
Convolutional Neural Networks for Left Ventricle Volume Estimation

Carol Hsin
Stanford University

cshsin [at] stanford.edu

Cheryl Danner
Stanford University

cdanner [at] stanford.edu

Abstract

In this study, we experimented with multiple approaches
of using convolutional neural networks (CNNs) to deter-
mine the systole and diastole volumes of the left ventricle
(LV) given input cardiac CINE MRIs mapped to volumes.
The methods explored involved changing the inputs and out-
puts of the CNNs in four main approaches: 2D segmen-
tation, 2D centroid coordinate and area regression, vol-
ume backpropagation, and 3D volume regression. In all
our methods, we experimented with different CNN architec-
tures and automated hyperparameter tuning. We also ex-
perimented with image processing and other techniques to
standardize the inputs in order to improve accuracy while
decreasing noise. Our results show that predicting the vol-
umes directly from the Kaggle CINE MRIs produced lower
relative errors than the methods relying on truth contours
from a smaller study and that preprocessing the images to
highlight important regions based on cardiac knowledge
also improved our relative errors.

1. Introduction

Magnetic resonance imaging (MRI) has revolutionized
the modern medical diagnostic process, and one of its many
uses now is examining a patient’s heart. The systolic and
diastolic volumes of the left ventricle (LV) are clinically
important, e.g. enlarged LV cavities may indicate cardio-
vascular disease. The usual process of analyzing these MRI
results requires that trained personnel manually analyze the
images, which can take up to 20 minutes to complete [11].
Automation would speed up anomaly detection and allow
cardiologists more time with their patients.

Our project applies convolutional neural networks to the
task of automatically calculating systolic and diastolic LV
volumes. The input for each sample is four-dimensional – a
stack of MRI slices is recorded at several time points, creat-
ing a picture of the entire heart volume as it goes through a
cardiac cycle. We experimented with several ways of using
CNNs to predict the LV volumes at systole and diastole.

2. Background/Related Work
A review of cardiac MRI segmentation methods in [11]

breaks approaches from 1993 to 2010 into the following
categories and common methods: 1) image-based, using
theresholding and dynamic programming; 2) pixel classi-
fication, using Gaussian mixture models and clustering al-
gorithms; 3) deformable parts models, including active con-
tours and registration methods, 4) active shape and appear-
ance models; and 5) atlas-guided methods. Outside of the
pixel classificaiton cateogry, most of the approaches re-
viewed either require strong prior information or user in-
teraction. Papers from the Medical Image Computing and
Computer Assisted Interventions (MICCAI) 2009 LV Seg-
mentation Challenge are in line with these methods. For ex-
ample, [9] uses thresholding and comparison to a template
mask, and [10] uses mathematical morphology.

Segmentation methods using neural networks, while
nearly absent from [11] have grown in popularity recently,
both for general image segmentation [8] and within the
medical imaging field. In [3], deep neural networks are
used for LV segmentation in ultrasound images, and [6] uses
CNNs to predict a bounding box containing the LV.

3. Data Exploration and Understanding
3.1. Kaggle Dataset

Kaggle provides a dataset of 2D magnetic resonance im-
ages (MRIs) in DICOM format. The training set consists
of MRIs from 500 patients and their associated systole and
diastole volumes. Each patient’s data consists of timeseries
MRIs of short-axis (SAX) slices, or cross-sections, from the
base to the apex of the heart. Figure 1 shows two sample im-
ages from the set of 480 images that comprise study 1, and
Table 1 shows sample labels for a few studies.

Each slice consists of time frames across the cardiac cy-
cle (one heartbeat, from start of systole to end of diastole)
during one breath hold from the patient, e.g. if there are
12 slices, there were 12 separate breath holds. While there
are usually about 12 slices per study and 30 time frames per
slice, the data varies widely in both the number of slices per
study (1 in study 499 to 22 in study 436) and the number of

1

Figure 1. Example of systole (left) and diastole (right) from Kag-
gle study 1. The LV is the light area bordered by dark grey at the
center of each image, smaller at systole and larger with a thinner
border at diastole.

Table 1. Example labels for Kaggle training set give LV systole
and diastole volumes in mililiters (mL).

Id Systole Diastole
1 108.3 246.7
2 54.6 137.2
3 32.7 99.3
...

...
...

500 33.7 102.0

Figure 2. Our illustration describing the time frames in relation to
the cardiac cycle and within a particular slice as explained on the
bottom left. Here systole is frame 3 and diastole, 29.

images per slice (22 in study 416 to 330 in study 334).

