Parking Space Classification using Convoluional Neural Networks

Jordan Cazamias & Martina Marek
Stanford University

jaycaz@stanford.edu & mmarek@cs.stanford.edu

Abstract

Our overall goal is to develop an automated system to
count the empty parking spaces in a parking lot, given
only an image of the lot (and, optionally, the bounding
boxes of the spaces) as input. Two possible approaches
are explored to achieve this: a binary classifier that can
label an individual space image as empty or occupied,
and a multinomial classifier (a.k.a. counter net) that re-
turns the number of empty spaces given the entire lot image.

The binary classifier has yielded very encouraging re-
sults, with over a 99% overall accuracy and strong indi-
cations that it would generalize well to other parking lots.
However, the major downside is that it requires the bound-
ing boxes of the parking spaces, limiting its usefulness to
stationary camera feeds. The counter net has an overall
accuracy of about 81%, much lower than the binary classi-
fier, and its errors exhibit a wide variance. This is a useful
baseline, but more improvements should be made to make it
more practical for real-world use. If this approach can be
improved, however, it would be the more useful of the two
since it only requires the image as input.

1. Introduction

Finding a parking spot, especially in a city or during
busy hours, can be a tedious process. According to a study
by Donald Shoup at UCLA, people in Westwood Village
(with a population around 50,000) drive over 30 extra
kilometers each year to find vacant parking spaces (Shoup
2006). On average, people spend 8 minutes finding a spot
(Shoup 2008)). It would be not only more convenient, but
also environmentally friendlier, if drivers had up-to-date
information on where the nearest empty parking spots are
and could plan accordingly. Another possible use case for
such a system is the home security sector. Especially in
poorer countries, theft is a big problem and user might want
to detect whether their car is in the drive-way or not, and be
notified in case it was moved to prevent theft.

|

= q‘alala Output

Convolutional Layers Fully Connected

Layers

Figure 1. Diagram of our CNN architecture for both the binary
classifier and the counter net

There are two major approaches for the detection
of empty parking spots. Sensors could be pre-installed
in every parking spot to detect the presence of a car.
Alternatively, visual information (typically collected from
pre-install security cameras) could be used to determine if
a parking lot is empty or not. The first approach is quite
expensive to realize, while the second approach could
leverage existing camera systems and therefore be much
more feasible.

We will be working on a parking lot occupancy classi-
fier, and will create two systems to attempt this task. Our
first system is bottom-up, where the parking lot image is
pre-segmented into individual parking space images, and
a classifier decides whether each space image represents
an empty or occupied space. We use a Convolutional
Neural Network (CNN) as the classifier. As this is a binary
classification, this should prove to be a fairly simple task
for a CNN. Despite the pre-segmentation restriction, such a
system could still be practical as it could be applied to any
stationary camera feed where the regions of interest (i.e.
the bounding boxes of each parking space) remain fixed.
One could use pre-existing cameras (like security cameras)
for this task, or install one or more cameras that overlook

the whole parking lot.

Our second system is top-down, where we feed images
of the entire parking lot to the CNN without segments and
let it output the number of free parking spaces. We treated
this as a classification problem, where the classes are the
number of empty spots, which are capped at some maxi-
mum value n. This works fine for a real-world application
since after, say, 20 spaces are empty, it does not matter how
many more parking spots are empty. This is a much harder
problem, since there are much more than two classes and
because the CNN has to count the absence of objects (i.e.
cars). Furthermore, the location of the empty spaces is not
exactly known, so additional localization would need to be
done to pinpoint the spaces’ locations. The upside of this
approach is that the parking lot images do not need to be
pre-segmented, and thus there is no requirement that the
images be from a stationary camera feed. This opens up
the possibility of using alternative image sources, such as
drones or even satellites.

2. Related Work

There are some papers that tackled the parking space
occupancy problem, but so far nobody seems to have
used CNNs on that kind of problem, although they are
the state-of-the-art since the breakthrough of AlexNet
(Krizhevsky, Sutskever, and Hinton in 2011. Most
approaches we found used linear classifiers, like SVMs
or KNN, to classify empty parking spaces. We hope to
improve their results by using a CNN.

