
Identifying the Higgs Boson with Convolutional Neural Networks

Anton Apostolatos
Stanford Computer Science Department

antonaf@cs.stanford.edu

Leonard Bronner
Stanford Department of Statistics

lbronner@stanford.edu

Abstract

This paper proposes a Convolutional Neural Network
architecture for tackling the problem of identifying the
Higgs boson subatomic particle from colorflow energy
images, as modeled by the ATLAS Experiment at the
Large Hadron Collidor. Current methods which utilize
Fisher Discriminant Analysis on jet pull superstructure
data are used as a baseline for the algorithms we ex-
plored. We were able to substantially improve on the
current state of the art, achieving an AUC score of 0.904.

1. Introduction

This project focuses on the identification of the Higgs
boson subatomic particle from jet pull energy colorflow
images of the particles’ decay, as modeled by the AT-
LAS Experiment at the Large Hadron Collider at the Eu-
ropean Center for Nuclear Research (CERN) [1].

The Higgs field is an hypothesized energy field
thought to permeate the entire universe. Without it, the
Standard Model of particle physics would break down,
as atomic particles would not have the required mass to
attract each other, leading them to simply float around in
the universe at the speed of light [20]. Its proof would
completely alter our understanding of mass as a physi-
cal property, making the discovery of the Higgs field the
fundamental unanswered question in particle physics in
the last half-century [12].

The Standard Model suggests that if the Higgs field
were to exist, then its quantum excitation, a particle re-
ferred to as the Higgs boson, would also have to exist
[20].

The Large Hadron Collider (LHC) is tasked with
finding this particle. Consisting of multiple super-
powered electromagnets, the LHC collides charged par-
ticles traveling at near lightspeed. These collisions de-
form space upon impact, breaking the charged particles

0Special thanks to Ariel Schwartzman and Benjamin Nachman at
SLAC and Michael Kagan at CERN for their guidance and advice.

(a) Signal image (b) Background image

Figure 1: 25× 25 pixel colorflow energy images

into their subatomic constituents. It has been hypothe-
sized that with a proton collision at high enough energy,
the Higgs boson would decay in observable ways.

The ATLAS detector at the LHC records 40 million
proton collisions a second, making human curation of
these events unfeasible [13]. An accurate classification
system that would label the most promising observations
as Higgs boson particle decays is, therefore, required.

In collaboration with the Stanford Linear Accelerator
(SLAC) and the ATLAS Experiment at CERN we were
given access to energy images for both Higgs boson and
gluon decay, referred to as signal and background re-
spectively, seen in Figure 1.

The purpose of this project is to build a Convolutional
Neural Network (CNN) which, given the colorflow en-
ergy image of the decay of an unknown particle, can
accurately distinguish whether or not that particle is a
Higgs boson or not. We are building on the work from
our CS229: Machine Learning class project, where we
used conventional machine learning techniques to tackle
this problem.

2. Related Work
2.1. FDA

Current approaches to Higgs boson identification in-
volve the use of jet pull features, which is a class of fea-
tures used to characterize the superstructure of a particle
decay event [6]. Jet pull information provides insight as
to whether an event was initiated by a quark or a gluon,
or if it came from a single object’s decay, as would be

1



the case for a Higgs boson particle decay, by describ-
ing the angle between energy decay patterns [17, 9].
The current state of the art model leverages this feature-
set, while using Fisher Discriminant Analysis (FDA) for
classification.

The approach extracts discriminating information be-
tween different classes of jets, similar to techniques used
in computer vision [16]. The algorithm uses a repre-
sentation of jets as images, applies preprocessing tech-
niques to construct a consistent set of jet images, and
applies a linear discriminant, which has been trained on
a collection of example jets [4].

FDA identifies the plane in the high dimensional fea-
ture space which maximizes the separation between the
jet classes, simultaneously minimizes the scatter within
each jet class. Since FDA uses knowledge of the within-
class variations, it is not significantly influenced by data
fluctuations present in both classes [4, 16].