Figure 3. Illustrating the variance in the Kaggle dataset. Studies 1
to 500 make up the training set, and studies 501 to 700 make up
the validation set.

In addition to the dimensional variance illustrated in Fig-
ure 3, images across studies differed in size (height and
width in pixels), pixel resolution, and slice thickness. Fur-

thermore, the left ventricle had varying levels of brightness
and contrast. All of these factors increased the difficulty of
the learning process overall and the fundamental ability to
present a consistently sized input to a network. These chal-
lenges are discussed further in Section 4.6.

3.2. Sunnybrook Dataset

While the Kaggle training data provides the truth values
for the systolic and diastolic volumes, there is no ground
truth labeling for LV segmentation. Therefore, in our seg-
mentation experiments, we supplemented the Kaggle data
with the ‘Sunnybrook’ dataset. The Sunnybrook data in-
cludes 45 sets of MRI images and ‘truth’ contours used for
the MICCAI LV Segmentation Challenge held in 2009 [12].

A condition of this Kaggle challenge stipulates that, with
the exception of the Sunnybrook data, no additional datasets
may be used to train models. Therefore, we did not explore
using pretrained models or any other datasets beyond the
Kaggle and Sunnybrook datasets.

Figure 4. Example of image and label from Sunnybrook dataset

4. Methods and Approaches
Our methods, approaches, and overall view of the task

evolved with each experiment. Results from each experi-
ment led to ideas for new experiments. Thus, we ended up
with about four main approaches, each building on knowl-
edge derived from predecessors.

• Methods using truth contours

– Segmentation
– Coordinate and area regression

• Methods using volume labels

– Backpropagation through volume calculation
– Volume regression

The following experiments were implemented using
Lasagne [5] and Keras [4] on top of Theano [1, 2].

4.1. Segmentation (2D inputs)

Our first approach to the task was to view it as a seg-
mentation problem, in which we would predict the LV area

2

based on per-pixel classification predictions and then use
numerical integration to get the volumes. Since the Kaggle
dataset did not provide truth labels for the LV location, we
trained our segmentation model on the Sunnybrook dataset
using a convolutional network with upsampling layers.

4.1.1 Network architecture and experimentation

The network features many layers of small convolutional
filters with batch normalization and max pooling layers in-
serted at intervals. ReLu nonlinearities and Xavier initial-
ization are used throughout. The output of the convolu-
tional layers, now with much smaller spatial dimensions,
is passed through a dense layer before the convolution and
pooling operations are inverted to return to the original input
size. Finally, the logistic function is applied element-wise
to get each pixel’s LV probability. Loss is calculated as the
squared error between the predicted probability and the true
LV probability provided by the binary mask. The loss Li for
the ith sample, which has n2 pixels, is shown in equation 1.
The variable yi,j represents the label of the jth pixel, pi,j
is the predicted pixel LV probability, and f(Xi)j is the jth

pixel of the network output from input image Xi.

Li =

n2∑
j=1

(pi,j − yi,j)
2, pi,j =

1

1 + e−f(Xi)j
(1)

An initial proof-of-concept network (net1) had three
convolution layers, each with 64 3x3 filters. After initial
results were obtained, the network was expanded to net2
with seven convolution layers and then again to net3 with
ten. Regularization was not implemented in net1, but small
amounts of overfitting were observed in net2 and net3, lead-
ing to the addition of a dropout layer prior to the dense layer.
Additional dropout layers were tested at points closer to
the input to strengthen regularization, but validation loss in-
creased greatly in training, so only the single dropout layer
was retained. Results in Section 5 are not reported for inter-
mediate networks net1 and net2.

Figure 5 gives a high-level visual representation of net3,
and Table 2 gives the corresponding layer specifications.
All input images and filter sizes are square, so only a sin-
gle spatial dimension is given in the input dimension and
receptive field dimension columns.

4.1.2 Systole and diastole determination

After predicting the pixel-wise LV probabilities for the Kag-
gle images, we rounded the probabilities to get a mask and
summed all pixels to get the predicted area for each image.
To determine which times corresponded to systole and dias-
tole, we used knowledge of the cardiac cycle and compared
the areas within each slice, picking out the minimum as sys-
tole and maximum as diastole for that particular slice.

Figure 5. Conceptual depiction of segmenetation network

Table 2. Layer specifications for net3 up to the dense layer. Re-
maining layers invert the operations from Pool4 to Conv1-1.

