

225

Abstract

Recently, researchers have made great strides in

extracting traits of lung tumors from Computerized
Tomography (CT) scans in order to more accurately
diagnose and better treat patients. Logically, these lung
tumor features are extracted only from pixels that lie in
and around the tumor. Currently, figuring out which
voxels ‘belong’ to the tumor (a problem which we will
refer to as ‘tumor segmentation’) is done manually by
trained radiologists - an unfortunate inefficiency in the
process. Algorithms based on traditional computer vision
techniques have proven too inaccurate to be useful.
Building on recent image segmentation breakthroughs at
the Berkeley Vision and Learning Center [1], this paper
presents a fully convolutional neural network that – using
an initial bounding box around the tumor – can segment a
tumor in two dimensions at a mean testing Dice Score
[Figure 3] of 83%.

1. Introduction

1.1. CT Scans

A CT scan of a patient’s chest is usually one of the first
tests a radiologist will do to see if a patient has a lung
tumor. For reference, a single CT scan image (slice) is
512x512x1 pixels (grayscale) and there are usually ~200
slices per scan – we say that these 200 slices compose the
‘CT volume’. If a lung tumor does appear on the CT scan,
radiologists can then analyze the scan further to figure out
the type, size, age, and danger of the tumor - in other
words, the tumor’s features. While trained radiologists can
ascertain quite a bit about a tumor with their eyes alone,
there exist a wealth of other features of the tumor that can
only be gleaned through computational methods.

1.2. Importance of Segmentation

The computational feature extractor is given some
collection of 2d regions on various slices in a CT volume.
The extractor only looks inside these regions for features.
Ideally, these regions will be composed only of tumor

pixels and pixels close (i.e. relevant) to those tumor pixels
– that is, we don’t want to extract features from a rib on
the left side of the lung when what we really care about is
a tumor on the right side of the lung. This is the reason
why accurate tumor segmentations are important – to
provide a pure set of pixels for the feature extractor to
analyze.

1.3. Inputs and Outputs

We will refer to the neural network discussed in this
paper as the Tumor Segmentation Fully Convolutional
Network, or TS-FCN.

The input to the TS-FCN is a 100x100x3 image with a
tumor somewhere in it. All inputs are assumed to have
tumors in them (the focus here is not on detection). To
form each 100x100 image, a liberal bounding box is
drawn around the tumor on a 512x512 CT slice. Bounding
boxes are 100x100 at minimum in order to retain spatial
context from the lung. Next, the area inside this bounding
box is cut out from the 512x512 image and resized down
to 100x100 if necessary. For example, if a tumor is
actually ~80x80, we might make a 160x160 liberal
bounding box, cut out this box from the 512x512 source
CT image, and then downsize to 100x100 to get an input
to the TS-FCN.

Since the original 512x512 slices have only 1 color
channel, we copy this channel to 2 additional color
channels for our 100x100 bounding box images in order to
utilize pre-trained convolution layers that only accept 3-
channel images.

The output of the TS-FCN is a 100x100x1 image. A
pixel in the image is 1 if the TS-FCN predicted that pixel
to be a tumor, and 0 otherwise.

Lung Tumor Segmentation via Fully Convolutional Neural Networks

Austin Ray
Stanford University

CS 231N, Winter 2016
aray@cs.stanford.edu

226

Figure 1: Output of previous state-of-the-art segmentation system
(SDS) and of deep jet compared to the ground truth segmentation.

2. Related Work

2.1. Manual Segmentation

Since radiology is a field where errors are extremely
costly, it is vitally important for radiologists to use the
most accurate tools available to them, no matter the cost or
time. Consequently, since the human eye is currently the
best segmentation algorithm out there, all lung tumor
segmentation for the sake of feature extraction is done by
hand. This can take as much as 10 minutes per patient,
however, which is quite a lot of time for radiologists.

Another issue with manual segmentation is that there is
often no consensus about which regions in an image
contain features worth extracting. Some radiologists are
conservative with their segmentations and perfectly
outline the solid portion of a tumor. Other radiologists are
more liberal and tend to include surrounding regions, the
idea being that there is important information contained in
those regions as well. In fact, recent work by a graduate
student in my lab shows that segmentations can differ by
as much as 20% between radiologists (paper release
pending), which can be disastrous for algorithms down the
pipeline that rely on accurate segmentations.

The reasons why it is important to develop
computational segmentation algorithms are therefore (1) to
save radiologists’ time, and (2) to provide precise
segmentations.

