Image Detection Techniques on Daimler Pedestrian Monocular Data

Christopher Ling
x24ling@stanford.edu

Abstract

The project aims to look at images from a camera at-
tached to a car that drives around for a while and develops
a model that finds pedestrians on the image by drawing a
bounding box around the pedestrian. The paper employs
a R-CNN to detect the pedestrians and the process can be
broken down into two sections. First, critical regions are
proposed on the image itself. Secondly, these critical region
proposals are run through a CNN that classifies whether
those regions are pedestrians or not.

1. Introduction

With the increased development of self-driving vehicles
and other similar technologies, it needs to be able to sense
where the obstacles are so that the vehicle will be able to
safely navigate. This is incredibly critical when the obsta-
cles are human lives, so the image detection model needs to
be able to provide the vehicle information where the pedes-
trian is, and the first step is to detect the location of the
pedestrian on the 2d image. Given the importance of safety,
the pedestrian detection model must be very accurate.

The project uses the Daimler Monocular Pedestrian De-
tection Benchmark data, which is comprised of a several-
minute car camera recording of the street as the vehicle
drives. The frames have instances where pedestrians exist
or not. The benchmark data also notes whether a pedestrian,
vehicle, bicyclist, and motorcyclist exists in the image and
where in the image the target is, defined by a bounding box.
For simplicity, we will only look at pedestrians.

To classify the existence of a pedestrian will requires the
use a simple CNN network with only two classes, contains
pedestrians and no pedestrians. It network will only take a
small region of the image as input. Since the input space
doesn’t need to be that large, the CNN itself doesn’t need to
be very complicated.

However, to determine where the pedestrian exists will
be slightly trickier. The idea is that we need to test the clas-
sifier on several bounding boxes various sizes and locations.
However, there is the challenge of how to determine the
properties of that bounding box. The project experiments

Figure 1. Example of a full 640x480 image from the Daimler
dataset

with different kinds of region extraction methods, primarily
exhaustive (try out all of the regions), selective search, and
edge boxes.

2. Theory

A discussion on how to go about solving this problem
needs to include the theoretical approach towards image
classification and detection as well as a quick understand-
ing of literature on what has been attempted and done.

The overall architecture that I will use it to first select
regions in the image that will most likely have crucial sec-
tions that should be detected, then for each region perform
a classification if a pedestrian truly exists in that region. In
the end, we have the coordinates for the pedestrian location
so the final loss function will account for the euclidean dis-
tances between the coordinates. Figure 2] shows the overall
design of the detector.

2.1. Pedestrian Classification

The first problem is to create a classification of what a
pedestrian is. The first thing is that we need to acquire im-
ages of pedestrians and non-pedestrians, which we use from
our data from Daimler. Because this classifier should rather
quick and simple, many similar papers use a linear SVM or
a CNN to classify images [3] [6].

Region
proposal
480 x 640 function Regions
Image
s
&
Emlnlayer Pedestrian ‘
36x18 Classifier
|

Images ‘ Non Pedestrian ‘

Figure 2. Overall architecture of the pedestrian detection model

There are also several methods of feature extraction that
other papers have found useful, which include HOG, 1D
and 2D Haar Transforms [2} 4]. These feature extractions
methods have been useful for image detection, but I don’t
employ these methods in this project.

Furthermore, Daimler also provides image segments all
of the same pixel size of just pedestrians and frames that
don’t contain any pedestrians. The model can use the model
to train on the pedestrians as well as random segments of
images with no pedestrians. When given a segment, it will
output a score for the segment being a pedestrians, and a
score that it is not.

Moreover, these segments need to be properly scaled so
that they can be properly compared to the segments that the
model was trained with. This will involve the dropping pix-
els if the bounding box is too large or the duplication of
pixels if the bounding box is too small.

The layer architecture I use to classify the regions is
a [Conv-Relu]x2 - [Conv-Relu-Pool] - [Affine]X2 - SVM.
Convolution layers are used in the classifier layers. There
aren’t that many pooling layers because the input dimension
space is small. The scoring used is SVM, which defined as

L; = Zj?&yimax(o, Si — 8y, +A) (D

where s; refers to the final scoring of the ith index in the
CNN before the SVM layer.