FDA is trained using a set of preprocessed example
jet images from two classes and produces a discrimi-
nant that has the same dimensionality as the example
jet images and thus can be viewed as a jet image itself.
Discrimination between classes for a jet image is then
achieved by projecting this image onto the Fisher-jet.

This method achieved an accuracy of 0.654 for Higgs
boson classification from colorflow jet images. We will
be comparing our results with the results achieved by
this model.

2.2. Adaptive Boosting

In CS229, we set out to construct a binary classifier
for the identification of Higgs boson decay events from
colorflow jet images using a more traditional classifica-
tion system. Our most successful classifier was an Adap-
tive Boosting, or AdaBoost, classifier.

AdaBoost is a meta-algorithm that combines multi-
ple weak classifiers into a more accurate classifier. Ad-
aBoost runs these weak classifiers multiple times, adapt-
ing each time so that subsequent classifiers are used to
favor misclassified labels made by previous discrimi-
nants [5]. Algorithm 1 presents the method with more
detail and rigor. For our particular case, this weak clas-
sifier L was a Random Forest classifier and the number
of iterations T was 50.

The Random Forest algorithm is a general ensemble
learning classification method, relying on decision tree
models [8]. The Random Forest classifier works by
constructing multiple classification trees, where leaves
represent either +1 or −1 labels and branches represent
conjunctions of features. The classifier builds B trees
during training. When an unseen sample requires classi-
fication, the input vector is passed through every single
tree constructed, where every specific tree Tb outputs a
prediction [3]. The classifier returns the majority label.

Algorithm 1 AdaBoost algorithm [14, 15]
1: Initialize the distribution as

D1(i) = 1/M, i = 1, . . . ,M

2: for t = 1 to T do
3: Get weak hypothesis ht : H 7→ −1,+1 from training weak learner L

using distributionDt

4: Compute the error rate

εt =
N∑

i=1

Dt−1(i)1(ht(xi) 6= yi)

5: Compute the weight αt as

αt =
1

2
ln

(
1− εt
εt

)

6: Update the distribution, for i = 1, . . . ,m as

Dt(i) =
1

Zt

Dt−1(i) exp(αt1(yi 6= ht(xi))

where

Zt =

N∑
i=1

Dt−1(i) exp(αt1(yi 6= ht(xi))

7: end for
8: Construct and return the final classifier

H(x) = sign(

T∑
t=1

αtht(x))

With this method we were able to achieve an AUC
of 0.873, already a large improvement from the current
state of the art. For our work this quarter, we are using
this number as a benchmark for our CNN model results.

3. Dataset and Features
We were given access to energy images for both

Higgs boson and gluon decay. The two dimensions of
these images corresponded to the spherical coordinates
called η and φ, where φ is the azimuthal angle in the
x-y plane perpendicular to the beam direction and η is
the angle in x-z. These were preprocessed to center the
jet, with resonance being kept constant in every sampled
data point. As is evident in Figure 1 there appears to be
a stark difference between signal and background color-
flow images, so automatic classification seems feasible.
However, these images were generated from overlap-
ping multidimensional probability distributions. There-
fore, perfect classification is probabilistically impossi-
ble.

We had a dataset of 100,000 images composed of 625
floats (25× 25 images), with half of the images belong-
ing to each of the two classes. Our methodology consists
of separating our dataset into a training set, a validation
set, and a test set, and feeding randomized batches of the
training set to our CNN.

2



We also zero-centered the images with the training
mean and normalized all values to be between [-1, 1].
Furthermore, we zero-padded the images to 32 × 32 to
allow for multiple even-divisions of Max-Pool, which
would allow for larger network architectures.