Nicholas True describes an approach for classification
of vacant parking spots that used both SVMs and KNNs
with color histogram and corner detection features for
classification, which achieved around 90% accuracy in
[“Vacant Parking Space Detection in Static Images”l The
results reported by Fusek et al., [‘AdaBoost for Parking
|[Lot Occupation Detection”| who used an Adaboost based
algorithm are in the same range.

Wu and Zhang, [“Parking Lots Space Detection”| describe
another approach that uses a multiclass SVM trained on a
Gaussian color model. The best results obtained are around
84%.

For a CS229 class project, |“Parking Spot Detection from|
detected parking spots on aerial images.
They used a variety of different features that captured
geometrical, statistical and optical information and trained
a linear SVM on those. With this approach, they achieved
accuracies over 90% on their dataset.

An example that solves the more general problem of
counting objects in a scene is Zhang et al. which
uses a CNN-based framework to estimate the number of

individuals in an image of a crowd. We will use similar
error metrics to analyze our counter net’s performance.

One paper that is also worth mentioning is that provided
with PKLot, our dataset of choice (“PKLot - A Robust|
|Dataset for Parking Lot Classication”). Besides explaining

the details of the dataset, it also provides classification
baselines and proposed research directions, which were
an important influence on the metrics we used to test the
binary classifier.

Figure 2. Segmented parking lot

3. Methods
3.1. Convolutional Neural Nets

The workhorse of our algorithm is a Convolutional
Neural Network, a deep learning data structure that works
particularly well for computer vision tasks. A CNN
consists of multiple convolutional layers. These layers scan
over the image, using a small, k£ x k-pixel feature detector
called a filter, and mark the regions of the image that align
most closely with that filter. It does this by sliding a & x k
window over the image and computing the dot product
between that window’s pixel values and the filter’s pixel
values. Unlike other vision algorithms that use a fixed set
of features, such as edge detectors, a CNN learns its own
features via machine learning, making them rather well
suited for the data at hand. For instance, a CNN trained to
detect faces may learn to look for shapes such as eyes and
noses, while a CNN trained to classify advertisements may
learn to look for company logos.

An entire CNN typically has multiple convolutional lay-
ers, each of which also uses multiple filters. The conv layer
at the bottom of the net receives the raw image data, and
uses each of its filters to identify the features that it deems
important. Each filter produces a 2-dimensional array of
dot products, called an activation map. The activation maps
for all the filters in one layer are sandwiched together into

a 3-dimensional activation volume. This volume is the
output of the conv layer. After leaving the conv layer (and
going through an activation layer such as ReLU or tanh),
the data then typically goes through a max pool layer that
scales down the activation volume, usually by a factor of
2. This downsampled activation volume then becomes the
input for the next conv layer.

This cycle (Conv layer, then ReLU layer, then Maxpool
layer) happens several times, depending on the size of your
CNN. The results from the last conv layer are fed into a
vanilla neural network with one or more fully connected
layers. Finally, the output of this last fully connected layer
goes through a softmax layer which converts the fully con-
nected layer’s output into a set of class probabilities, one for
each class. It does so using the following formula. Given
the correct class label 4, the input vector &, which is fed
through the network, and renders the scores s, the output
for the softmax is the following:

exp(s;)
351 exp(s;)

To improve the CNN’s performance, a loss function is
used to estimate the quality of the CNN’s answer (i.e. its
class scores). We used the negative log likelihood as the
loss function, which is the following:

hg(a?) =

m

J(0) = —— | > (1 = y)log(1 — ho(x)) + ylog he(x)

=1

Minimizing this function, then, will allow the CNN to
maximize the probability that it chooses the correct output
given the input.

