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Abstract

Enabling intelligent devices to accurately detect and
identify the environment with various disturbances is very
important. In this final report, we present an object detec-
tion approach for low quality videos. Still images with mo-
tion blur, Gaussian blur and pixelation are trained in addi-
tion to clean images using both faster R-CNN and YOLO
algorithms. The models are integrated with low resolu-
tion webcam videos and evaluated with an object counting
agent. The final models demonstrate improvements in both
low quality images and videos. The cause of errors are dis-
cussed.

1. Introduction
Computer vision has recently been greatly integrated

into robotics and automation. From camera manufacturing
[2] to quadcoptor SLAM and navigation [8, 6], image clas-
sification and object detection has been widely applied to
achieve more accurate localization and faster computation.
However, due to environmental disturbances such as wind
gust, rain, and lack of lights, image quality can reduce to
different extent. This problem is especially severe on we-
bcam vision which is broadly used in many robots. Thus
a desirable detection algorithm for robot vision should be
robust enough to tolerate various image quality reductions
and efficient enough for robot onboard real-time detection.

The application we are looking into is enabling robot to
count objects in a comparatively fixed scene, such as count-
ing number of people in certain store or number of cars in
certain parking lot. It is a sophisticated enough problem that
needs to resort to deep learning algorithms.

Low quality images can be caused by fast motion of we-
bcam or target, unfocused lens, lack of light exposure and
etc.. A fast moving scene can be simulated with a motion
blur filter, which acts on the original image as a moving
average along arbitrary directions. Unfocused lens can be
modeled as Gaussian blur. Low resolution (small) images,
when applied to convolutional networks, can be modeled as

Figure 1. An original model VS a re-trained model on reduced
quality images. The re-trained model improves detection accuracy
and robustness. Top left: The original model on a motion-blurred
image. Top right: The re-trained model on the same motion-
blurred image. Bottom left: The original model on a pixelated
image. Bottom right: The re-trained model on the same pixelated
image.

resized, larger images with pixelation. The above low qual-
ity filters are applied to still images for training. Test videos
cover a range of qualities.

2. Background

Object detection has been an active research field for
decades. Recent approaches using convolutional neural net-
works (CNN) have improved the detection accuracy by a
large extent [7, 13, 5]. Moreover, objection detection with
reduced image qualities have also aroused people’s atten-
tion [9, 10], but there is little literature on using deep CNN’s
for such problems.

Among the many choices of object detection with
CNN’s, faster R-CNN and YOLO [12, 11] are the two most
promising ones that require comparatively low computa-
tional power but still achieve good enough accuracy, there-
fore are the main focus in this paper.
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3. Approach
3.1. YOLO

YOLO stands for “You Only Look Once”. It splits a
source image into 7 × 7 grids, and for each grid it predicts
two bounding boxes and a class association with probabili-
ties. All layers before the final prediction layer are similar
as regular CNN’s in terms of architecture. The final detec-
tion layer instead is a regression that maps the output of
the last fully connected layer to the final bounding box and
class assignments. The illustration of the detailed structure
is shown in Fig. 2. Because of the simple structure, YOLO
is comparatively much faster than most region-proposal al-
gorithms and suitable for real-time applications.
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Figure 2. Top: The original YOLO’s architecture. Bottom: Illus-
tration of YOLO dividing a source figure into grids and assigning
bounding boxes and class to each grid.

We used YOLO-tiny model as the pre-trained model be-
cause it is the fastest model so far and can do detection at
more than 100 fps [11]. Smaller than the original YOLO,
YOLO-tiny has 9 convolutional layers, 6 max pooling lay-
ers, and 3 fully connected layers,which is shown in Fig. 2.
The pre-trained model has already been trained on the VOC
2007 and 2012 for 40,000 iterations with each iteration
looping over 64 images as one batch. Thus, this model is
highly over-fitted to the VOC clean images. We fed reduce
quality images into the pre-trained model for re-training and
fine-tuning. For each category of reduced quality images,
we re-trained the model for 500 to 1,000 iterations with 128
images (batch size) per iteration. Learning rate was con-
trolled to be as low as 1e−4 to 1e−5 to prevent unstable
gradients.

