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Abstract 

 
Recently, researchers have made great strides in 

extracting traits of lung tumors from Computerized 
Tomography (CT) scans in order to more accurately 
diagnose and better treat patients. Logically, these lung 
tumor features are extracted only from pixels that lie in 
and around the tumor. Currently, figuring out which 
voxels ‘belong’ to the tumor (a problem which we will 
refer to as ‘tumor segmentation’) is done manually by 
trained radiologists - an unfortunate inefficiency in the 
process. Algorithms based on traditional computer vision 
techniques have proven too inaccurate to be useful. 
Building on recent image segmentation breakthroughs at 
the Berkeley Vision and Learning Center [1], this paper 
presents a fully convolutional neural network that – using 
an initial bounding box around the tumor – can segment a 
tumor in two dimensions at a mean testing Dice Score 
[Figure 3] of 83%. 

1. Introduction 

1.1. CT Scans 

A CT scan of a patient’s chest is usually one of the first 
tests a radiologist will do to see if a patient has a lung 
tumor. For reference, a single CT scan image (slice) is 
512x512x1 pixels (grayscale) and there are usually ~200 
slices per scan – we say that these 200 slices compose the 
‘CT volume’. If a lung tumor does appear on the CT scan, 
radiologists can then analyze the scan further to figure out 
the type, size, age, and danger of the tumor - in other 
words, the tumor’s features. While trained radiologists can 
ascertain quite a bit about a tumor with their eyes alone, 
there exist a wealth of other features of the tumor that can 
only be gleaned through computational methods. 

1.2. Importance of Segmentation 

The computational feature extractor is given some 
collection of 2d regions on various slices in a CT volume. 
The extractor only looks inside these regions for features. 
Ideally, these regions will be composed only of tumor 

pixels and pixels close (i.e. relevant) to those tumor pixels 
– that is, we don’t want to extract features from a rib on 
the left side of the lung when what we really care about is 
a tumor on the right side of the lung. This is the reason 
why accurate tumor segmentations are important – to 
provide a pure set of pixels for the feature extractor to 
analyze. 

1.3. Inputs and Outputs 

We will refer to the neural network discussed in this 
paper as the Tumor Segmentation Fully Convolutional 
Network, or TS-FCN. 

The input to the TS-FCN is a 100x100x3 image with a 
tumor somewhere in it. All inputs are assumed to have 
tumors in them (the focus here is not on detection). To 
form each 100x100 image, a liberal bounding box is 
drawn around the tumor on a 512x512 CT slice. Bounding 
boxes are 100x100 at minimum in order to retain spatial 
context from the lung. Next, the area inside this bounding 
box is cut out from the 512x512 image and resized down 
to 100x100 if necessary. For example, if a tumor is 
actually ~80x80, we might make a 160x160 liberal 
bounding box, cut out this box from the 512x512 source 
CT image, and then downsize to 100x100 to get an input 
to the TS-FCN. 

Since the original 512x512 slices have only 1 color 
channel, we copy this channel to 2 additional color 
channels for our 100x100 bounding box images in order to 
utilize pre-trained convolution layers that only accept 3-
channel images.  

The output of the TS-FCN is a 100x100x1 image. A 
pixel in the image is 1 if the TS-FCN predicted that pixel 
to be a tumor, and 0 otherwise. 
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Figure 1: Output of previous state-of-the-art segmentation system 
(SDS) and of deep jet compared to the ground truth segmentation. 

2. Related Work 

2.1. Manual Segmentation 

Since radiology is a field where errors are extremely 
costly, it is vitally important for radiologists to use the 
most accurate tools available to them, no matter the cost or 
time. Consequently, since the human eye is currently the 
best segmentation algorithm out there, all lung tumor 
segmentation for the sake of feature extraction is done by 
hand. This can take as much as 10 minutes per patient, 
however, which is quite a lot of time for radiologists.  

Another issue with manual segmentation is that there is 
often no consensus about which regions in an image 
contain features worth extracting. Some radiologists are 
conservative with their segmentations and perfectly 
outline the solid portion of a tumor. Other radiologists are 
more liberal and tend to include surrounding regions, the 
idea being that there is important information contained in 
those regions as well. In fact, recent work by a graduate 
student in my lab shows that segmentations can differ by 
as much as 20% between radiologists (paper release 
pending), which can be disastrous for algorithms down the 
pipeline that rely on accurate segmentations. 

The reasons why it is important to develop 
computational segmentation algorithms are therefore (1) to 
save radiologists’ time, and (2) to provide precise 
segmentations. 