4. Methods
We had initial doubts about the greater effectiveness

of CNNs for this task compared to traditional machine
learning techniques. This is because the added benefit
of CNNs is the ability to pick up on multidimensional
patterns in images. Our problem lacks both the depth
(colorflow images just have 1 layer, instead of 3 RGB
channels) and form that complex objects are made up
of. Instead, as can be seen in Figure 1, our images
look a lot noisier, with feature interaction limited to 1
dimension – thus, we thought it possible that normal ma-
chine learning classifiers have enough predictive power
for this task.

Furthermore, this difference to common CNN tasks
meant that we had to design, build and learn a CNN from
scratch. As described previously, there are few similari-
ties between these colorflow energy representations and
common image datasets, making transfer learning less
effective.

In the following sections we will describe the various
models designed and built for this task, all of which were
implemented on Tensorflow [2].

4.1. SimpleModel

Due to the limitations we foresaw with this project we
decided to first build a simple CNN model to understand
the potential effectiveness of CNNs for this task, and
generate a baseline.

Figure 2: SimpleModel

As can be seen in Figure 2 our network consisted of
a 32 × 32 × 32 convolution layer, followed by a Max-
Pool layer and a second 64× 64× 64 convolution layer
with another Max-Pool layer. We decided to increase
the depth at each layer to counteract the down-sampling
performed by the Max-Pooling layers. Furthermore, we
set all our filters to be of size 3 × 3, because, as we
discussed in class, enough 3 × 3 filters have the same
power as one larger filter with the added benefit of fewer

parameters. Finally, we decided on a stride of 1, given
that our images were already very small and we wanted
to loose the least amount of information possible.

A single filter convolution is a tensor w, in our case
of size 3× 3×x where x was the depth of the incoming
image, which slides along the input, at each step com-
puting an inner product with the local area of the image.
This single number is the local output at the new posi-
tion, and all these local outputs are placed into a matrix
at their respective positions to create w’s output (biases
are also added to this output). Multiple such filter out-
puts are stacked to create one convolution layer (in our
case, for example 32 in the first layer, or 64 in the sec-
ond layer). A toy example can be seen in Figure 3. In
this way, our algorithm is able to to combine local in-
formation in different ways to better understand patterns
between the pixels.

Figure 3: A convolution layer [11]

A Max-Pooling layer is another filter that moves
across the new input (often the output from a convolu-
tion) and filters each pixel in the local area to be equal
to the largest of all surrounding pixels. In this way the
network is able to pick up on most important features at
each set of convolutions. As before, we decided to mini-
mize the amount of information lost, which meant using
2 × 2 Max-Pool filters with a stride of 2, which can be
seen in Figure 4.

Figure 4: A Max-Pool layer [11]

After the convolution and Max-Pooling layers we
place one 4092 dimensional fully connected layer with
Softmax as the final layer to allow for a classification.

A fully connected layer can be seen in Figure 5,
where the middle (hidden layer) is fully connected be-
cause every neuron receives input from every neuron in
the input layer and passes on information to every layer
in the output layer. We decided to use at least one fully
connected layer because we wanted our final classifica-

3



tion decision to take account information from every part
of the network.

Figure 5: Fully Connected Layer (middle) [11]

As described above, our final layer was a Softmax, or
in this binary case a simple logistic regression:

σ(z) = 1
1+e−z

Softmax normalizes the input between [0, 1], squash-
ing the output of the neural network into a probability.
The corresponding output can be interpreted as the con-
fidence our algorithm has in classifying a given input.

During this project, a central mantra that we followed
was: .

“Recklessness has no place in either love or weight
initialization”

Following this advice, we used He et al.’s weight ini-
tialization as described in lecture [7].

4.2. LaNet

After verifying that CNNs were in fact competitive at
this task, we moved on to create a larger network. We
decided to model our network on the VGG architecture
[18]. Given the constraint of having to train networks
from scratch, this network architecture seemed the most
reasonable, both in terms of training time and in terms
of number of variables.

