion of how ac-
curate the model is for as the word length varies. Figure 6a
shows the ratio of the edit distance to the word length. Evi-
dently, while the two-character words (e.g., “to”, “of”, etc.)
are almost completely incorrect, for the most part the edit
distance for the average word length is small. More notably,
the average edit distance is less than one character on av-
erage for the clean computer-generated images, suggesting
that the model performs very well on the clean computer-
generated images. Furthermore, the edit distance metric
seems follow very closely to the overall confidence of the
top word proposal per word length, as shown in Figure 6b;
higher edit distances correspond to lower confidence levels.

Some sample output images are shown in Figure 7. Ev-
idently, the clean images perform very well (Figure 7d).
While the noisy images have decent region proposals, it
is worthwhile to point out Figure 7f, which has bounding
boxes around ‘l’ and ‘a’ as expected but also has a curious
box around ‘l’ and ‘a’ and labels it ‘b’ with high confidence
(0.751). A human would not expect this as he/she expects
cursive b’s to have a different connection to the following
letter, and would identify the ’a’ before the ’l’ due to the
tail of the ‘a’. On a similar note, in Figure 7e the network
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(a)

(b)

Figure 6: Edit distance (a) and confidence (b) by word
length in the test set.

identifies a ‘c’ within the ‘a’; this is perhaps due to the RPN
also allowing vertical classification of characters, whereas
human English readers would only read left to right and
would ignore the hidden ‘c’ in favor of the larger ‘a’.

The handwritten images tend to have more variability
per-character. Overall, Faster R-CNN performs relatively
well on printed handwritten words (Figure 7a) but fails mis-
erably on cursive, connected words. In Figures 7b and 7c,
the ‘u’, ‘m’, and ‘n’ all look very similar when cropped
from the image as a whole, and the network does not even
propose them as characters. However, a human reader can
identify the word as a whole due to the surrounding charac-
ters.

These observations suggest that the neighboring charac-
ters are crucial to the identification of any single character.
In fact, many times a human English reader will be able
to identify words based on merely selecting a few char-
acters within the word and noting their left-to-right order.
However, an RPN will discard this neighboring information
early on in its architecture and therefore can only classify

words independently.

4. Conclusion
The main takeaway of this project is that while region

proposal networks are sufficient in recognizing words when
the characters have high separation (e.g., printed, non-
cursive words), they fall short in cursive handwriting recog-
nition, where large amounts of context are required. Fur-
thermore, a major caveat of region proposal-based networks
is labeling bounding boxes.

Even considering these two issues, I still found this
project useful for finding out exactly why context-free word
classification is insufficient. Furthermore, validating the
performance of Faster R-CNN is beneficial in a general
sense to make sure that the region proposal architecture can
be applied to different types of object detection problems.
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