2.2. Region Proposal

The first thing we need to do is to determine on which
section of the image do we perform the classification on.
The easiest method would be to try out multiple detection
windows of various sizes and locations at different set incre-
ments [5]. Furthermore, the detection window that classifies
a pedestrian with a large enough will be the bounding box.
If the pedestrian classifier is fast enough, this method might
be sufficient, but classifying so many regions for simply one
image can take a very long time.

If the classification ends up being very time-consuming,
there must be a way to intelligently determine regions in the

e’ ! s, .0
i T v it . i - ia

Figure 3. How Selective Search assigns regions according to how
they’ve clustered together pixels

image that are most interesting to the model and then clas-
sify on those regions. There are several methods researched
and outlined in literature [2].

The first attempt will do the brute force method to get
many detection windows exhaustively, but to improve the
prediction time, other region selection methods such as Se-
lectiveSearch [3]] and EdgeBoxes [7]] would be useful in cut-
ting down classification time. This project attempts to pro-
pose regions exhaustively and then experiments with two
other more intelligent regional proposal methods.

2.2.1 Selective Search

This region proposal method is outlined by Felzenszwalb
and Huttenlocher [1]] and was implemented further by a
python library that was developed by AlpacaDB.

The basic premise of the this proposal system is that it
groups together pixels of similar colors and draw bounding
boxes around those regions. The similarity metric between
pixels/regions of certain properties can be adjusted such that
the regions can be grouped together or certain combina-
tions. Even if regions have vastly different colors, they can
still be a part of the same object that we wish to detect.

Figure [3] shows an example of how the selective search
region proposal divides the regions of similar pixels, but
the final resulting bounding boxes also take into grouping
together the proposed regions. The one that is most inter-
esting is the pedestrian that got captured by the proposal
method.

2.2.2 Edgeboxes

This region proposal method is outlined by Zitnick and Dol-
lar [7] and was implemented by them as well. They have a
Matlab library that allowed them to output bounding boxes
using the EdgeBox method, but I had to rewrite the code so
that it was usable for python.

Figure 4. Edgeboxes method of grouping together edges together

Instead of simply looking at pixels, the EdgeBox method
first determines the edge locations of the images, groups to-
gether edges of similar orientation, and then forms bound-
ing boxes around the edge groups. Figure 4] shows how
the EdgeBox method groups together the edges where each
edge region gets grouped together into the same color. The
regions then get assigned a bounding box that encompasses
the edge group as well as nearby EdgeBox groups that
are similar to each other. Notice how the edges that gets
grouped include the pedestrian in the middle.

When training the pedestrian classifier and the detec-
tion location, we need to have a loss function that we can
minimize. The classification loss function is pretty straight-
forward, but we need to set up a loss function for the pedes-
trian location. The Daimler dataset contains the coordinates
of the upper-left corner and the lower-right corner. Once
the image detector outputs the two coordinates for where it
thinks the pedestrian is, the loss function will simply be the
euclidean distances between the actual and predicted coor-
dinates.

3. Daimler Pedestrian Dataset

The publicly available Daimler Pedestrian Detection
Benchmark Dataset is used in this project contains 21790
images of resolution 640x480 from a 27 minute drive
through the city. For each image, a ground truth bounding
box provides where the pedestrian actually is in the image.
The model will be using these images as part of the testing
dataset where the predictor extracts regions and classifies
each regions.

In order to train our region classifier, we need to pro-
vide region proposals of both positive and negative exam-
ples of pedestrians. The Daimler dataset further includes
15560 images of positive examples of pedestrians with res-
olution 36x18. The input space of the pedestrian classifier
will be 36x18 as well.

As for the negative examples, Daimler provides 6744 im-

i
1

Figure 5. Negative and positive examples fed into the CNN clas-
sifier. Negative examples in the top row were extracted from the
full-sized examples. Positive examples in the bottom row came
directly from Daimler.

ages of 640x480 resolution that do not have any pedestri-
ans in them. In order for the classifier to be trained, we
need to feed 36x18 pixel images of non-pedestrians as well.
What I did was that I used a region proposal method on the
full-sized non-pedestrian images to find regions the method
finds interesting, scale those images to the appropriate size,
and feed them as negative examples into the classifier to
train. This allows the classifier to use actual region propos-
als each method thinks are critical to train on.

