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Abstract

We present a fully un-supervised framework to learn the
causalities behind human navigation. Using automatically
extracted trajectories from aerial videos, we learn to model
the interactions between moving targets and their static
surrounding. This is in contrast to traditional approaches
which use handcrafted functions such as “Social forces” or
focus on one type of interactions given limited labeled data.

We use an end-to-end trainable recurrent convolutional
architecture to predict where targets move next. Thanks to
both the representation power of Convolutional Neural Net-
works (CNN) and the Long Short-Term Memory (LSTM)
recurrent network, our approach is able to infer “naviga-
ble” paths without explicitly using scene labels or recog-
nizing the target’s physical class (e.g. pedestrian, cyclist,
or driver). Given the raw crop region surrounding a tar-
get, our method predicts its trajectory for the next frames.
Although the used trajectories are error-prone, our learned
model outperforms previous methods on public datasets as
well as a newly collected one made of aerial views.

Prediction, forecasting, human trajectory, human-Space
interaction, Long Short-Term Memory, LSTM, Convolu-
tional Neural Network, CNN.

1. Introduction
Human navigation is not random. When pedestrians and

cyclists navigate their way through cities or school cam-
puses, they respect a set of rules. They avoid each others,
prefer to stay on sidewalks, and sharply turn at intersec-
tions while keeping a personal distance to their surround-
ing. All these behaviors obey social and safety rules. In this
work, we aim to jointly learn to model these interactions
between humans (referred to as human-human), and their
static surrounding (referred to as human-space)1. The ca-
pability to model these interactions is used to predict where
humans will move next. Such prediction goal is key to a
wide range of applications - from the development of sim-
ulators, socially-aware robots [41], early warning systems

1Note that humans in this work includes any moving target such as
bicyclists, drivers, or skateboarders.

Figure 1. We propose an end-to-end trainable recurrent convolu-
tional architecture to predict where targets move next. Given the
raw crop image surrounding a target (the yellow bounding boxes),
our method predicts its trajectory for the next frames (the blue ar-
rows).

for autonomous agents, to the design of intelligent tracking
systems in smart environments [75].

Like any other prediction task, the ability to robustly pre-
dict human navigation highly depends on the available data
and the capacity of the model to jointly reason on multi-
ple cues. To date, we argue that data has guided and con-
strained the design of previous methods. From Helbing et.
al. [24], who proposed hand-crafted set of functions that
mimics “social forces”, to Kitani et. al. [32] who used
static scene labels to predict the long-term trajectories, most
of previous work relied on limited amount of labeled data.
As a result, they accurately modeled simple interactions and
were penalized to generalize to complex subtle interactions
coming from mutual interactions between humans and the
space.

Recently, Alahi et. al. [] have used ground truth pedestri-
ans’ trajectories to learn the complex interactions between
humans. However, they only focus on pedestrians (as op-
posed to multiple classes of targets such as bicyclists, skate-
boards, and vehicles), and did not model the human-space
interactions. Inspired by their work to develop a data-driven
method to learn interactions, we propose to jointly learn
both human-space and human-human interactions in a fully
un-supervised framework, i.e., given error-prone trajecto-
ries.

In this work, we study the representation power of a
recurrent convolutional architecture to learn to predict the
long-term motion trajectory of any target. We demon-
strate the performance of our method using aerial views
from campus scenes where several classes of targets such
as pedestrians, bicyclists, skateboarders, cars or buses in-
teract in complex crowded environments. At training, in-
stead of using ground truth trajectories (as previous meth-
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ods), we use the output of a state-of-the-art Mutli-Target
Tracking (MTT) algorithm. Thanks to the recent success of
public challenges , the community has made great progress
in MTT. We show that the current performance of a state-
of-the-art MTT algorithm is good enough to learn to predict
any target trajectory. For each tracked target, our recurrent
convolutional network takes as input the surrounding raw
image around the target, and outputs its future trajectory
(see Figure 1).
In summary, the contributions of our paper are as follows:

(i) Recurrent convolutional architecture for human pre-
diction. Inspired by the recent success of hybrid ar-
chitectures that use both Convolutional Neural Net-
works (CNN) and Long-Short Term Memory networks
(LSTM) for different sequence prediction tasks such as
handwriting [] or image captioning task [20], we adapt
these architectures to predict any target’s motion dy-
namics. While LSTMs have the ability to learn and
reproduce long sequences thus helping us model de-
pendencies between multiple sequences correlated in
time, the CNN with its hierarchical feature representa-
tion help us learn how this sequences interact in space,
i.e. what is “navigable” (see Section 3).

(ii) Un-supervised framework. Our second contribution
relies on the un-supervised nature of our learning
scheme. We show that we do not need to use ground
truth trajectories to learn the causalities behind naviga-
tion. Our model is robust to tracking errors.

(iii) Campus drone dataset. Finally, we publicly share a
new dataset of UAV videos where more than 20K tra-
jectories are labeled from 6 difference classes of tar-
gets leading to several hundred thousands of interac-
tions. More details are available in Section 4.

In Section 5, we demonstrate the strength of our ap-
proach with respect to previous works that relies on a pre-
classification step [32, ?]. Our method is capable, from
aerial views, to predict any target’s trajectory without ex-
plicitly classifying its class (e.g., pedestrian, bicyclist, or
car) neither its surrounding scene labels (e.g., side walk,
grass, or building). It hence facilitates its usage in learning
the dynamic of any other agents in other fields such as ants
or mice for biological studies.

We believe that not only is this setting closer to any real
world scenario, but also important for considering many
interesting cases where people change their path drastically
from their previous time step to accommodate the change
in their static surroundings. For instance, to make a sharp
right turn at a cross roads. The most interesting issue being
tacked over here is that, we consider both human-human
and human-space interactions at the same time, which
could explain very typical cases of human behaviour where

a person not only accommodate social norms and how other
people are walking around them, but also the constraints
imposed by their surroundings. Clearly such complex
interactions cannot be modelled by hand-crafted features or
heuristics. Hence we come up with a data driven approach
to learn all these complex scenarios while also reasoning
about subtle underlying interactions.

One of the major contribution of this paper is to intro-
duce a hybrid model that uses in a first place moving agent
detector and tracker, to extract directly from the raw im-
ages the position and trajectories of the moving agent. We
then use a CNN to extract static semantics and feed it to
the LSTM for jointly reasoning about the future trajectories
of people in a crowded space. This architecture, which we
refer to as the Space-Time Network (because it encodes in-
formation both in time and space to predict trajectories of
people in the future), can automatically learn typical inter-
actions that take place among trajectories. This model lever-
ages existing human trajectory datasets without the need for
any additional annotations to learn common sense rules and
conventions that humans observe in while moving in any
kind of environment.

2. Related work
Methods to forecast human navigation can be grouped

into two categories: the ones modeling the dynamic content,
human-human interactions, and the ones focusing on the
static scene, human-space interactions. We briefly present
an overview of past works for both approaches. We also
discuss relevant Recurrent Neural Network (RNN) models
for sequence prediction tasks.

Human-human interactions. Helbing and Molnar [24]
presented a pedestrian motion model with attractive and re-
pulsive forces referred to as the Social Force model. This
has been shown to achieve competitive results even on
modern pedestrian datasets [39, 49]. This method was
later extended to robotics [41] and activitiy understanding
[43, 72, 50, 38, 37, 9, 10].

Similar approaches have been used to model human-
human interactions with strong priors for the model.
Treuille et. al. [60] use continuum dynamics, Antonini et.
al. [3] propose a Discrete Choice framework and Wang et.
al. [67], Tay et. al. [59] use Gaussian processes. Such
functions have alse been used to study stationary groups
[73, 48]. These works target smooth motion paths and do
not handle the problems associated with discretization.