3.2. Batch Normalization

The performance of a CNN often depends heavily on the

initialization of the parameters of the network, and since
those are initialized randomly, the performance can vary
widely even when the same hyperparameters are used.
To solve this problem, one can either train the model
multiple times with the same hyperparameters to get the
best possible performance, or normalize the input to each
layer with a technique called batch normalization (Ioffe and
Szegedy [2015). To describe batch normalization in more
detail:

During training, each dimension of the mini-batches is
normalized using the mean and variance of that specific
batch. However, to keep the expressiveness of the model,
additional parameters and -y are introduced, that scale and
shift the normalized value and are learned during training.
(Just normalizing, without giving the net the option to scale

and shift the normalization, would constrain the net to
specific outputs and therefore reduce its expressiveness).

The algorithm then looks as follows, as described in loffe
and Szegedy 2015:

Input: Values of z over a mini-batch: B = {z1..m};
Parameters to be learned: v, 8
Output: {y, = BN, 5(z;)}

1 m
1B *Ziﬂi
mia

1 m
o m Z(iﬂi — us)*
i=1

Ty — KB

// mini-batch mean

// mini-batch variance

T = ———— // normalize
\/cr% + €
Yi < YL + B = BN, g(z;) // scale and shift

Figure 3. Batch normalization algorithm

Batch normalization is usually added to the network
after convolutional or fully-connected layers, but before the
non-linearity. During test time, the normalization is done
using a sample mean and variance.

During the training process for the binary classifier, we
ran into the above issue. Occasionally, due to an un-
lucky parameter initialization, the validation accuracy of
our model would plummet. After applying batch normal-
ization layers after each convolutional layer, this problem
disappeared.

3.3. Adam Update

After the forward and backward pass of a CNN, the pa-
rameters of the net need to be updated using the gradient
found during the backward pass. The simple way to do this
is with Stochastic Gradient Descent (SGD), which adds a
scaled amount of the gradient to the new parameters:

914.1 = 01 — OéVJ(ez)

However, alternative update methods have been pro-
posed to speed up the learning process. The update rule
we used almost exclusively is adam, the full algorithm for
which can be found in Kingma and Ba 2014, For our mod-
els, there did not seem to be any marked difference in the
two update rules other than the speed. Adam update was
much faster, allowing our models to achieve the same train-
ing loss in fewer training epochs.

3.4. Saliency Maps

In order to analyze our trained model, we implemented

Saliency Maps, as described in Simonyan, Vedaldi, and Zis-
serman to be able to see which regions in the im-
age our trained net pays most attention to given a specific
class. By back-propagating the derivative of the class score
through the net, one can learn which spatial regions in the
image contributed most heavily to that score.
Or, more formally, one computes the forward pass on a
given image (in order to compute the cache needed for the
backward pass). Then, instead of computing the loss, the
derivative of the class [; we want to compute the Saliency
map for is set to 1, while all other derivatives are O (this
vector dout has the same size as the output of the net). The
vector dout is then back-propagated through the net and
outputs dz, the derivative on the image:

dx = Backward(dout),

where dout; = 1[i = j], and |dout| = ||

To generate a single class saliency for each pixel, the
maximum of the absolute values over all channels is taken
for each pixel Simonyan, Vedaldi, and Zisserman 2013

M;; = max.|dz;jc|

4. Dataset

The dataset we used for this problem is PKLot
[‘PKLot - A Robust Dataset for Parking Lot Classica-|
(http://web.inf.ufpr.br/vri/news/
parking-lot—database). It provides 12,000 images
taken from three different camera feeds of two different
parking lots. The images were taken over a 30 day period
at 5 minute intervals. Each parking lot image is annotated
with the date, time and current weather conditions (either
sunny, cloudy, or rainy).

The images are further segmented into over 600,000 sub-
images of individual parking spaces. Each space is hand-
labeled as vacant or occupied. The individual spot images
have also been transformed to remove the perspective dis-
tortion and are all rotated to a vertical orientation (although
not all the images are the same size). Examples can be seen
in figures[2]and [

5. Implementation

To reiterate, we took two approaches to solving the prob-
lem of counting the empty spaces in a parking lot image.
The first is a bottom-up binary classification system, where
we feed each individual parking space image to a CNN and
it chooses whether that space is vacant or occupied. The
second approach, which we will call the counter net, is a

.