Layer Input dim Field dim Stride # filters
Conv1-1 128 3 1 64
Conv1-2 128 3 1 64
Pool1 128 2 2
Conv2-1 64 3 1 128
Conv2-2 64 3 1 128
Pool2 64 2 2
Conv3-1 32 3 1 256
Conv3-2 32 1 1 128
Conv3-3 32 3 1 256
Pool3 32 2 2
Conv4-1 16 3 1 256
Conv4-2 16 1 1 128
Conv4-3 16 3 1 64
Pool4 16 2 2
Dropout 8
Dense 8 8 1 4096

4.1.3 Volume calculation

The resulting systole and diastole areas are arranged by
slice, ordered from base to apex of the heart. For each study,
we used the DICOM metadata fields of the first image to
get the pixel spatial values and the slice thickness. We used
those values and the area vector from the previous step to
calculate the volumes by numerical integration.

While some studies [13] have used a simple disk method
in which pairs of areas are used to model a conic disk and
the volume is an interpolation by frustum volume formula,
we used Simpson’s method of integration, which is more ac-
curate. Simpson’s method is equivalent to using a quadratic
interpolation P (x) for the function f(x) giving the area at
each point x. Below are the formulas for calculating the vol-
ume between a single pair of slices at adjacent locations a
and b using the frustum method (equation 2) and Simpson’s
method (equation 3).

vf =
b−a
3 (f(a) +

√
f(a)f(b) + f(b)) (2)

3

vs =

∫ b

a

P (x) dx = b−a
6

[
f(a) + 4f(a+b

2) + f(b)
]

(3)

4.2. Coordinate and Area Regression (2D input)

The application of a regression model to each image was
explored for two purposes: 1) as a method of localizing the
LV and 2) as an alternative means of determining LV area.
Thus, we developed a model to predict the location of left
ventricle centroid (x and y coordinates) and the LV area di-
rectly. Truth values for these three items could be derived
from truth contours but not from volume labels, restricting
viable training data to the Sunnybrook dataset. Area predic-
tions for the Kaggle dataset were used to calculate systole
and diastole volumes using the methods described in Sec-
tion 4.1.3.

Use of the centroid predictions for online region propos-
als was dismissed due to the added complexity. A set of
samples in a minibatch would have different centroid pre-
dictions and thus require disassembling the minibatch, crop-
ping each sample, and concatenating to reform the mini-
batch, all within the network’s layers.

4.2.1 Network architecture and experimentation

Modifying the network to perform regression instead of seg-
mentation consisted of replacing the upsampling layers af-
ter the dense layer with two hidden dense layers and a final
dense layer to produce the three output values. In the loss
equation below, f(Xi) is the output of the network for the
input image Xi, and yi is a vector containing true x and y
coordinates for the LV centroid in the first two elements and
true LV area in the third.

Li = ||f(Xi)− yi)||2 (4)

Figure 6 gives a visual representation of the modified
network architecture, and Table 3 specifies details of the
layers added for the regression objective. Dense layers are
specified in the style of convolutional layers because they
were implemented as convolutional layers, although the net-
work could be equivalently built using true dense layers.

Figure 6. Conceptual depiction of regression network

Table 3. Layer specifications for layers following the dense layer
in net3. Prior layers are specified in Table 2.

Layer Input dim Field dim Stride # filters
Hidden1 1 1 1 1024
Dropout 1
Hidden2 1 1 1 1024
Output 1 1 1 3

4.3. Backpropagation through Volume Calculation
(2D input)

A major drawback of the methods described in Section
4.1 and 4.2 is that because the necessary truth label for each
image is only provided with the Sunnybrook dataset, the
Kaggle training data cannot be used for training. Given the
relative sizes of the two sets (285 images for Sunnybrook to
over 160,000 images for Kaggle training data), it is clear
that finding a way to use the Kaggle training data could
greatly improve performance.

Our approach was to embed the volume calculation into
the computational graph of the network, allowing backprop-
agation through the numerical integration method to the pa-
rameters in a network from Sections 4.1 or 4.2. This cal-
culation is feasible because the maximum number of slices
per study is 22, with most studies containing fewer than 16.
Equation 2 was implemented as a Theano function applied
to the vectors of area values, and the loss function was con-
verted to measure the squared error between the predicted
volume and the true volume.