Another line of work uses well-engineered features and
attributes to improve tracking and forecasting. Alahi et. al.
[1] presented a social affinity feature by learning from hu-
man trajectories in crowd their relative positions, while Yu
et. al. [73] proposed the use of human-attributes to improve

2
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forecasting in dense crowds. They also use an agent-based
model similar to [6]. Rodriguez et al. [54] analyze videos
with high-density crowds to track and count people.

Most of these models provide hand-crafted energy po-
tentials based on relative distances and rules for specific
scenes. In contrast, we propose a method to learn human-
human interactions in a more generic data-driven fashion.

Human-space interactions. Human-space models try to
predict the motion and/or action to be carried out by peo-
ple in a video using the static space information. A large
body of work learns motion patterns through clustering tra-
jectories [26, 30, 46, 77]. More approaches can be found in
[45, 52, 34, 4, 15, 33]. Kitani et. al. in [32] use Inverse
Reinforcement Learning to predict human paths in static
scenes. They infer walkable paths in a scene by modeling
human-space interactions. Walker in [66] predict the behav-
ior of generic agents (e.g., a vehicle) in a visual scene given
a large collection of videos. Ziebart et al. [79, 23] presented
a planning based approach.

Turek [61, 40] used a similar idea to identify the func-
tional map of a scene. Other approaches like [27, 18, 42, 36]
showed the use of scene semantics to predict goals and paths
for human navigation. Scene semantics has also been used
to predict multiple object dynamics [16, 36, 34, 28]. These
works are mostly restricted to the use of static scene infor-
mation to predict human motion or activity. In our work,
we focus on modeling dynamic crowd interactions for path
prediction.

More recent works have also attempted to predict future
human actions. In particular, Ryoo et. al. [55, 8, 69, 65,
44, 58] forecast actions in streaming videos. More relevant
to our work, is the idea of using a RNN mdoel to predict
future events in videos [53, 57, 64, 56, 31]. Along similar
lines, we predict future trajectories in scenes.

CNN and LSTM models for sequence prediction. Re-
cently Recurrent Neural Networks (RNN) and their vari-
ants including Long Short Term Memory (LSTM) [25] and
Gated Recurrent Units [12] have proven to be very suc-
cessful for sequence prediction tasks. : speech recogni-
tion [20, 11, 13], machine translation [5], .At the same time
both standalone Convolutional Neural Networks have also
shown some success in these tasks. However where these
architectures best shine is when they are part of a hybrid
model that uses the advantages of both LSTMs and CNNs.
image/video classification [7, 21, 68, 47], human dynamics
[17] and caption generation [62, 29, 74, 14, 71] to name a
few. RNN models have also proven to be effective for tasks
with densely connected data such as semantic segmentation
[76], scene parsing [51] and even as an alternative to Con-
volutional Neural Networks [63]. These works show that
RNN models are capable of learning the dependencies be-

tween spatially correlated data such as image pixels. This
motivates us to extend the sequence generation model from
Graves et al. [19] to our setting. In particular, Graves et
al. [19] predict isolated handwriting sequences; while in
our work we jointly predict multiple correlated sequences
corresponding to human trajectories.

3. Our Method - Space Time Network

The interplay between the static and dynamic content of
a scene guides human navigation. For instance, a person
can decide to turn because (s)he arrives at an intersection or
needs to avoid a group of people moving towards him. Such
deviation in trajectory cannot be predicted by observing the
person’s past behavior in isolation.

This motivates our work to jointly model the static sur-
rounding of a target in addition to its dynamic one. In this
section, we describe our model that uses CNN to learn a
representation from the static surrounding combined with
LSTM-based architecture to predict the trajectories of any
target in a scene.