2.2. Windowed Segmentation

One way that researchers have approached
segmentation is by using windowed neural network
architectures. A group out of IDSIA recently implemented
this architecture in order to perform two-class membrane

segmentation on 2D slices from brain scans [2]. The
neural network in that paper takes in a square image
centered on a pixel and outputs a class for the center pixel.
You can attain a full segmentation for an image by feeding
in a series of windows centered on all pixels in the image.
In other words, you would have to feed all 10,000
windows from a 100x100 image into the net in order to get
a full segmentation for that image.

One interesting issue this paper deals with is heavy
class imbalance in a 2-class segmentation problem. Heavy
class imbalance is a problem because the neural network
can simply guess that a pixel belongs to the much-more-
frequent class every time and automatically get extremely
low loss – a local minima that is hard to escape from. For
my project, I have to face the same problem, since tumor
pixels only compose ~4% of pixels in a 100x100
bounding-box input image. The IDSIA paper cleverly
deals with class imbalance by down-sampling pixels from
the more frequent class so that the neural network trains
on an equal number of pixels from each class. After
training, the IDSIA group places a calibration layer on top
of their net’s output for scaling probabilities to match the
statistical reality of the two classes in the data.

Unfortunately, since I ended up going the fully
convolutional route, it was not possible for me to down-
sample inputs, since every pixel in an image was
necessary to classify the other pixels in that image.
However, the IDSIA group inspired me to implement a
weighted loss function to counter class imbalance, the
implementation of which I will talk about later.

Although this paper reports extremely high accuracy
and its methodology seems straightforward, its reported
time of computation per pixel is over ten times that of the
paper I will mention in section 2.3. Due to time constraints
for this project, I chose not to pursue this methodology.

2.3. FCNs for Semantic Segmentation

Most of the inspiration for this project comes from a
recent paper out of the Berkeley Vision and Learning
Center [1]. The authors of this paper outline a neural
network architecture, which they call ‘deep jet’, that takes
in a 2D image from the PASCAL VOC dataset [6] as input
and outputs a 21-class semantic segmentation of that
image (see examples in Figure 2).

The architecture differs from past segmentation
architectures in that it is ‘fully convolutional’, meaning it
has no inner product (linear) layers – only convolutional
layers. This allows the network to take in 2D inputs of
arbitrary size and return an output of the same size, where
each pixel is a prediction for its corresponding pixel in the
input image.

Deep jet's ability to process all pixels in an image at
once make it 1-2 orders of magnitude faster than
windowed segmentation. Additionally, deep jet enjoys

227

larger receptive fields than the windowed segmentation
architecture, as it is not limited by the chosen window
size. This added context can be quite useful in
segmentation.

3. Methods
All neural networks used in this project were built and

executed using the Caffe framework [5].

3.1. Net Architecture

The TS-FCN used in this paper is much like the ‘deep
jet’ architecture used in the BVLC paper [1], but slightly
less complicated and smaller. The net architecture is
outlined below:

(1) Conv64 – ReLU – Conv64 – ReLU – MaxPool
(2) Conv128 – ReLU – Conv128 – ReLU – MaxPool
(3) Conv256 – ReLU – Conv256 – ReLU – MaxPool
(4) Conv4096 – ReLU – Dropout0.5
(5) Conv4096 – ReLU – Dropout0.5
(6) Conv2
(7) Deconv8x – Crop
(8) Softmax – WeightedMultiClassLoss

 All Conv64, Conv128, and Conv256 convolution layers
use size 3 filters with a stride of 1. All use zero padding of
1 except for the first Conv64, which uses zero padding of
32 so that the image isn’t too small after the 3 max-pools.
The first Conv4096 uses a filter size of 7. The second
Conv4096 and Conv2 both use filter size 1 – these are the
layers that make the net ‘fully convolutional’, as they
mimic fully connected/linear layers applied to each pixel.
Conv2 gives a score for each of the 2 classes for each
pixel.

At this point, the image has been max-pooled 3 times
and is thus about 8x smaller than it started – 2x15x15, to
be exact. The deconvolution layer uses a filter size of 16
and a stride of 8, meaning the result is 2x128x128 (Solve
[(H – 16)/8 + 1 = 15] for H). This result is then cropped in
the center to give a 2x100x100 image.

The softmax function is then applied to each pixel’s 2
class scores to give class probabilities. These probabilities
are then fed into a weighted multi-class loss layer where
each pixel is treated as a sample in a mini batch (100x100
image is a 10,000 member mini batch), with the total loss
equaling the average loss over every pixel in the image.
To account for the fact that tumor pixels are only 4% of all
image pixels in my dataset, I weighted the contribution of
each ground-truth tumor pixel by 0.96, and the
contribution of each ground-truth non-tumor pixel by 0.04.
A regularization weight of 5e-4 was used in the loss
equation in order to increase performance on the
validation set. The final loss equation I used can be seen in
Figure 2.