3.2. Faster R-CNN

R-CNN is a neural network architecture for object de-
tection, with region proposal network (RPN) which extracts
object candidates from raw image and have them processed
by convolutional networks [12]. More specifically, a convo-

lutional network (ConvNet) pretrained by ImageNet [4] has
its last fully-connected (FC) layer removed and retrained for
new set of classes required by the object detection task. All
regions acquired by the region proposal methods are pro-
cessed by the ConvNet into features that will be stored in
the disc. Binary SVMs and regression for bounding boxes
are then trained based on the features. This method is ex-
pensive in both space (storing huge size of features) and
time (processing each region separately). Fast R-CNN has
been developed to overcome these disadvantages [12]. It
swaps the pipeline and process the images with ConvNet
altogether first and then based on which use external region
proposal for region of interests and pass them into layers for
classifications and bounding box regression. Faster R-CNN
[12] replaces the external region proposal methods with the
region proposal network (RPN) which enable end-to-end
training and testing, in order to achieve close-to-realtime
inference speed. The architectures of R-CNN variants are
shown in Fig. 3.

In this project, faster R-CNN are selected as one of the
main approaches for its comparatively good training/testing
efficiency and great accuracy. VGG16 is used for the Con-
vNet kernel. Approximate joint training method was used
on the faster R-CNN to achieve 1.5x faster training time.

Figure 3. Left: Architecture of fast R-CNN and Right: architec-
ture of faster R-CNN.

Based on the insights acquired from YOLO retraining,
a faster R-CNN were also retrained to increase its perfor-
mance on low quality images. The model was initialized
with weights that have been trained on VOC2007 images.
It was then trained with images processed by Gaussian blur,
motion blur and pixelate filter. The image processing was
implemented using OpenCV. The model was also retrained
using VOC2012 images for better generality. Different se-
quences and combinations of successive training were ex-
perimented. The size of batch and learning rate were tuned
to achieve better training efficiency and set to be 128 and
0.0002 for the final training.
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3.3. Model Implementation

The code and pre-trained weights of YOLO are origi-
nally from [3]. This framework is called Darknet, which
is implemented with C. Re-training of YOLO were accom-
plished on Stanford Terminal Cloud [14].

The implementation of faster R-CNN are adapted from
codes [1] developed using Caffe. AWS EC2 g2.2xlarge
server with GPU was used for model training. For ease of
video detection and rendering, we used a desktop equipped
with GeForce GTX 980 Graphic card for the testing.

3.4. Low Quality Image Filters

There are 3 filters used in the training data set to reduce
the image qualities, known as motion blur, Gaussian blur,
and pixelation. Motion blur acts as a moving average func-
tion applied to a sliding window traversing the whole image
along a fixed direction. Gaussian blur acts as a Gaussian
function convolving with the original image to reduce de-
tails. Pixelation acts as an average pooling across the whole
image. They are used to get better tolerance to images with
wrong focus, fast moving objects and small size objects re-
spectively. In this work, a motion blur filter with window
size of 8 pixels and orientation of 0o is used. Gaussian blur
of window size of 8 pixels and standard deviation of 2 is ap-
plied. For pixelation, a series of 2×2 through 8×8 average
pooling filters are used to optimize robustness. Note that the
pixelate images for faster R-CNN were obtained by down
sampling and then up sampling the images using OpenCV.
Example of an original image and the corresponding several
filtered images are shown in Fig. 4.

3.5. Object Counting Benchmark

Based on the two aforementioned pretrained model, we
developed an object counting agent for video input. The
scripts were written in python with interface for the object
detection model. Only two classes: human and car, is pro-
cessed in the agent, for scenarios of counting people in in-
door environment (restaurant etc.) and cars in parking lots.
The numbers of persons and cars are rendered on the top
left corner of the video in each frame.