3.1. Problem formulation

We aim to predict the trajectory of a target given its ob-
served short-term motion and surrounding visual informa-
tion. Each scene is first preprocessed to obtain the spa-
tial coordinates of the all moving targets at different time-
instants using a MTT algorithm. . At any time-instant
t, the ith target in the scene is represented by his/her xy-
coordinates (xit, y

i
t) and its surrounding raw image (a crop

rectangular image of 100 m2 centered on the target). We
observe the positions of all the targets from time 1 to Tobs,
and predict their positions for time instants Tobs+1 to Tpred.

This task is similar to a sequence generation problem
[19], where the input sequence corresponds to the cropped
images of a target and the output sequence denotes his/her
future positions at different time-instants.

3.2. Recurrent convolutional architecture - Space
Time Network

Every target has a different motion pattern: they move
with different velocities, acceleration and have different
gaits. We need a model which can understand such target-
specific motion properties from a limited set of initial ob-
servations.

We expect the hidden states of an LSTM to capture these
time varying motion-properties, and we expect the CNN
to extract rich scene semantic features that tells the LSTM
how targets are interacting with the space around them. We
jointly train this model to be robust towards saliency in both
time and space domain.

We prove empirically that this is indeed the case and
that the model is able to predict turns that are not heuristic

3
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Figure 2. An overview of the hybrid CNN-LSTM model called the Space Time Network

based and are dependent on human reasoning about space
and time around them.

In order to jointly reason across multiple people, we
share the states between neighboring LSTMS. This intro-
duces a new challenge: every person has a different number
of neigh- bors and in very dense crowds [2], this number
could be prohibitively high. Hence, we need a compact
representation which combines the information from all
neighboring states. We handle this by using neighborhood
pooling layers. At every time-step, the LSTM cell receives
pooled hidden-state information from the LSTM cells of
neighbors as well as a vector representing features of the
static scene around them from the CNN. While pooling
the information, we try to preserve the spatial information
through grid based pooling as explained below.

The hidden state hit of the LSTM at time t captures the
latent representation of the ith person in the scene at that
instant. This representation is shared with neighbors by
building a neighborhood hidden-state tensor Hi

t . Given a
hidden-state dimensionD, and neighborhood sizeNo, there
is a No No D tensor Hi

t for the ith trajectory:

Hi
t(m,n, :) =

∑
j∈Ni

1mn[x
j
t − xit, y

j
t − yit]h

j
t−1 (1)

where hjt1 is the hidden state of the LSTM corresponding
to the jth person at t1, 1mn[x, y] is an indicator function to
check if (x, y) is in the (m,n) cell of the grid, and Ni is
the set of neighbors corresponding to person i. The pooled

neighborhood hidden-state tensor is embed into a vector ati
and the co-ordinates into eti .

Also we embed the scene around the person i as cit using
a convolutional network architecture. These embeddings
are concatenated and used as the input to the LSTM cell
of the corresponding trajectory at time t. This introduces
the following recurrence:

rit = φ(xit, y
i
t;Wr)

eit = φ(ait, H
i
t ,We)

cit = CNN(cit,Wc)

hit = φ(ait, h
i
t−1, e

i
t, c

i
t;Wl)

where φ(.) is an embedding function with ReLU non-
linearlity, Wr and We and Wc are embedding weights. The
LSTM weights are denoted by Wl .

4. Campus Dataset
We aim to learn the remarkable human capability to nav-

igate in complex and crowded scenes. Existing datasets
mainly capture the behavior of humans in spaces occu-
pied by a single class of object, e.g., pedestrian-only scenes
[49, 39, 1]. However, in practice, pedestrians share the
spaces with other classes of objects such as bicyclists, or
skateboarders to name a few. For instance, on university
campuses, a large variety of these objects interacts at peak
hours. We want to study social navigation in these complex
and crowded scenes occupied by several classes of objects.