A second issue we faced when designing a CNN ar-
chitecture was the relative small size of our input im-
ages. This limited the amount of down-sampling we
could perform. Since our images were of padded size
32× 32, we were only able to run them through at most
5 Max-Pool layers.

The second network that we built, called L(eonard)-
A(nton) Net, as presented in Figure 6, is substantially
larger than the SimpleModel we had built for verifica-
tion.

It has two 32× 32× 32 convolution layers, followed
by a Max-Pool. Then two 64× 16× 16 convolution lay-
ers and another Max-Pool. These are followed by three
128 × 8 × 8 convolution layers with a Max-Pool layer
and then another three 256 × 4 × 4 convolution layers
with a final Max-Pool layer. We then had two 4096-
dimensional dense layers with a final 1000-dimensional
dense layer with a Softmax classifier on top.

4.3. LaNetTwo

The final complete model we built was an extension
of LaNet. As discussed in the following section, we built
this network to see if a larger network would be any
more successful at tackling this problem, or if we had
reached the limit of this task.

As can presented in Figure 7 our LaNetTwo is very
similiar in implementation to LaNet – it simply took the
design of our first large network to its logical conclu-
sion. We added one more convolutional layer to both
the first and the second set of convolutional layers to
make three 32× 32× 32 and three 64× 16× 16 layers
with a Max-Pool to separate them. We also added a fi-
nal set of convolutional layers at the end of our network
before the densely connected layers. This set of layers
were now of size 512×2×2, which made the images as
small as we thought would make logical sense in a con-
volution. At the end of that layer, we added a Max-Pool
that led into the dense section of the network, where the
features were of size 512×1×1, before being expanded
again to be of size 4096 before Softmax classification.

5. Experiments and Results

5.1. Training and Testing Methods

Since we had large datasets at our disposal we used
hold-out cross validation. Namely, we split our dataset
into three sets, a training set which composed of 65% of
the data, a validation set which comprised 17.5% of the
data and a test set, which was made up of the remaining
17.5% of the data. We would train each model on the
training set and would evaluate the current hypothesis
function of the model after every epoch on the valida-
tion set in order to tune hyperparameters on the go (this
was necessary because our model took a very long time
to run, which meant that it was unfeasible to allow every
model to run until completion). After our CNN had fin-
ished learning, we evaluated our model only once on an
previously unseen test set.

5.2. Evaluation Metrics

Classifiers will be evaluated by their receiver op-
erating characteristics, or ROC curves. We will also
be quantifying the performance of all binary classifiers
tested by calculating the area under the ROC curve, or
AUC. We use this method because the AUC represents
the probability that a randomly chosen signal example
will be classified correctly, which is exactly what we
wish to optimize towards. It was also the metric which
was used in all previous literature for Higgs boson clas-
sification problems, and so in order to compare our clas-
sifiers against the state of the art, this metric was im-
portant. As explained above, the AUC is the area under

4



Figure 6: LaNet

Figure 7: LaNetTwo

the ROC curve, which shows a plot of the true positive
rate (TPR) versus the false positive rate (FPR). A per-
fect classification would mean that the TPR would be
1.0 at every value of the FPR, which would then give
us an area under the curve of 1.0. On the other hand, if
our TPR always exactly the same as the FPR, our model
would not be any better than randomly guessing, giving
us an AUC of 0.5 (any AUC less than 0.5 would simply
mean we would have to flip the classifier, so nothing is
worse than FPR = TPR).

5.3. Experiments

5.3.1 Overfitting the Simple Model

The first experiment we performed was making sure
that our CNN was able to learn from the data. As a
sanity check, we took a small sample from the train-
ing set and ran our SimpleModel until we had clearly
overfit the data. This meant a training accuracy of 1.0
for all batches. Within a couple dozen epochs this was
achieved. We continued to use this as an initial sanity
check for each of our models.