For evaluating performance of the object counting agent,
we chose 8 different videos, 4 for each class, for the bench-
mark. Snapshot of each video sample is shown in Fig. 5.
Detailed descriptions of each video are as follows:

• Video1: small group (less than 10, sparsely dis-
tributed) of people in indoor environment, with dark
background. Fast motions are involved.

• Video2: small group (less than 12, sparsely dis-
tributed) of people in indoor environment (restaurant),
with bright color background. Motions are mostly
slow. Object size ranges from large to very small
(down to 1/10 of image height and weight).

Figure 4. From left to right, top to bottom: original, motion-blur,
Gaussian-blur, 2× 2 pixelation, 4× 4 pixelation, and 8× 8 pixe-
lation.

• Video3: middle group (less than 18, densely dis-
tributed) of people in indoor environment, with dark
background. Mostly slow motion and large size of ob-
jects. The video has poor resolution.

• Video4: large group (more than 20, densely dis-
tributed) of people with similar dressing in outdoor en-
vironment, with light color background and severe oc-
clusion. Mostly slow motion and large size of objects.

• Video5: middle group of cars (10-20, densely dis-
tributed) in light background with mild occlusion, in
45deg (from horizontal) perspective. Small group of
people occasionally occur in the video.

• Video6: small group of cars (less than 10, sparsely dis-
tributed) in light background with almost no occlusion,
in 30deg perspective.

• Video7: large group of cars (more than 20, sparsely
distributed) in dark background with almost no occlu-
sion, in 60deg perspective. Video quality is poor.

• Video8: small group of cars in dark background and
almost no occlusion, in 80deg perspective. A few peo-
ple occasionally occur. Video quality is good.

Number of cars and persons in each frame were man-
ually labeled with time stamps in 8 text files, which were
then loaded into buffer for performance evaluation. Object
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Figure 5. Snapshots of video samples for the benchmark.

counting with different models were ran through each video
with predictions compared to the labels. Frame stride of 20
were applied to speed up the evaluation. The performance
was evaluated using the mean normalized error ε, which is
expressed by the equation as below:

ε =
1

8

8∑
n=1

jn∑
i=1

|Npred −Nlabel|
(Nlabel + 1)jn

(1)

where jn is the frame number (taking frame stride into
account) of Video n. N is number of counts.

4. Results
Intuitions are first acquired through YOLO re-training

optimization, and then applied to faster R-CNN for better
image and video detection.

4.1. Model Re-training Optimization

As described before, for YOLO each image quality re-
duction category is trained for 500 to 1,000 iterations based
on the pre-trained model. Fig. 6 shows the loss history of
1,000 iterations of re-training motion-blurred images. Be-
cause the pre-trained model can already tolerate motion-
blurred images to some extent, the loss does not start at
a large value. The loss decreases and eventually becomes
stable, implying that the re-trained model tolerates motion-
blurred image better than the original model. Similar trend
has been found in the re-training of other types of blurred
or pixelated images.

The mean average precision (mAP) is calculated after the
re-training of every image quality reduction category. As
shown in Fig. 7, The original model cannot tolerate motion-
blurred, Gaussian-blurred and pixelated images well. Af-
ter re-training each category, the mAP of the correspond-
ing category increases and the mAP’s of other categories
including the original clean images decrease. For most of
the cases, the gain of the increasing robustness defeats the
loss of detection accuracy in other categories. If there is

Figure 6. Loss history of 1,000 iterations on motion-blurred im-
ages.

little pixelation effect in test images and videos, then the
re-training process should stop after re-training Gaussian
blur, where there is a good balance among the performance
of the original images, the motion-blurred images and the
Gaussian-blurred images. However, if there are many small
images in the test set which can result in great amount of
pixelation after the resizing in the network, the final model
should be used to improve pixelated image detection. After
training for all 3 categories, the re-trained model is much
less sensitive to image qualities.