4
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Figure 3. A more in depth representation of the Space Time Network. The Convolutional Networks are given as input a small local patch
of space around the object that we want to predict the future of motion for. It is the CNNs job to extract information from these images
to provide as input to the LSTM Additional the LSTM given as input the occupancy map of people around it that indicates where people
are moving with respect to the persons current position and also the current (x,y) co-ordinates of the person whose future trajectory is
being predicted. We use a separate LSTM network for each trajectory in a scene. The LSTMs are then connected to each other through
a neighborhood pooling (N- pooling) layer. Unlike the traditional LSTM, this pooling layer allows spatially proximal LSTMs to share
information with each other. The variables in the figure are explained in Eq. 2. The bot- tom row shows the N-pooling for one person in
the scene. The hidden-states of all LSTMs within a certain radius are pooled to- gether and used as an input at the next time-step

To the best of our knowledge, we have collected the first
large-scale dataset that has images and videos of various
types of targets interacting in a real-world university cam-
pus. Our dataset captures the following types of interac-
tions:

• target-target interactions, e.g., a bicyclist avoiding a
pedestrian,

• target-space interactions, e.g., a skateboarder turning
around a roundabout.

Target-target interactions We say that two targets inter-
act when their collision energy (described by [49]) is non-
zero, e.g., a pedestrian avoiding a skateboarder. These inter-
actions involve multiple physical classes of targets (pedes-
trians, bicyclists, or skateboarders to name a few), resulting
into 185K annotated target-target interactions. We inten-
tionally collected data at peak hours (between class breaks

Dataset Frames Targets Interactions Physical class
ISENGARD 134079 2044 6472 6
HOBBITON 138513 3821 14084 6

EDORAS 47864 1186 4684 5
MORDOR 139364 4542 68459 6
FANGORN 249967 3126 45520 6

THE VALLEY 219712 4845 46062 6
TOTAL 929499 19564 185281 6

Table 1. Our campus dataset characteristics. We group the scenes
and refer to them using fictional places from the ”Lord of the
Rings”.

in our case) to observe high density crowds. For instance,
during a period of 20 seconds, we observe in average from
20 to 60 targets in a scene (of approximately 900m2).

Target-space interactions. We say that a target interacts
with the space when its trajectory deviates from a linear one

5
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in the absence of other targets in its surrounding, e.g., a
skateboarder turning around a roundabout. To further ana-
lyze these interactions, we also labeled the scene semantics
of more than 100 static scenes with the following labels:
road, roundabout, sidewalk, grass, building, and bike rack
(see Figure 4). We have approximately 40k “target-space”
interactions.

To the best of our knowledge, it is the first dataset to
depict complex interactions at such a scale. Tables 1 and 2
present more details on our collected dataset. The scenes
are grouped into 6 areas based on their physical proximity
on campus. The dataset comprises more than 19K targets
consisting of 11.2K pedestrians, 6.4K bicyclists, 1.3k cars,
0.3K skateboarders, 0.2K golf carts, and 0.1K buses.

Each scene is captured with a 4k camera mounted on a
quadrotor platform hovering above various intersections on
a University campus at an altitude of approximately eighty
meters. The videos are also available for further research in
detection, recognition, tracking from UAV data. The videos
have been processed (i.e. undistorted and stabilized), and
annotated with their class label and their trajectory in time
and space is identified.

Our dataset can be used to conduct research in activity
and scene understanding. For example, the collected trajec-
tories can be used to infer the functionality map of a scene
[22, 70, 78, 35], e.g., infer sitting areas, and improve image
segmentation. We envision our dataset to be an ideal testbed
for pushing the limits of visually intelligent machines. It en-
ables the design of new methods that allow learning multi-
target interactions at a large scale as well as pushing re-
search on multi-target tracking.

Dataset Bi Ped Skate Carts Car Bus
ISENGARD 1004 926 57 19 23 15
HOBBITON 163 2493 24 18 1065 58

EDORAS 224 956 2 2 2 0
MORDOR 2594 1492 111 154 165 26

FANGORN 1017 1991 50 30 27 11
THE VALLEY 1362 3358 89 21 10 5

TOTAL 6364 11216 333 244 1292 115

Table 2. Details on the number of objects in our campus dataset.
Bi = bicyclist, Ped = pedestrian, Skate = skateboarders.