5.3.2 Learning Rate

As we have discovered, the learning rate is by far
the most important hyperparameter which can make or
break an artificial learning experience. We therefore
spent most of our computation time on fine-tuning this
hyperparameter. Because of the time it took to train a
single model, we were unable to perform random search
on our learning rate. Instead, we took the approach of in-
creasing the learning rate by an order of magnitude until
our algorithm diverged, and then halved the learning rate
until we saw a model that converged.

As we can see in Figure 8 in the “No Dropout” line,
we saw validation accuracy jump up very early in the
learning process, but then peter out quickly. Our take-
away from this was the necessity of annealing the learn-
ing rate.

We tried two different methods for this. One was an
exponential decay of the learning rate, where in each
subsequent epoch we multiplied the learning rate by a
factor γ where 0 < γ ≤ 1.0. We tested multiple values
of γ and found no evidence that it improved learning or
convergence.

For this reason, we attempted a step decay approach
to learning rate annealing, similar to that of Simonyan
and Tisserman [18]. If validation accuracy did not de-
crease sufficiently over multiple epochs we would halve
the learning rate going forward.

Interestingly, neither of these approaches had a sig-
nificant positive impact on our model’s convergence or
classification power. We assume this means that our
models have therefore reached a local optima, described
by the hyperparameters we used, without decay.

5.3.3 Dropout

Our model had significant over-fitting over the training
set. We therefore introduced a dropout on the densely
connected layers as proposed by Srivastava et al. [19].
In essence, during training dropout turns off connections
between neurons with a probability p. This is equiva-
lent to sampling different neural networks from a larger,
completely dense neural network, not unlike traditional
ensemble methods such as AdaBoost. The problem with
this approach is that dropout is only performed on the
dense layers, allowing for overfitting in the convolution

5



Figure 8: Validation set accuracy with and without
dropout

layers. The hope, however, is that backpropagation from
the dropped out dense neurons will impact the training
of the convolutional filters in a desired manner.

Training with dropout took a significantly longer
time. Either convergence took longer, but what we also
often saw was a accuracy cliff where the validation ac-
curacy would remain at around 0.50 for multiple epochs
before convergence set in. This can be seen in Figure 8
This is similar to what has been seen when it comes to
bad weight initialization which may show an underlying
connection between dropout and initialization, some-
thing that we found interesting and may warrant further
investigation.

During our experimentation we found that while
dropout did help combat overfitting the training set, as
is evident in Figure 9, we did not see any significant im-
provements on the power of classification of our model
on the validation set. Admittedly, this is something we
have a hard time explaining and may warrant further
testing. However, the simple explanation would again
be that our model had reached it classification potential
even without dropout.

Ultimately our final model included dropout of p =
0.5.

5.3.4 Batch Normalization

Ioffe and Szegedy introduced into the literature a batch
normalization technique which should decrease the ne-
cessity of perfect weight initialization [10]. The general
idea of batch normalization is to subtract the batch mean
and divide by the batch standard deviation before every
layer to normalize the inputs to convolutions. The intu-
ition for that is to zero-center and standardize the inputs
which stops the weights from being vastly affected by
the data they see.

Figure 9: Validation and train set accuracies with 0.5
dropout

We applied this technique to our architectures, adding
a batch normalization layer before every convolution set.
Surprisingly enough, this had no impact on our valida-
tion accuracy, except for making training significantly
slower. Our intuition for this is two-fold. On the one
hand, we think that our weight initialization from He et
al. was good enough. Concurrently, our experimentation
on the learning rate reduced the potential gains provided
by batch normalization.

For these reasons we did not include batch normal-
ization in our final model.

5.3.5 Larger Networks

Our move from LaNet to LaNetTwo was an attempt to
exhaust the number of layers that our input size allowed
us to have, and see whether this would improve our re-
sults. As can be seen in the following section, our best
LaNet model achieved an AUC score of 0.895 while our
best LaNetTwo model achieved an AUC score of 0.896
– not the improvement we expected nor were looking
for.