Figure 2: Weighted softmax loss function. y_i is the ground truth

value for pixel i - either 0 (not tumor) or 1 (tumor). f_j is the score for
class j for the pixel (output from layer (7)), where j is 0 or 1. reg_image
is a weight regularization term.

3.2. Learning

Weights for layers (1), (2), and (3) were transferred
from the corresponding layers in source [1], which were
available at [3]. These weights can be interpreted as
producing a feature set for each pixel from any given
image, with the rest of the net learning to use these
features to do segmentation. These pre-trained layers were
trained at 1/10th the learning rate of the other layers. The
deconvolution layer was initialized with bilinear
interpolation weights and its learning rate was set to 0 (it
therefore just served as a basic image up-sizer).

ADAM was used as an update rule, with learning rate
1e-6. The learning rate was multiplied by 0.9 four times
per epoch. The net was trained for around 5 epochs. A
batch size of 1 image was used.

3.3. Performance Metrics

The main performance metric used was Dice Score,
which is like intersection over union. To calculate the dice
score for a given prediction/ground-truth pair, you count
up all the pixels they both predicted were tumors, divide
that by the combined sum of tumor pixels predicted by
both, and multiply by 2. This gives a value between 0 (no
agreement) and 1 (full agreement). The equation can be
seen in Figure 3 below. This metric is a much better
evaluator of performance than pure accuracy, as pure
accuracy will be high for all images due to the prevalence
of non-tumor pixels.

228

Figure 3: Dice score equation, where A is the set of predicted tumor
pixel locations and B is the set of actual tumor pixel locations.

One important thing to note is that 2D dice scores aren’t
that interesting to us here. What we’re really interested in
is the dice score over a patient’s entire tumor, which spans
multiple slices. Thus, all validation dice scores are 3D dice
scores, where the numerators and denominators are each
summed individually before being divided by each other.

4. Dataset and Features
I have access to CT scans and corresponding radiologist

segmentations for 107 patients through the Stanford
Radiological Image and Information Processing Lab,
where I work [4]. Each patient’s scan has around 200
slices in it. Most of these slices have no tumor in them.
Each slice is a 512x512 grayscale image. Not all scans
were done by the same machine or technician a lot can
vary from scan to scan. This is part of the challenge.

Figure 4: Example data before bounding boxes applied. Inputs on
the left, labels on the right.

4.1. Preparing the Data

First, I got rid of any slices that had no tumor in them
(as seen when the segmentation for that layer had no 1’s
(tumor pixels) in it). Next, I created square bounding
boxes for each tumor that were about twice as big as the
tumor’s maximum width and height at any layer in the
patient. Any bounding boxes under 100x100 were
automatically set to 100x100 and centered on the tumor.
Any bounding boxes over 100x100 were fine, but were
resized to 100x100 after being cut out in order to
standardize inputs. Labels (segmentations) were cut out
and resized exactly like their corresponding slices.

The data’s grayscale values ranged from -2000 to 4095.
I rescaled these values to 0 to 255 in order to be in line
with what the first three pre-trained conv layers expect.
The images’ color channels were then arbitrarily increased
to 3 channels instead of 1, copying that 1 channel equally
into 3 in order to make the images compatible with the
first 3 pre-trained conv layers. Interestingly, using the
color channel means from [3] – which has a different
mean for each channel – worked better than using the
actual mean for the data, which would also be the same
across all 3 channels.

The data was then further augmented through mirroring
and rotation to produce 8x as much data, giving around
26,000 total images instead of the original ~3200 images.
This turned out to help tremendously increasing the
validation accuracy of the net.

The data was split into 5 folds – 4 folds with 21 patients
and 1 folds with 23 patients. The data was split this way
because the evaluation metric is not on a per-image basis
but on a per-patient basis, so it is important to have an
equal number of patients in each fold. Unfortunately, due
to time constraints, cross-validation testing could only be
carried out once. However, I intend to execute complete 5-
fold cross-validation when I continue with this project.

229

5. Results and Discussion

5.1. The Good

After training for ~7 hours (~5 epochs), a 3D validation
dice score of 0.86 was achieved. Figure 5 shows validation
accuracy as a function of 1/10th epochs (e.g. 20
corresponds to score after 2 epochs, 50 to score after 5
epochs – apologies for the plot messiness). The overall
accuracy on a per-image basis was ~99% (high, due to
96% of pixels being background).

Figure 5: Average validation 3D dice score over all validation
patients as a function of number of iterations (10 = 20000 iterations,
20 = 40000 iterations, etc.)