4.4. Volume Regression (3D input)

An alternative way to utilize the Kaggle training data is
to adopt an end-to-end deep learning approach and predict
volumes directly from sets of input images. In contrast to
the previous methods, this method of using volume regres-
sion with 3D inputs breaks away from the lower-level infor-
mation provided in the Sunnybrook dataset and relies solely
on the Kaggle training data. Discarding the information
from the Sunnybrook dataset is not a concern because the
Kaggle dataset is much larger and more diverse.

Since the Kaggle dataset is over 200x bigger than the
Sunnybrook dataset, as a sanity check, we sought to overfit
and achieve zero loss on a small subset of the data before
training on the full dataset. The test network features small
convolutional filters and pooling layers ending with a dense
layer using root mean squared error as its loss function so
we can better interpret the losses. We trained separate mod-
els for systole and diastole volume predictions since systole
and diastole images have different distinguishing features,
each model can optimize for the features specific to their
respective heart cycle and make lower error predictions.

4

Table 4. Layer specifications for net4.

Layer Input dim Field dim Stride # filters
Conv1-1 128 3 1 64
Conv1-2 128 3 1 64
Pool1 128 2 2
Conv2-1 64 3 1 96
Conv2-2 64 3 1 96
Pool2 64 2 2
Conv3-1 32 3 1 128
Conv3-2 32 1 1 128
Pool2 32 2 2
Dense 16 16 1 1024
Output 1 1 1 1

4.5. Hyperparameter Tuning

To select hyperparameters, we developed a mechanism
to automatically stop training a model if the loss has not
improved within a set number of previous epochs. This
feature accelerated the process of testing different learning
rates. The Adam update rule was used with Lasagne’s de-
fault parameters. Networks appeared to be learning well
using Xavier weight initializations, so no adjustments were
made beyond selecting the learning rate.

4.6. Data Preprocessing Experiments

Working with the full Kaggle training dataset presented
computational time and memory issues, illustrating the need
to decrease the size of the inputs without losing the most
relevant information in the images. We also investigated
methods for handling the irregularities discussed in Section
3.1 with image sizing, LV location, and image brightness
and contrast [14].

4.6.1 Real world scaling

To achieve a standard scale, images were scaled in both di-
rections by the pixel spacing values (mm per pixel) recorded
in the DICOM metadata as described in [14]. Each pixel
in the rescaled version represents an area of 1mm × 1mm.
Since the average heart is about 9cm× 6cm, we decided the
standardized image size would be 128 × 128 pixels, large
enough to contain the heart while also being a convenient
power of 2 for the CNN. However, just cropping the images
from the center point runs the risk of cropping out part or
all the LV, which is not guaranteed to be in the center.

4.6.2 Mean deltas for LV localization

We experimented with multiple approaches to LV localiza-
tion with the most successful method being localization by
the average deltas across the images of a given slice. Since
each slice provides a timeseries through the cardiac cycle

and the heart is the main source of motion in these images,
the difference (delta) between each image from the mean of
the timeseries within a slice would be correlated with the
location of the LV. While a single delta would not provide
much information depending on the cardiac stage it was de-
rived, the average of these deltas is clearly correlated with
the LV as seen in Figure 7

Figure 7. Average of the deltas from the mean slice image (left) of
the timeframes in a slice and the block pixel row averages (right)

After computing the mean delta image, we located the
center (x, y) of the brightest region so we can perform LV
localized cropping. To decrease computation time, we av-
eraged pixels per row in steps of 20px, see plot in Figure
7, and took the location of the maximum value as the es-
timated LV y-coordinate, repeating the procedure with the
columns for the estimated LV x-coordinate, resuling in the
bounding box [(x−64, y−64), (x+64, y+64)]. While the
LV might not be perfectly centered, we hypothesized that,
given the average heart dimensions, over 60mm in all di-
rections would be enough for most cases. This hypothesis
appeared to be valid based on our test images in Figure 8.

Figure 8. Sample results from our average delta method for LV
localized cropping.

4.6.3 Pixel Value Standardization

The top row of images in Figure 9 illustrates the drastic dif-
ferences in image brightness and contrast within the Kaggle
dataset. In many images, the area containing the LV had val-
ues so low that the LV was barely visible. Although CNNs
are able to learn features with a level of invariance to light-
ing conditions [7], we expected the large disparities would
impede learning. To address the problem, we scaled pixel
values to the range 0 to 255 and applied OpenCV’s contrast-
limited adaptive histogram equalization with example re-
sults in the bottom row of Figure 9.