)

)

A il

-
b

Figure 4. Examples of occupied and empty spots in the dataset

multinomial classifier that receives an image of the entire
parking lot and returns a count for the number of empty
spaces in that image, up to a predetermined max value n.
Training images with more than n empty spaces were re-
ported to the CNN as having n empty spaces.

5.1. Architecture of the CNN

Figure [T]illustrates the architecture of our CNN for both
the binary classifier and the counter net. The details for both
follow.

5.1.1 Binary classification

For the binary classification model, we used a fairly sim-
ple architecture with three convolutional layers, each with a
depth of 10, 20, and 30, respectively, and a receptive field
of 5x5. Each of those layers was then followed by a batch
normalization layer and a ReLu activation function. After
that, a max pooling layer with a filter size of 2x2 was added.
The output of the convolutional layers was then fed into 3
fully-connected layers with 30, 20, and 10 neurons, respec-
tively. Here we did not use batch normalization; each of the
layers was directly fed into a ReLu activation. Finally, we
used a Softmax layer to compute class scores.

5.1.2 Counter Net

The counter net’s architecture was identical to the binary
classifier’s, with the exception of the input size and the class
labels. Because the counter net uses images of the entire
parking lot, a much larger input size was required. As for
the class labels, there were now n + 1 labels where n is the
predetermined maximum count.

5.2. Preprocessing

For the binary classification, we used the pre-segmented
images of parking spaces, which were already rotated

http://web.inf.ufpr.br/vri/news/parking-lot-database
http://web.inf.ufpr.br/vri/news/parking-lot-database

Model Accuracy
SVM with Gaussian Color Model (Zu et al.) 83.6%
kNN with Color Histogram (True) 89.0%
SVM with Color Histogram (True) 94.0%
Adaboost (Fusek et al.) 95.5%

CNN 99.97%

Table 1. Comparison of the accuracy of the CNN compared with
the classifiers from section[2]

to a vertical orientation. The images are different sizes,
however, so they were all resized to 48x64 before training.
Furthermore, all the images were normalized so the mean
of each color channel was 0.

For the counter net, the images were resized to 256x128
pixels and normalized in the same way as the pre-segmented
parking spots.

The data and associated metadata was also prepackaged
into a single HDF5 file so it could be efficiently piped to our
model in batches (The HDF Group |1997-).

5.3. Technical Approach

We used the Torch (nttp://torch.ch/) framework
to build and train our CNNs and DeepMind’s torch-hdf5
package to process the compressed HDF5 version of our
dataset. For various other scripts, such as compressing the
dataset, running cross validation, etc., we typically used
Python with NumPy.

6. Results
6.1. Measurement for performance
6.2. Binary classification

To measure the performance of the binary classifier, we

used accuracy, the number of correctly classified examples
divided by the number of total examples. As expected,
the CNN performed very well on the classification task
and scored an accuracy of 0.9997 on the test set, even
using a simple architecture with only 3 convolutional
and fully-connected layers with a fairly small amount of
neurons. Using a CNN on this task therefore outperformed
all previous approaches considerably, as described in
section 2] that used feature-based classifiers. A comparison
of the performance of different approaches can be seen in
table[T]
Using a simple CNN for this task is therefore a successful
approach and has the advantage that no features need to
be defined. It is also robust to overfitting, scoring over
99% for the training, validation and test set, and converges
within one training epoch.

- Sunny | 0.997 0.994 0.991
K}
=
c
8 Rainy | 0.946 0.997 0.949
£
©
'_
Cloudy | 0.941 0.985 0.919
Sunny Rainy Cloudy
Test Condition
- PUC 0.896 0.853
9o
=
8 UFPR04 | 0.926 0.995
c
i
|_
UFPRO5 | 0.936

PUC UFPR04 UFPRO5
Test Condition

Figure 5. Confusion matrices for our binary classifier based on

weather conditions and parking lot camera feeds, respectively. For

each result, the CNN was trained on the condition of row 7, then

tested on the condition of column j.