As a result we decided to try a different approach. In-
stead of increasing the amount of layers, we wanted to
extend the power of the LaNet setup. For this reason we
doubled the number of filters at every single convolu-
tion layer, leading to the conception of what will affec-
tionately henceforth be referred to as LaNetThree. For
example, in the first set of convolution layers, LaNet-
Three has 64 filters instead of LaNet’s 32. We have not
included a graphical depiction of this model in the paper
as it is identical to LaNet in every single other way.

We found that this was a better extension of the clas-
sification power of CNNs, with LaNetThree achieving a
AUC of 0.904 on the test set.

6



5.4. Results

There are six models which we ultimately want to
compare. These include the FDA on pull features ap-
proach, AdaBoost, SimpleModel, LaNet, LaNetTwo,
and LaNetThree. For the sake of brevity, we have only
included the results of the best models for each of these.
The results are found in Figure 10.

Figure 10: Comparing five main models

As this ROC graph shows us, a Convolutional Neural
Network is easily able to achieve a high score on this
task. Comparing just our SimpleModel against the Ad-
aBoost classifier, we can see that they both achieved a
comparable AUC of around 0.87 (0.873 for AdaBoost
vs. 0.877 for SimpleModel). Given our images are pre-
processed to be as standardized as possible, a traditional
classification model that doesn’t leverage the image-like
component of the data can still be competitive. It seems
that an AUC of 0.87 is the transition point between these
two different types of learning. It took us a considerable
amount of time, effort and resources to achieve anything
beyond that.

Our more complex models, starting with LaNet, were
able to achieve a greater AUC than the SimpleModel or
than AdaBoost. Namely, we achieved an AUC of 0.895.

As explained previously, we extended LaNet in two
different ways. LaNetTwo, representing the deepest pos-
sible network for our data, achieved a marginally better
AUC of 0.896. An intuitive explanation for why a much
deeper model was not significantly more effective is that
there aren’t as many layers of object complexity in our
colorflow jet images as in traditional object recognition,
meaning that each layer has less necessity to abstract
away complicated attributes. A classifier for cars, for
example, needs to look at many details at many layers,
from the edges of the windscreen to the lighting of the

car, to be able to work well. We believe that our objects
do not have such complicated or varying features as to
necessitate as deep of a network.

On the other hand, doubling the number of filters for
every layer had a more considerable effect on classifica-
tion power, with LaNetThree achieving an AUC 0.904.
This may point to the idea that there is more interaction
effect between pixels in our images than we had previ-
ously thought when doubting the potential of CNNs for
this task.

These results are also observed when measuring ac-
curacy:

Model AUC Accuracy
FDA 0.654 -

AdaBoost 0.873 0.798
SimpleModel 0.877 0.774

LaNet 0.895 0.812
LaNetTwo 0.896 0.825

LaNetThree 0.904 0.820

It’s difficult to look at misclassified colorflow images
and understand what the reasons were for the CNN to
classify them incorrectly without having a much deeper
understanding of the physics governing these phenom-
ena. Notwithstanding this, we know that the Higgs bo-
son decays into very specific decay channels, of which
there are always two particles present. In Figure 11 we
can see examples of these incorrect misclassifications
from LaNet. Notice that these examples all generally
present this general structure of having two distinguish-
able maxima. It is this ambiguity that challenges the
classification power of our model.

(a) Higgs boson (b) Higgs boson

(c) Background (d) Background

Figure 11: Misclassified images with their correct nature

7



6. Conclusion
While our results, especially compared to non-deep

convolutional learning approaches, do not seem like
great progress, it is important to stress that this work
in general represents a breakthrough in the Higgs bo-
son identification process through jet colorflow images.
We were able to vastly increase the probability of cor-
rectly identifying the presence of a Higgs boson sub-
atomic particle. To place our results in context, our fi-
nal CNN model achieved a 24.4% proportional increase
from AdaBoost to a perfect oracle and a 72.3% propor-
tional increase from the state of the art FDA. As dis-
cussed previously, perfect classification is probabilisti-
cally impossible given the multidimensional probability
distributions that these data are sampled from. In light
of this, our results are very good.