4. Implementation
4.1. Training the CNN

The first step was to develop a fast binary-output CNN
that will classify the regions, so by feeding in multiple
36x18 images into the classifier and training it, a predic-
tor was developed. Experimentally by testing out vari-
ous parameters, the final architecture used is outlined in
table .1} The total amount of memory needed to store
the data for each image when predicting is around 69K x
4Bytes = 274KB per image. Furthermore, the total amount
of parameters excluding the bias terms is around 2.64M x
4Bytes=105MB, most of which comes from the first affine
layer.

The training parameters are also selected to as seen in
Table A1l

Training the model for 5 epochs had very positive results.
As shown in Figure [d.T] both the training accuracy and val-

Layer Number of Filters ~ Size of Filters Memory Number of Parameters (excluding biases)
INPUT - - [36x18]=648 -
CONV-RELU 32 [3x3] [36x18x32]=20,736 [32x3x3]=288
CONV-RELU 32 [3x3] [36x18x32]=20,736 [32x3x3]=288
CONV-RELU 32 [3x3] [36x18x32]=20,736 [32x3x3]=288
POOL 2 - - [18x9x32]=5,184 -
AFFINE - - [500] [5184x500]=2,592,000
AFFINE - - [2] [500x2]=1,000
SVM - - [2] -
Table 1. Layers of the Region Convolutional Neural Network Classifier
Ieration
10 I —
& frain | __ — =
091 oo val |
0.8 1
o 07
o
3
§ 06 1
0.5
04 4
0.3 -
0 2 4 6 8 10
epoch
Figure 6. Training and Validation Accuracy of CNN on 36x18 images
Parameter Value stride/sweep of the bounding box as well as the size of
Learning Rate 8x 10—4 the bounding box. Not a lot of time was spent on setting
Weight Scale 1x10-3 those parameters, mostly the default recommended values
Number of Batches 50 that were given in the paper were used.
Epochs Trained 10
Training Time Approx 7 hours 5. Results

Table 2. Training Parameters Convolutional Neural Network Clas-
sifier

idation accuracy were very close to each other, showing no
signs of over-fitting on the training data. Furthermore, the
accuracies of both datasets are very high, both above 90 per-
cent accurate. The runtime of the classifier itself is quite fast
as well, which makes this model perfect for quickly classi-
fying regions.

I further tested the three different region proposal meth-
ods: Exhaustive, Selective Search, and EdgeBox. These
methods are open-loop, meaning they don’t really take
into account the error of detection of the image. They do
have some parameters that can be adjusted, such as the

Overall, what was most interesting was that both Selec-
tive Search and EdgeBoxes were able to capture the pedes-
trian on the image with some relatively success, but what
ended up happening was that there were a lot of false posi-
tives in the output of the model.

As a case study, let’s look at the same image that I've
been using as the example. Figure[7]depicts the actual loca-
tion of the pedestrian, and as you can see, there is only one
pedestrian.

Figure[8] 9] and[T0|shows all the bounding boxes that the
model interprets as a pedestrian, and while all methods end
up producing a box that does indeed surround a pedestrian,
it doesn’t do a good job with rejecting the boxes that are not
pedestrians.

When measuring the error of the bounding box, we take

Figure 7. Actual Bounding Box of Pedestrian given by Daimler.

Figure 8. Detected Pedestrians on Image using the Exhaustive Re-
gion Proposal Method.

the euclidean distance between the the top-left corners and
the bottom-right corners of the actual bounding box shown
in figure[7]and the output bounding box from the predictor.
In the case of multiple bounding boxes returned by the pre-
dictor, Table|§] depicts the smallest euclidean error, in order
words the bounding box that’s closest to the actual bound-
ing box.

In Figure [8] the bounding boxes seem to detect the re-
gions with interesting features, most notably the buildings,
cars, tree, and fence posts. This method seems really bulky
because the predictor have to sort through so many regions
which increased the runtime of the predictor and decreased
the accuracy of the region classifier since there were so
many regions to process through.