6.3. Generalization

To test how well our model generalizes across different
parking lots or weather conditions, we trained our net on a
specific condition and tested how well it performed on the
other conditions.

During training, we used the hyperparameters we found
earlier for the binary classification and performed a 5-fold
cross validation to make sure the performance is not influ-
enced by different initializations. We used 70% of the im-
ages of a specific condition for training and 20% for the
validation set, and tested on the remaining 10% of this con-
dition. While testing on the other conditions, we again used
20% of the data for the validation set, and 10% for the test
set.

More specifically, we trained it on each of the three weather
conditions in our training set, namely sunny, rainy, and
cloudy, and then tested the test performance on all other
weather conditions for each of those, rendering the 3x3 con-
fusion matrix in figure 5]

It can be seen that the performance on the test set varies
as the weather conditions are changed, hinting that when
the net is trained on the entire dataset, it learns to adapt to
different lighting conditions. However, even when trained
on one lighting condition, the net stays above 90% in all
cases, which is fairly robust. The best performance over all
weather conditions was obtained when training on sunny

http://torch.ch/

weather conditions.

In a second step, we tested how well the net generalizes
over images of different parking lots. Here, the main differ-
entiator between the images is the camera angle, resulting in
a different perspective distortion. The images in our dataset
are drawn from two different parking spots (namely, PUC
and UFPR), where the UFPR lot had two different camera
feeds (UFPR0O4 and UFPROS). Again, we trained on one
of the camera feeds and tested the CNN on the other ones.
The results can be seen in[5} The CNN also performed rea-
sonably well, though not as well as during the weather test.
This suggests that the CNN is more sensitive to changes in
the viewing angle of the parking spaces than it is to changes
in lighting.

6.4. Counter Net Error

The overall test accuracy for counter net was 0.8084.
However, unlike the binary classifier, not much can be said
about the counter net’s performance by just looking at the
accuracy. Therefore, we will perform a deeper dive into the
counter net’s performance.

Because the problem of counting parking spaces is a
quasi-regression problem, we should not only consider how
often the counter net correctly chooses the exact count, but
also what it chooses when it is wrong and how far that
choice deviates from the true count. After training on the
entire dataset of parking lot images, Figure[6] gives us a ma-
trix displaying the model’s answer versus the correct answer
on the test data.

Ideally, we would like our model to learn some kind
of locality, i.e. even when it makes the wrong choice, its
choice should be as close to the correct choice as possible.
If that were true here, this matrix would exhibit a cluster-
ing of values along the major diagonal line. Unfortunately,
that does not seem to be the case. While there may be some
promising clustering in the middle, the various vertical bars
indicate that the model still likes to gravitate towards some
values regardless of what the ground truth label actually is.

One encouraging note about the matrix, however, should
be explained. The vast majority of the test data - about
1,000 out of the 1,200 tested - was in the small box on
the bottom right, which counts when the model guessed
there were 719 or more” empty spaces and was correct.
In essence, the counter net is still quite accurate at noting
when a parking lot has a large number of empty spaces and
when it is almost full.

We can go further into the analysis of the counter net
error by examining the distance between its choices and the
correct answer. Figure[7/|illustrates such a distribution.

Furthermore, we can extract some useful statistical data
from this distribution:

Counter Net Confusion Matrix

0 N O g~ WD = O

Ground Truth Label
>

0123456 7 8 9 1011121314151617 1819
Model Generated Label

Figure 6. Comparison between the ground truth empty space
counts and the counts found by the CNN. A lighter box indicates
that the (ground truth, model choice) pair occurred more often.