2.2. Windowed Segmentation 

One way that researchers have approached 
segmentation is by using windowed neural network 
architectures. A group out of IDSIA recently implemented 
this architecture in order to perform two-class membrane 

segmentation on 2D slices from brain scans [2]. The 
neural network in that paper takes in a square image 
centered on a pixel and outputs a class for the center pixel. 
You can attain a full segmentation for an image by feeding 
in a series of windows centered on all pixels in the image. 
In other words, you would have to feed all 10,000 
windows from a 100x100 image into the net in order to get 
a full segmentation for that image. 

One interesting issue this paper deals with is heavy 
class imbalance in a 2-class segmentation problem. Heavy 
class imbalance is a problem because the neural network 
can simply guess that a pixel belongs to the much-more-
frequent class every time and automatically get extremely 
low loss – a local minima that is hard to escape from. For 
my project, I have to face the same problem, since tumor 
pixels only compose ~4% of pixels in a 100x100 
bounding-box input image. The IDSIA paper cleverly 
deals with class imbalance by down-sampling pixels from 
the more frequent class so that the neural network trains 
on an equal number of pixels from each class. After 
training, the IDSIA group places a calibration layer on top 
of their net’s output for scaling probabilities to match the 
statistical reality of the two classes in the data. 

Unfortunately, since I ended up going the fully 
convolutional route, it was not possible for me to down-
sample inputs, since every pixel in an image was 
necessary to classify the other pixels in that image. 
However, the IDSIA group inspired me to implement a 
weighted loss function to counter class imbalance, the 
implementation of which I will talk about later. 

Although this paper reports extremely high accuracy 
and its methodology seems straightforward, its reported 
time of computation per pixel is over ten times that of the 
paper I will mention in section 2.3. Due to time constraints 
for this project, I chose not to pursue this methodology. 

2.3. FCNs for Semantic Segmentation 

Most of the inspiration for this project comes from a 
recent paper out of the Berkeley Vision and Learning 
Center [1]. The authors of this paper outline a neural 
network architecture, which they call ‘deep jet’, that takes 
in a 2D image from the PASCAL VOC dataset [6] as input 
and outputs a 21-class semantic segmentation of that 
image (see examples in Figure 2).  

The architecture differs from past segmentation 
architectures in that it is ‘fully convolutional’, meaning it 
has no inner product (linear) layers – only convolutional 
layers. This allows the network to take in 2D inputs of 
arbitrary size and return an output of the same size, where 
each pixel is a prediction for its corresponding pixel in the 
input image.  

Deep jet's ability to process all pixels in an image at 
once make it 1-2 orders of magnitude faster than 
windowed segmentation. Additionally, deep jet enjoys 
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larger receptive fields than the windowed segmentation 
architecture, as it is not limited by the chosen window 
size. This added context can be quite useful in 
segmentation. 

3. Methods 
All neural networks used in this project were built and 

executed using the Caffe framework [5]. 

3.1. Net Architecture 

The TS-FCN used in this paper is much like the ‘deep 
jet’ architecture used in the BVLC paper [1], but slightly 
less complicated and smaller. The net architecture is 
outlined below: 
 
(1) Conv64 – ReLU – Conv64 – ReLU – MaxPool 
(2) Conv128 – ReLU – Conv128 – ReLU – MaxPool 
(3) Conv256 – ReLU – Conv256 – ReLU – MaxPool 
(4) Conv4096 – ReLU – Dropout0.5 
(5) Conv4096 – ReLU – Dropout0.5 
(6) Conv2 
(7) Deconv8x – Crop 
(8) Softmax – WeightedMultiClassLoss 
 
 All Conv64, Conv128, and Conv256 convolution layers 
use size 3 filters with a stride of 1. All use zero padding of 
1 except for the first Conv64, which uses zero padding of 
32 so that the image isn’t too small after the 3 max-pools. 
The first Conv4096 uses a filter size of 7. The second 
Conv4096 and Conv2 both use filter size 1 – these are the 
layers that make the net ‘fully convolutional’, as they 
mimic fully connected/linear layers applied to each pixel. 
Conv2 gives a score for each of the 2 classes for each 
pixel.  

At this point, the image has been max-pooled 3 times 
and is thus about 8x smaller than it started – 2x15x15, to 
be exact. The deconvolution layer uses a filter size of 16 
and a stride of 8, meaning the result is 2x128x128 (Solve 
[(H – 16)/8 + 1 = 15] for H). This result is then cropped in 
the center to give a 2x100x100 image.  