5

Figure 9. Cropped left ventricle region samples before and after
contrast equalization.

4.7. Handing Dataset Irregularities

Due to the wide variations in number of slices per study
and the number of dicom images per slice, we needed a
method to standardize the dimensions of the 3D tensors en-
tering the CNNs. In our earlier experiments, our method
of dealing with the irregularities was to ignore them by en-
forcing a channel size of 30 by repeating or ignoring images
depending on the number of timeframes in the original slice
since the vast majority of slice folders have 30 time frames.
Thus, each slice would result in a 3D tensor with a channel
size of 30, which would then be mapped to the systole and
diastole volumes.

Since our earlier methods did not take into account the
variation nor did it utilize the relationship between image
slices that are adjacent in time or in space, we came up with
several ideas on how to standardize the input 3D tensors.
We decided to experiment with standardizing the channel
size (e.g. C=30) and on every training iteration, randomly
select C images from each of the study’s preprocessed slices
and then order them by slice location and time in the final
3D tensor. The result is a time and spatially ordered 3D
tensor in addition to a regularization from the random sam-
plings, see Figure 10 for illustration.

Figure 10. Illustration of random selection method to handle
dataset irregularities

5. Experiments, Results and Discussion
Average relative error in systole and diastole volume pre-

dictions for Kaggle studies 1 through 25 is shown in Table
5, for experiments run using inputs that were preprocessed
as described in Section 4.6 (“preprocessed” inputs). Table 6
shows average relative error rates using the original images
with minimal preprocessing (referred to as “raw” inputs).
The “raw” inputs were zero padded if smaller than 256 pix-
els or cropped from the center if larger than 256 pixels, then
resized by a factor of 0.5 and normalized. Although over-
all performance on volume prediction is poor in both cases,
there is clear improvement using the preprocessed inputs.

Table 5. Average relative error for volume predictions on Kaggle
studies 1 through 25 with full image preprocessing.

Approach Architecture Systole Diastole
Segmentation net3 0.53 0.50
Centroid area regr. net3 0.41 0.52
Volume regression net4 0.46 0.42

Table 6. Average relative error for volume predictions on Kaggle
studies 1 through 25 with minmal preprocessing.

Approach Architecture Systole Diastole
Segmentation net3 1.17 0.60
Centroid area regr. net3 1.09 0.55

Examination of examples that contributed most to the er-
ror rate identifies ways in which the preprocessing could be
improved to achieve better results. Figure 11 shows sam-
ple slices from Kaggle studies 6 (left) and 19 (right) with
segmentation contour predictions overlaid. In the image
from study 6, the LV is off-center, with a significant por-
tion cropped out of the frame. The image from study 19
shows exaggerated noise resulting from the automatic con-
trast adjustment.

Figure 11. Examples of preprocessed image slices with poor cen-
tering (left) and exaggerated noise (right).

5.1. Segmentation Method

The CNN segmentation model was trained using a 90-10
training-validation split of the Sunnybrook dataset. A round

6

of training and predictions was performed using raw inputs
and again using preprocessed images. In both cases, tri-
als with different learning rates showed good performance
using 0.00001. Curves for loss, area relative error, and in-
tersection over union for 31 epochs of training on the pre-
processed data are shown in Figure 12. Sample prediction
and truth contours from the validation set used for the train-
ing process are shown in the top row of Figure 14, with
sample predictions on the Kaggle dataset in the bottom row.
The training history suggests good generalization within the
Sunnybrook dataset, with validation relative error and inter-
section over union at approximately 0.06 and 0.79 respec-
tively. However, the model did not generalize well to the
Kaggle dataset, as shown by relative error on volume calcu-
lations near 0.5 in Table 5. Example results suggested that
the network expected the LV to have little deviation from
the center of the image; bright areas near the center were
likely to be identified as the LV even when the true LV was
off-center. Adding online data augmentation in the form of
random shifts of±20 pixels in vertical and horizontal direc-
tions did not improve results.

Compared to the model trained on raw input images, the
model trained on preprocessed inputs performed better on
the Kaggle dataset. One example of clear improvement in
can be seen by comparing the predicted LV contours for the
lower right image in Figure 13, where the LV is correctly
identified, to the contours for the same case in Figure 14,
where the LV is misidentified.