Figure 7. Mean average precision of YOLO after re-training dif-
ferent image quality reduction categories. The final model exhibits
more robustness than the original model.

Similar re-training process is applied to different amount
of pixelation. Based on the re-trained model after the
motion-blur training, 4 additional groups of pixelated im-
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ages are fed into the network to optimize the performance
across all image categories. Instead of calculating mAP,
we use an accuracy indicating correct class assignment and
over 50% IOU as the metric. As shown in Fig. 8, after more
severely pixelated images being fed into the network, the
model generally tolerates pixelation better with the sacrifice
of decreasing detection accuracy in the original, motion-
blurred and Gaussian-blurred images. In YOLO the input
images are resized into 448 × 448 pixels. If the input im-
age is larger than 112× 112 pixels, which corresponds to a
worst case of 4 × 4 pixelation, then the re-training process
should stop after the 4 × 4 pixelation training, because the
4×4 pixelated images have already gained enough accuracy
boost and approaching a plateau while the accuracy of the
original and blurred images have not lost much. However,
if the input images can be even smaller, then further training
with 6× 6 or even 8× 8 pixelated images are favored.

Figure 8. Top: Validation accuracy of different re-training stages.
Bottom: Validation average IOU’s of different training stages. As
the model being trained with all pixelated images, it tolerate pix-
elation much better but with the sacrifice of accuracy loss in the
original and blurred images.

The above intuitions of re-training optimization with dif-
ferent categories of blur and different amount of pixelation
with YOLO can also be applied to the faster R-CNN model.
Table. 1 shows the statistical results of the re-training of the
faster R-CNN model. The mAP of people and cars are also
listed in addition to the overall mAP as they are important
for object counting in videos.

The pretrained model achieves a loss of about 0.8 when

Table 1. MAP performance on faster R-CNN using intuitions from
YOLO re-training optimization.

initialized. In cases of training with blurred images, the loss
fluctuates and decreases down to about 0.4 after 100 itera-
tions but is not necessarily significant smaller than the initial
loss at the end of training. During testing, each image takes
0.565 sec to process. The results are shown in the table be-
low. Performances of human and car detection among our
main interest were evaluated individually. Mean AP was
calculated over 20 classes.

As shown in Table. 1, both motion blur and Gaussian
blur filters decrease the overall performance significantly
by up to 0.2AP. The accuracy is more vulnerable to pixelate
with a performance drop of almost 0.3AP. Retraining the
network with processed images does improve the robust-
ness of detection on low quality images. It is interesting that
the performance of retrained model doesnt show noticeable
drop when tested on original high quality images. In gen-
eral, the car is easier to detect compared with human detec-
tion due to its comparatively invariant structure. The results
also show that retraining the model with low quality images
gains better performance improvement on human over on
car detection for blurred images. However on pixelate im-
ages, car detection obtains better enhancement than human
detection by retaining. Models trained on combinations of
differently processed images will be evaluated in next sec-
tion.

4.2. Performance of Re-trained Models

4.2.1 Still Images

Using the optimized models we can compare object detec-
tion performance in still images. As shown in Fig. 9, every
image sequence denotes the input image, the neuron’s out-
put of the 1st, 9th, and 15th layer. The original model can-
not tolerate low quality images well. As the image quality
reduces, the neurons get less excited and thus less sensitive
to objects. After the re-training and fine-tuning process, the
model can detect objects well again. Even if the re-trained
model cannot detect objects in the low quality images as
well as the original model detecting objects in the clean im-
ages, the re-trained model still exhibits much better robust-
ness than the original model.
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Figure 9. Visualization of neuron’s outputs given different image
qualities. The re-trained model can identify objects that the origi-
nal model fails to recognize.