The softmax function is then applied to each pixel’s 2 
class scores to give class probabilities. These probabilities 
are then fed into a weighted multi-class loss layer where 
each pixel is treated as a sample in a mini batch (100x100 
image is a 10,000 member mini batch), with the total loss 
equaling the average loss over every pixel in the image. 
To account for the fact that tumor pixels are only 4% of all 
image pixels in my dataset, I weighted the contribution of 
each ground-truth tumor pixel by 0.96, and the 
contribution of each ground-truth non-tumor pixel by 0.04. 
A regularization weight of 5e-4 was used in the loss 
equation in order to increase performance on the 
validation set. The final loss equation I used can be seen in 
Figure 2.  

 
Figure 2: Weighted softmax loss function. y_i is the ground truth 

value for pixel i - either 0 (not tumor) or 1 (tumor). f_j is the score for 
class j for the pixel (output from layer (7)), where j is 0 or 1. reg_image 
is a weight regularization term. 

3.2. Learning 

Weights for layers (1), (2), and (3) were transferred 
from the corresponding layers in source [1], which were 
available at [3]. These weights can be interpreted as 
producing a feature set for each pixel from any given 
image, with the rest of the net learning to use these 
features to do segmentation. These pre-trained layers were 
trained at 1/10th the learning rate of the other layers. The 
deconvolution layer was initialized with bilinear 
interpolation weights and its learning rate was set to 0 (it 
therefore just served as a basic image up-sizer). 

ADAM was used as an update rule, with learning rate 
1e-6. The learning rate was multiplied by 0.9 four times 
per epoch. The net was trained for around 5 epochs. A 
batch size of 1 image was used. 

3.3. Performance Metrics 

The main performance metric used was Dice Score, 
which is like intersection over union. To calculate the dice 
score for a given prediction/ground-truth pair, you count 
up all the pixels they both predicted were tumors, divide 
that by the combined sum of tumor pixels predicted by 
both, and multiply by 2. This gives a value between 0 (no 
agreement) and 1 (full agreement). The equation can be 
seen in Figure 3 below. This metric is a much better 
evaluator of performance than pure accuracy, as pure 
accuracy will be high for all images due to the prevalence 
of non-tumor pixels.  
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Figure 3: Dice score equation, where A is the set of predicted tumor 
pixel locations and B is the set of actual tumor pixel locations. 
 

One important thing to note is that 2D dice scores aren’t 
that interesting to us here. What we’re really interested in 
is the dice score over a patient’s entire tumor, which spans 
multiple slices. Thus, all validation dice scores are 3D dice 
scores, where the numerators and denominators are each 
summed individually before being divided by each other.  

4. Dataset and Features 
I have access to CT scans and corresponding radiologist 

segmentations for 107 patients through the Stanford 
Radiological Image and Information Processing Lab, 
where I work [4]. Each patient’s scan has around 200 
slices in it. Most of these slices have no tumor in them. 
Each slice is a 512x512 grayscale image. Not all scans 
were done by the same machine or technician a lot can 
vary from scan to scan. This is part of the challenge. 

 
Figure 4: Example data before bounding boxes applied. Inputs on 
the left, labels on the right. 

4.1. Preparing the Data 

First, I got rid of any slices that had no tumor in them 
(as seen when the segmentation for that layer had no 1’s 
(tumor pixels) in it). Next, I created square bounding 
boxes for each tumor that were about twice as big as the 
tumor’s maximum width and height at any layer in the 
patient. Any bounding boxes under 100x100 were 
automatically set to 100x100 and centered on the tumor. 
Any bounding boxes over 100x100 were fine, but were 
resized to 100x100 after being cut out in order to 
standardize inputs. Labels (segmentations) were cut out 
and resized exactly like their corresponding slices. 

The data’s grayscale values ranged from -2000 to 4095. 
I rescaled these values to 0 to 255 in order to be in line 
with what the first three pre-trained conv layers expect. 
The images’ color channels were then arbitrarily increased 
to 3 channels instead of 1, copying that 1 channel equally 
into 3 in order to make the images compatible with the 
first 3 pre-trained conv layers. Interestingly, using the 
color channel means from [3] – which has a different 
mean for each channel – worked better than using the 
actual mean for the data, which would also be the same 
across all 3 channels.   

The data was then further augmented through mirroring 
and rotation to produce 8x as much data, giving around 
26,000 total images instead of the original ~3200 images. 
This turned out to help tremendously increasing the 
validation accuracy of the net. 

The data was split into 5 folds – 4 folds with 21 patients 
and 1 folds with 23 patients. The data was split this way 
because the evaluation metric is not on a per-image basis 
but on a per-patient basis, so it is important to have an 
equal number of patients in each fold. Unfortunately, due 
to time constraints, cross-validation testing could only be 
carried out once. However, I intend to execute complete 5-
fold cross-validation when I continue with this project. 
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5. Results and Discussion 

5.1. The Good 

After training for ~7 hours (~5 epochs), a 3D validation 
dice score of 0.86 was achieved. Figure 5 shows validation 
accuracy as a function of 1/10th epochs (e.g. 20 
corresponds to score after 2 epochs, 50 to score after 5 
epochs – apologies for the plot messiness). The overall 
accuracy on a per-image basis was ~99% (high, due to 
96% of pixels being background). 