Counter Net Error Distribution

T T T T T

Number of Occurrences

-20 -15 -10 -5 0 5 10 15 20
Error (Guess - Ground Truth)

Figure 7. Distribution of errors between the ground truth empty
space counts and the counts found by the CNN. Negative values
indicate the model underestimating the number of empty spaces in
an image, and vice versa for positive values.

Mean Error -0.5805
Std. Dev 3.1824
Sample Size 1242

95% Confidence Interval [-0.7575, -0.4035]

We will also consider the Mean Absolute Error (MAE)
and Mean Squared Error (MSE), which were used as error
metrics in a similar CNN counting system (Zhang et al.
2015)):

Mean Absolute Error (MAE)
Mean Squared Error (MSE)

1.0749
10.4565

Judging by the mean and confidence interval, our
counter net is biased towards a negative error, i.e. it tends
to underestimate the number of empty spaces in an image.
While it may be better in practice for such a system to
consistently underestimate rather than overestimate, we
would ideally like to drive this mean closer to 0.

We would also like to see the MAE and MSE brought
down overall. Currently there is no clear basis to say what
would be ”good” values for the MAE and MSE, but they
can at least be used to compare different versions of the
counter net. Therefore, the current values will serve as a
useful baseline when improving the counter net in future
work.

6.5. Saliency maps

Figure 8. Example saliency maps for binary classification

To analyze which regions of the image the CNN pays
attention to when classifying an image, we implemented
saliency maps as described in Simonyan, Vedaldi, and Zis-

serman 2013]

6.5.1 Binary classification

During the binary classification, the CNN seems to spread
its attention all over the image, without any noticeable atten-
tion on key features of any of the two classes. We thought
that it might pay attention to straight white lines for empty
parking spots, or focus the attention on the middle part of
the image for occupied lots, but it seems like it considers
all regions of the image as important for the classification.
Results can be seen in figure[§]

6.5.2 Counter Net

For the classification of the number of empty parking spots
over the whole image, the net seems to concentrate its atten-
tion on specific areas of the image, but unfortunately it does

Figure 9. Example saliency maps for counter net

not seem to only concentrate on the empty lots, but also on
the occupied lots. Using the saliency maps for localization
is therefore not possible. Examples of the picture of the
whole lots and their saliency maps can be seen in figure 9}

7. Conclusion

The binary CNN clearly outperformed the classifiers de-

scribed in other papers in the classification task and ren-
dered really good and stable results.
For the counter net, the results are fairly good when consid-
ering that it is a much harder problem. For a reliable sys-
tem, however more improvements would need to take place.
Firstly, although we performed cross validation with differ-
ent architectures and hyperparameters, one could try even
more complex architectures and a wider range of hyperpa-
rameters. Secondly, while we treated it as a classification
task, one could also define it as a regression task (by using a
regression loss instead of Softmax loss), and see if the per-
formance improves. This is a very simple adjustment to the
net architecture, but unfortunately we had no more time to
run this test on the GPU. Additionally, if the number of to-
tal parking spots is known, one could also count the number
of cars in the parking lot and subtract it from the number
of total spots. This is probably an easier problem, since the
CNN then has to count the number of objects of a specific
kind in the image, instead of the absence of objects.

7.1. Future work

For the future, there are many ways on how to improve
these models. Some of the ways we would like to expand
this topic are outlined below.

Counter Net Regression

First, the counter net could be significantly improved if it
were treating the space counting as a regression problem
instead of multinomial classification. Thus, rather than us-
ing softmax as our criterion and looking at Mean Squared

Error for our results, it would likely be worthwhile just to
train the counter net on MSE directly, or on some other re-
gression loss. That way, it would be more likely to learn the
locality of errors that this type of task possesses, and would
ideally result in a more predictable and less varied error.