Some example outputs of the resulting model on the

validation set can be seen in Figure 6. Although we can
see a few mistakes here, the model seems to be highly
accurate on the whole. It should be noted that these images
are some of the higher-end 2D segmentations, with 2D
dice scores in the low to mid 90s.

Interestingly, we can see that the predicted segmentation
is often more blob-y than the ground truth segmentation.
My hypothesis is that this is a result of the high
regularization used in order to prevent against overfitting
in the training set.

Another interesting point is that, while larger mini-batch
sizes are usually better, they consistently performed worse
for this model, with a mini batch size of 1 giving by far the
best performance. I posit that this is because there is so
much to learn from each image (a 10,000-pixel mini-batch
itself) that grouping images together in a batch makes the
net try to be too broad in its improvements. With just one
image per batch, the net can make smaller adjustments to
the net in order to compensate for specific cases,
ultimately leading to a better result.

With a validation dice score of 0.86, these
segmentations become well within the margin of the 20%
variance between radiologists. As such, it is my opinion
that this model is definitely worth pursuing further in
order to develop a truly useful tool for radiologists going
forward.

Figure 6: Model evaluated on images from the validation set after 5
epochs of training.

230

 Another interesting thing to look at is what an image
looks like after the score, deconv+crop, and softmax
layers (Figure 7). As said previously, the resolution of the
image before deconvolution is only 15x15. The values for
the ‘yes tumor’ score for each pixel are displayed in figure
7. We can see that although the 15x15 image looks
choppy, it actually carries enough information to be
upscaled and converted to a very nice pre-threshold
segmentation (the original image, true segmentation, and
predicted segmentation after thresholding can be seen in
the top left series of Figure 6).

Figure 7: Data as it passes through last layers and gets transformed
into a segmentation.

5.2. The Bad

There are many areas where this framework fails.
Besides the blob-iness mentioned previously, the network
seems to lack confidence for some tumors (Figure 8). By
this, I mean that the network sees the tumor and gives its
pixels some positive probability of being tumor, but isn’t
convinced and ends up leaving them out of the final
segmentation. This might be corrected by increasing the
weight on the weighted loss in order to more harshly
penalize for missing ground truth tumor pixels.

Figure 8: (top left) Original image, (top right) Image after softmax
layer, (bottom left) Predicted segmentation after thresholding,
(bottom right) Ground truth segmentation

The model also tends to sometimes think bones, tissues,
and organs are tumors (Figure 9). This is a fair mistake,
and one that I would make, but at the same time I would
expect the model to recognize that that area’s textures are
not tumor-like and ignore that area. I think this is a
symptom of a bigger problem: lack of data. With only 107
patients, I only have access to 107 tumors, and it’s likely
that some of these tumors are unique, given the genetic
variety seen in tumors. Thus, while we might expect the
training set to be ‘representative’ of the validation set, this
might not be the case, and some tumors in the validation
set could be unlike anything seen in the training set. With
more patients, this might not be as much of a problem.

One other possible solution besides ‘more data’ (which
I’m pretty sure is everyone’s solution to every machine
learning problem), is to allow different images belonging
to the same patient to be in both the training and validation
sets. Of course, we would need to change the performance
metric from 3D dice score to 2D dice score, but we might
see an overall increase in performance due to making the
training set more “representative”.

231

Figure 9: (top left) Original image, (top right) Image after softmax
layer, (bottom left) Predicted segmentation after thresholding,
(bottom right) Ground truth segmentation.

6. Conclusions and Future Work
Based on the results seen here, we can see that fully

convolutional networks are fast, powerful systems for
predicting segmentations. I plan to continue my work with
FCNs for lung tumor segmentation next quarter for my
lab, exploring the possibility of 3D convolutions across
CT slices, attempting to segment a full 512x512 image
instead of a window around the tumor, and finishing
implementing the entirety of the Deep Jet architecture,
including the combination of predictions from various
resolutions in the net.

7. References
[1] http://arxiv.org/abs/1411.4038; Fully Convolutional

Networks for Semantic Segmentation; By Jonathan Long,
Evan Shelhamer, and Trevor Darrell; BVLC, 2014

[2] http://people.idsia.ch/~juergen/nips2012.pdf; Deep Neural
Networks Segment Neural Membranes in Electron
Microscopy Images; By Dan C. Ciresan, Luca M.
Gambardella, Alessandro Giusti, and Jurgen Schmidhuber;
IDSIA, 2012

[3] https://gist.github.com/shelhamer/80667189b218ad570e82#
file-readme-md

[4] http://med.stanford.edu/riipl.html
[5] https://github.com/BVLC/caffe
[6] http://host.robots.ox.ac.uk/pascal/VOC/