 

 
Figure 5: Average validation 3D dice score over all validation 
patients as a function of number of iterations (10 = 20000 iterations, 
20 = 40000 iterations, etc.) 

 
Some example outputs of the resulting model on the 

validation set can be seen in Figure 6. Although we can 
see a few mistakes here, the model seems to be highly 
accurate on the whole. It should be noted that these images 
are some of the higher-end 2D segmentations, with 2D 
dice scores in the low to mid 90s. 

Interestingly, we can see that the predicted segmentation 
is often more blob-y than the ground truth segmentation. 
My hypothesis is that this is a result of the high 
regularization used in order to prevent against overfitting 
in the training set. 

Another interesting point is that, while larger mini-batch 
sizes are usually better, they consistently performed worse 
for this model, with a mini batch size of 1 giving by far the 
best performance. I posit that this is because there is so 
much to learn from each image (a 10,000-pixel mini-batch 
itself) that grouping images together in a batch makes the 
net try to be too broad in its improvements. With just one 
image per batch, the net can make smaller adjustments to 
the net in order to compensate for specific cases, 
ultimately leading to a better result. 

With a validation dice score of 0.86, these 
segmentations become well within the margin of the 20% 
variance between radiologists. As such, it is my opinion 
that this model is definitely worth pursuing further in 
order to develop a truly useful tool for radiologists going 
forward. 

 
Figure 6: Model evaluated on images from the validation set after 5 
epochs of training. 
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 Another interesting thing to look at is what an image 
looks like after the score, deconv+crop, and softmax 
layers (Figure 7). As said previously, the resolution of the 
image before deconvolution is only 15x15. The values for 
the ‘yes tumor’ score for each pixel are displayed in figure 
7. We can see that although the 15x15 image looks 
choppy, it actually carries enough information to be 
upscaled and converted to a very nice pre-threshold 
segmentation (the original image, true segmentation, and 
predicted segmentation after thresholding can be seen in 
the top left series of Figure 6). 

 
Figure 7: Data as it passes through last layers and gets transformed 
into a segmentation.  
 

5.2. The Bad 

There are many areas where this framework fails. 
Besides the blob-iness mentioned previously, the network 
seems to lack confidence for some tumors (Figure 8). By 
this, I mean that the network sees the tumor and gives its 
pixels some positive probability of being tumor, but isn’t 
convinced and ends up leaving them out of the final 
segmentation. This might be corrected by increasing the 
weight on the weighted loss in order to more harshly 
penalize for missing ground truth tumor pixels. 

 
Figure 8: (top left) Original image, (top right) Image after softmax 
layer, (bottom left) Predicted segmentation after thresholding, 
(bottom right) Ground truth segmentation 
 

The model also tends to sometimes think bones, tissues, 
and organs are tumors (Figure 9). This is a fair mistake, 
and one that I would make, but at the same time I would 
expect the model to recognize that that area’s textures are 
not tumor-like and ignore that area. I think this is a 
symptom of a bigger problem: lack of data. With only 107 
patients, I only have access to 107 tumors, and it’s likely 
that some of these tumors are unique, given the genetic 
variety seen in tumors. Thus, while we might expect the 
training set to be ‘representative’ of the validation set, this 
might not be the case, and some tumors in the validation 
set could be unlike anything seen in the training set. With 
more patients, this might not be as much of a problem. 

One other possible solution besides ‘more data’ (which 
I’m pretty sure is everyone’s solution to every machine 
learning problem), is to allow different images belonging 
to the same patient to be in both the training and validation 
sets. Of course, we would need to change the performance 
metric from 3D dice score to 2D dice score, but we might 
see an overall increase in performance due to making the 
training set more “representative”.  
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Figure 9: (top left) Original image, (top right) Image after softmax 
layer, (bottom left) Predicted segmentation after thresholding, 
(bottom right) Ground truth segmentation. 

6. Conclusions and Future Work 
Based on the results seen here, we can see that fully 

convolutional networks are fast, powerful systems for 
predicting segmentations. I plan to continue my work with 
FCNs for lung tumor segmentation next quarter for my 
lab, exploring the possibility of 3D convolutions across 
CT slices, attempting to segment a full 512x512 image 
instead of a window around the tumor, and finishing 
implementing the entirety of the Deep Jet architecture, 
including the combination of predictions from various 
resolutions in the net. 
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