Spatial Transformer Modules

Second, it would be important to make both models
rotation-invariant in order to be used on a wide variety of
parking lots. While the segmented parking spaces on our
lots cover different angles and our classifier therefore learns
how to cope with spaces in different rotations, the rotations
covered are limited and having a model that is completely
invariant to rotations would be useful. For this, one could
implement Spatial Transformer Layers, a module which can
learn how to perform an affine transform on the feature map
and therefore becomes invariant to rotations. More details
on Spatial Transformer Layers are described in Jaderberg et
al.20135l

Satellite Imagery

Given more time and resources, one could also collect an-
other training set on satellite images, to test how well the
network generalizes to images taken from a radically dif-
ferent angle, namely the extreme perspective of a top-down
satellite view. Additionally, this would show if satellite im-
ages could be used to implement such a system for a user
application.

Reduced Positional Data & Attention Models

It would be ideal to eliminate the need for bounding boxes
around the parking spaces. However, rather than jump from
requiring 4 coordinates (the corners of the bounding box)
per space to O coordinates per space, it would also be worth-
while to consider intermediate constraints. For instance,
could a system be devised that only required one coordi-
nate, such as the central coordinate of the parking space?
Given this one point on an image of an entire parking lot,
all the CNN would need to do is determine, roughly, which
pixels around that point correspond to that space. One pos-
sible approach would be to use a guided attention model (as
touched on in Tang, Srivastava, and Salakhutdinov|2014) to
pick out the regions where the parking spaces are and feed
these regions into a binary classification CNN.

Parking Space Detection

Finally, one could, in theory, automatically find the bound-
ing boxes for the parking spaces using detection. While de-
tection systems exist, the major challenge for this problem
would be that most state-of-the-art detection systems do not

support rotated bounding boxes. Therefore, an implemen-
tation of the Spatial Transformer Module (Jaderberg et al.
2015) would be useful to make our models rotation invari-
ant. Then unrotated bounding boxes could be used for the
detection problem. This would likely be the most challeng-
ing way to improve this system, but if it were to work well
in practice, it would open up the applicability up to any live
camera feed.

References

Almeida, P. et al. “PKLot - A Robust Dataset for Parking
Lot Classication”. In:

Fusek, Radovan et al. “AdaBoost for Parking Lot Occupa-
tion Detection”. In:

Ioffe, Sergey and Christian Szegedy (2015). “Batch
Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: CoRR
abs/1502.03167. URL: http://arxiv.org/abs/
1502.03167.

Jaderberg, Max et al. (2015). “Spatial Transformer Net-
works”. In: CoRR abs/1506.02025. URL: http : / /
arxiv.org/abs/1506.02025.

Kabak, Mehmet Ozan and Ozhan Turgut. “Parking Spot De-
tection from Aerial Images”. In:

Kingma, Diederik and Jimmy Ba (2014). “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton (2012). “ImageNet Classification with Deep Con-
volutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira
et al. Curran Associates, Inc., pp. 1097-1105. URL:
http : / / papers . nips . cc / paper / 4824 —
imagenet — classification - with — deep -
convolutional-neural-networks.pdf.

Shoup, Donald (2008). “City of Dreams”. In: Tablet 18
March.

Shoup, Donald C (2006). “Cruising for parking”. In: Trans-
port Policy 13.6, pp. 479-486.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman
(2013). “Deep Inside Convolutional Networks: Visualis-
ing Image Classification Models and Saliency Maps”. In:
CoRR abs/1312.6034. URL: http://arxiv.org/
abs/1312.6034.

Tang, Yichuan, Nitish Srivastava, and Ruslan R Salakhut-
dinov (2014). “Learning generative models with visual
attention”. In: Advances in Neural Information Process-
ing Systems, pp. 1808-1816.

The HDF Group (1997-). Hierarchical Data Format, ver-
sion 5. http://www.hdfgroup.org/HDF5/.

True, Nicholas. “Vacant Parking Space Detection in Static
Images”. In:

Wu, Qi and Yu Zhang. “Parking Lots Space Detection”. In:

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1506.02025
http://arxiv.org/abs/1506.02025
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Zhang, Cong et al. (2015). “Cross-scene crowd counting via
deep convolutional neural networks”. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 833-841.