When using either Selective Search or EdgeBoxes, the
runtime of predictor goes down dramatically as shown in
Table [5| because the number of region proposals decreases
radically. It is possible to reduce the runtime of exhaustively
proposing regions by reducing the step size, but this would
sacrifice bounding box frequency, which in this instance,
Exhaustive search has the best specification on.

In Figure there are fewer false positives and the

Figure 9. Detected Pedestrians on Image using the Selective
Search Region Proposal Method

Figure 10. Detected Pedestrians on Image using the EdgeBox Re-
gion Proposal Method

method was able to find the pedestrian. The bounding box
that was proposed is slightly off because it does not include
the feet of the pedestrian. This was a common issue with
the Selective Search method: it oftens cuts off portions of
the pedestrian whether it is the legs or the upper body. This
is probably due to the colors of the upper and lower body of
pedestrians tend to be different and get separated into two
regions. This causes the resulting bounding boxes to only
capture the halves of the pedestrian. There would need to
be some adjustment of the parameters to allow the combi-
nation of nearby regions so that both halves of the person
gets combined.

In Figure the runtime is even faster, but the error of
the bounding box is larger. This time, the bounding box is
slightly larger than the pedestrian. What probably happened
was that the region proposed saw the edge from the street as
a critical edge group that should be combined with the edge
from the pedestrian and the classifier ended up detecting
that region as the pedestrian.

What seems to be a common mistake between all meth-
ods is that the classifier seemed to predict the trees and

Region Proposal Method Time

Smallest Euclidean Error

Proposed Regions False Positives

Exhaustive 602.6s 20.85
Selective Search 29.46s 33.67
EdgeBoxes 22.59s 99.5

96114 8134
46 13
100 20

Table 3. Results of R-CNN model on image set

buildings as pedestrians.

6. Conclusions and Future Development

We managed to improve the runtime and reduce the por-
tion of false positives in the image by using more intelligent
region proposal methods to detect pedestrians in the image;
however, the accuracy of the bounding box falls slight. In
the instance of selective search, the box encompasses too
small of a region while EdgeBox encompasses too large of
aregion.

Overall, the process detected pedestrians too easily. The
challenge with the classifier is that more than half of the
training example fed to the classifier are pedestrians but the
number of times the classifier detects a pedestrian should
ideally be very very low. For example, for a given im-
age, there should only really be a handful of pedestrians but
the number of region proposals is going to be significantly
larger than the number of actual pedestrians.

One thing that can be done is to only report bounding
boxes that have a much larger score of being a pedestrian
than a score of not being a pedestrian. Furthermore, I would
like to try out using pedestrian images of a higher resolution
so that we have better images to train on.

References

[1] P. E Felzenszwalb and D. P. Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer
Vision, 59(2), 167181, 200.

[2] P.D.B. S.J. Hosang, R. Benenson. What makes for effective
detection proposals? PAMI, 2015.

[3] T. G.J. R. R. Uijlings, K. E. A. van de Sande and A. W. M.
Smeulders. Selective search for object recognition. Interna-
tional Journal of Computer Vision, 104(2):154171, 2013.

[4] A.D.K. Piniarski, P. Pawowski. Video processing algorithms
for detection of pedestrians. CMST, 21(3):141-150, 2015.

[5] D. M. G. M. Enzweiler. Monocular pedestrian detec-
tion:survey and experiments. IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
31(12):2179-2195, 2009.

[6] M. N. V. E. Neagoe, C. T. Tudoran. A neural network ap-
proach to pedestrian detection. Proc. of ICCOMPO09, pages
374-379, 2009.

[7]1 C. L. Zitnick and P. Dollar. Edge boxes: Locating object pro-
posals from edges. ECCV, 2004.

CNN code was adopted from Python code developed
from Stanford University’s CS231N modules. Python li-

braries selectivesearch and opencv2 were heavily used.
edgebox libraries from Dollar [7] repurposed for use in
Python.

Much acknowledgement to the entire CS231N teaching
staff for a phenomenal quarter.