4.2.2 Videos

Object counting agents based on different models that were
trained using aforementioned methods are evaluated with
our benchmark. Results for YOLO-based agent are shown
in the following table Table 2. After training all motion-
blurred, Gaussian-blurred and pixelated images, the perfor-
mance is slightly improved. For object counting, YOLO
is very sensitive to prediction probability threshold. Low
threshold correspond to more bounding box predictions,
which can lead to better object counting performance. How-
ever, very low threshold can contribute to redundant predic-
tions over the same object, and thus the performance in-
crease can be fake. Moreover, YOLO is generally bad at
differentiating among a group of closed objects such as a
group of parked cars and a group of closely standing peo-
ple. This also contribute to the non-obvious performance
increase.

Video&Index& YOLO&Original& YOLO&Motion& YOLO&Gaussian& YOLO&Pixelation&
1& 0.711% 0.759& 0.766& 0.714&
2& 0.669& 0.682& 0.674& 0.650%
3& 0.690& 0.686& 0.666& 0.637%
4& 0.420& 0.425& 0.452& 0.411%
5& 1.390& 1.374% 1.400& 1.408&
6& 0.796% 0.982& 0.988& 0.929&
7& 0.955& 0.955& 0.955& 0.954%
8& 0.939& 0.909% 0.937& 0.912&

&
&
Video&Index& RCCNN&Original& RCCNN&Motion& RCCNN&Gaussian& RCCNN&Pixelation&

1& 0.508% 0.562& 0.546& 0.540&
2& 0.558& 0.541% 0.576& 0.587&
3& 0.578& 0.554& 0.535% 0.559&
4& 0.623& 0.566& 0.534% 0.577&
5& 1.324& 1.000& 0.903% 0.941&
6& 0.358& 0.246& 0.377& 0.241%
7& 0.847& 0.792& 0.713% 0.731&
8& 0.949& 0.892& 0.807& 0.753%

&
Table 2. Error comparison of the original models and the re-trained
models. All models are re-trained based on the model trained be-
fore (Original – Motion – Gaussian – Pixelation).

Compared with YOLO, faster RCNN-based counting
agent achieves better overall performance and less flicker-
ing of bounding boxes on successive frames. Normalized

Errors of agents based on differently-trained faster-RCNN
are compared in Fig.10. Faster RCNN trained by only one
type of images achieves different degrees of improvement,
among which training with Gaussian-filtered images get the
best performance. Training the agent with VOC2012 (larger
set of images) reduces the performance. But if training it
with motion blurred, Gaussian blurred and pixelate images
one by one successively, the agent gains continuous im-
provement. Details of normalized errors on different video
samples are listed in Table. 123.

Figure 10. Performance of agents trained with different methods.
Green line is about agents separately trained by different type of
low quality images. Blue line is about agent trained successively
by different type of images and expanded training data set.

Our final counting agent is based on faster R-CNN that
has been retrained on all methods successively (last dot of
green line in Fig. 10). Several snapshots are provided to
show its performance, as shown in Fig. 11.The agent is
able to detect fast and blur motion (Picture 1 and 2), very
small object (Picture 4 and 5), occlusion (Picture 5) and
object counting. It fails when the occlusion become severe
(Picture 7 and 9), low quality image and objects with similar
background (Picture 8), and lack of training data (Picture
3, 8 and 9 where some cars are shot from the top and the
wheels become invisible).

5. Conclusion and Future Work

In conclusion, we present object detection and counting
in low quality images and videos using two cutting-edge
deep learning models, YOLO and faster R-CNN. The mod-
els are re-trained and fine-tuned with low quality images
to increase robustness on motion-blurred, Gaussian-blurred
and pixelated images. The re-trained model demonstrate
improved performance of object counting agent on a wide
range of videos.

Next step is to further improve the model by adding a
counting layer for end-to-end training and testing. More
photos about cars and humans taken from different perspec-
tives are required to achieve more robust performance. To
deal with densely grouped objects with severe occlusion,
methods such as texture analysis may be incorporated to the
model.
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Figure 11. Snapshots of object counting on videos with agent based on faster-RCNN trained by different type of images successively.
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