7. Evaluation & Future Work
While our collaborators at SLAC and CERN think

that these results are already publishable, there are a few
avenues that we want to explore in the future, especially
in connection with utilizing CNNs for this task. Primar-
ily, we would like to run our models on more diverse
data. Currently, the dataset has been sampled from the
same event and is preprocessed (e.g. shifted, rotated,
normalized) to make the classification task as easy as
possible. We assume this is why non-CNN approaches
are able to rival neural networks for this task. This would
also mean that the scores that we are seeing above are as
good of a classification as we can expect – especially
considering that larger networks were not able to vastly
improve our scores from LaNet.

Once our data is less standardized we expect non-
CNN classifiers to perform substantially worse than
CNNs, as neural networks should be able to pick up on
rotations and translations. Furthermore, this non, or at
least, less processed data will have more complex rela-
tionships between the pixels in the colourflow images –
something that a CNN should be able to detect.

All in all, we very much are looking forward to con-
tinue working on this problem and hope to be able to
publish our results and contribute to work at CERN at
identifying the Higgs boson.

References
[1] G. Aad, E. Abat, J. Abdallah, A. Abdelalim, A. Abdes-

selam, O. Abdinov, B. Abi, M. Abolins, H. Abramow-
icz, E. Acerbi, et al. The atlas experiment at the
cern large hadron collider. Journal of Instrumentation,
3(08):S08003, 2008. 1

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Leven-
berg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. Software available
from tensorflow.org. 3

[3] L. Breiman and A. Cutler. Random forests-classification
description. Department of Statistics, Berkeley, 2007. 2

[4] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman.
Jet-images: computer vision inspired techniques for jet
tagging. Journal of High Energy Physics, 2015(2):1–16,
2015. 2

[5] Y. Freund, R. E. Schapire, et al. Experiments with a new
boosting algorithm. In ICML, volume 96, pages 148–
156, 1996. 2

[6] J. Gallicchio and M. D. Schwartz. Seeing in color: jet
superstructure. Physical review letters, 105(2):022001,
2010. 1

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1026–
1034, 2015. 4

[8] T. K. Ho. The random subspace method for constructing
decision forests. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 20(8):832–844, 1998. 2

[9] A. Hook, M. Jankowiak, and J. G. Wacker. Jet dipolar-
ity: top tagging with color flow. Journal of High Energy
Physics, 2012(4):1–15, 2012. 2

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. CoRR, abs/1502.03167, 2015. 6

[11] F.-F. Li and A. Karpathy. Cs231n: Convolutional neural
networks for visual recognition, 2015. 3, 4

[12] J. Lucio et al. Proceedings of the ii mexican school of
particles and fields. Technical report, Teaneck, NJ; World
Scientific Pub. Co., 1987. 1

[13] L. Mackey and A. Schwartzman. Physics event recon-
struction at the large hadron collider. Stanford Data Sci-
ence Workshop, 2015. 1

[14] J. Matas and J. Sochman. Adaboost. Center for Machine
Perception, Czech Technical University, Prague, 2001. 2

[15] R. E. Schapire. Explaining adaboost. In Empirical infer-
ence, pages 37–52. Springer, 2013. 2

[16] B. Scholkopft and K.-R. Mullert. Fisher discriminant
analysis with kernels. Neural networks for signal pro-
cessing IX, 1:1, 1999. 2

[17] J. Shelton. Tasi lectures on jet substructure. arXiv
preprint arXiv:1302.0260, 2013. 2

[18] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 4, 5

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014. 5

8



[20] M. SStrassler. The known particles - if the higgs field
were zero. October 2011. 1

9