5. Results and Experiments
5.1. Training

We train the our architecture the Space-Time Network
on three different settings. We use two different kinds
of trajectories. 1) we produce synthetic trajectories by
simulating an number of pedestrians, using a Social Force
model. We made this model “multi-class” by using 3
different sets of Social Parameters. 2) We use real world
trajectories captured from the campus dataset. Also we use

two different type of bakcgrounds. 1) black and white ,
walkable and non walkable, image patches prepared from
intuitive understanding of scene semantics, i.e. cross roads,
bridges etc, and trajectories overlayed on the map based
on social-force principles. 2) Real world images of places
from the campus dataset that are pre-segmented using .

Thus we experiment on three datasets whose description
are as follows:- 1) Data1: black and white (walkable , non-
walkable) regions with synthetic trajectories. 2) Data2: Pre-
Segmented static scene map from campus dataset with syn-
thetic trajectories. 3) Data3: Pre-Segmented static scene
map from campus dataset with real world trajectories also
from the campus dataset. The following is summarization
of the experiments and the results we got:

Some of the models in the above table are detailed below.
A baseline-LSTM is a vanilla LSTM model with 256 hid-
den units and tanh activations. The ’social’ LSTM model
is the LSTM model that associates a LSTM cell to each of
pedestrain walking in the scene. This LSTM model does not
take as input the static segmented scene map as input. Each
of these LSTM communicates with the other LSTM by way
of sharing weights and also by the ’neighborhood’ pooling
layer that is explained above. These LSTMs also use 256
hidden units in its cell. The Feedforward Space-Time Net-
work uses a feedforward layer instead of the convolutional
neural netowrk to extract static scene semantics. The sege-
mented scene is passed through 3 feedforward ReLU layers
(4096,1025,256) to extract semantic information about the
human-space interactions. The best performing model is
the Space-Time Network model that replaces the feedfor-
ward layers in the above Feedforward social LSTM model
with a 6 layeres Convolutional Neural Network with the
following architectural details. (Conv-BN-Relu-Pool)*2 —
(Conv-Relu-Pool) — Feedforward*3.

6. Conclusion

We have presented a hybrid model called Space-Time
Network that can jointly reason across multiple individuals
to predict human trajectories in a scene. We use one LSTM
for each trajectory and share the information between the
LSTMs through the a neighborhood pooling layer. We also
extract static scene semantics using a convolutional neu-
ral network. Our proposed model outperforms state-of-the-
art methods on publicly available datasets. In addition, we
qualitatively show that our model successfully predicts var-
ious non-linear behaviors arising from social interactions
as well as human-space interactions Future work will ex-
tend our model to multi-class settings where several objects
such as bicycles, skateboards, carts, and pedestrians share
the same space. Each object will have its own label in the
occupancy map.

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#****

CVPR
#****

CVPR 2015 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4. Some examples of the scenes captured in our dataset. We have annotated all the targets (with bounding boxes) as well as the
static scene semantics (rows 2, 4, and 6). The color codes associated to target bounding boxes represents different track IDs.

Dataset
Experiment Data1 Data2 Data3

NLL AD Err NLL AD Err NLL AD Err
Baseline LSTM 3.3614 5.3259 5.5124 7.8951 6.2158 8.9657

Social-LSTM w/o static scene map 1.9524 2.1985 3.5548 4.0370 3.7804 4.9935
Space-Time Network (feedforward) -2.1578 0.9882 -1.2208 1.2015 -1.0632 1.4429

Space-Time Network (CNN) -10.215 0.5547 -8.8521 0.6215 -8.6004 0.2854
Table 3. Quantitative Results (AD-Err holds for the Average Displacement error in meters between the predicted trajectory and the ground
truth for synthetic data )
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