Figure 12. Segmentation training history (preprocessed inputs)

5.2. Coordinate and Area Regression Method

The coordinate and area regression network was trained
similarly to the segmentation network, using a 90-10
training-validation split of the Sunnybrook dataset. Trials
of different learning rates showed better performance at a

Figure 13. Segmentation predictions on preprocessed image sam-
ples from the Sunnybrook dataset (top), Kaggle study 1 (botom
left), and Kaggle study 4 (bottom right).

Figure 14. Segmentation predictions on raw inputs from the Sun-
nybrook dataset (top) and Kaggle dataset (bottom). Samples are
analogous to those in Figure 14.

slightly higher learning rate of 0.00005.
Although its prediction mechanism is fundamentally dif-

ferent, the coordinate and area regression model had perfor-
mance very similar to that of the segmentation model. One
difference is that this model had a much better relative val-
idation error rate during training on the raw input images
(0.13) compared to the preprocessed images (0.61). Results
on the first 25 studies in the Kaggle dataset were compa-
rable to results for the segmentation model in Tables 5 and

7

6. Commonality can be seen also in Figure 16 where again
the network using raw images misidentifies the LV, but the
network using preprocessed inputs correctly locates it.

Figure 15. Centroid and area regression training history (prepro-
cessed inputs)

Figure 16. Predicted LV centroid locations and areas for Kaggle
study 4 using preprocessed (left) and raw (right) inputs.

5.3. Backpropagation through Volume Calculation
Method

In separate trials, the saved parameters for each of the
trained area-prediction networks from Sections 5.1 and 5.2
were used to initialize the network that was modified to
incorporate the volume calculation. Throughout many at-
tempts to train the network using various learning rates, the
network was not able to learn, as indicated by completely
flat training and validation loss curves over the course of 10
epochs on a subset of the Kaggle training data. Due to the
lack of training progress, results are not available for this
method.

5.4. Volume Regression Method

While there was clear overfitting, we were not able to
get near 0 loss on a small subset (studies 1 to 25) of the
data. However, this is most likely caused by the method we

used to sample the dataset in order to fix the size of the in-
put tensors while accounting for irregularities as described
in Section 4.7. Since the random sampling is an inherent
feature in this method and is not removable, we believe the
loss achieved did pass the sanity check to some extent and
we could consider looking at more data.

Figure 17. Training history for systole and diastole volume regres-
sion models on data from studies 1 to 25 using method described
in Section 4.7

When we tried our preprocessing method on the full
dataset, we ran into memory and storage challenges. We
were previously storing our data as npy, but we now have
a more complicated structure, so we decided to use proto-
bufs to facilitate serialization and deserialization. While this
worked with a small dataset of 25 studies, when we tried to
scale up, we ran into the protobuf 2 GB limit. It is also a
possibility that our data sampling method, which requires
holding a copy of the full data in memory along with what
is fed into the CNN, would result in memory crashes within
the program even if we were able to serialize the data with
protobufs. If we had more time, we would experiment with
using HDF5 and other storage techniques along with other
data accessing techniques.

6. Conclusion/Future Plans

Without access to an extensive set of labeled images,
area prediction methods are not viable for predicting LV
volumes. Although it would be interesting to examine why
backpropagation through the volume equation did not work,
the strategy of using 3D inputs to directly predict volumes
appears to be more promising. We believe that additional
work to implement the volume regression method with ran-
dom sampling could produce excellent results by rework-
ing the data loading mechanism to avoid memory issues
and tuning the network design. Image preprocessing also
proved to be a significant factor in performance since we
were able to distill the more pertinent information for the
CNN. Given more time, we would also experiment with us-
ing the LV localized images’ deltas directly rather than the
images since the deltas would not contain the background
noise apparent in the images.

8

References
[1] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Good-

fellow, A. Bergeron, N. Bouchard, and Y. Bengio. Theano:
new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation.

[3] G. Carneiro, J. C. Nascimento, and A. Freitas. Robust left
ventricle segmentation from ultrasound data using deep neu-
ral networks and efficient search methods. Biomedical Imag-
ing: From . . . , pages 8–11, 2010.

[4] F. Chollet. Keras. https://github.com/fchollet/
keras, 2015.

[5] S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby,
D. Nouri, D. Maturana, M. Thoma, E. Battenberg, J. Kelly,
J. D. Fauw, M. Heilman, diogo149, B. McFee, H. Weide-
man, takacsg84, peterderivaz, Jon, instagibbs, D. K. Rasul,
CongLiu, Britefury, and J. Degrave. Lasagne: First release.,
Aug. 2015.

[6] O. Emad, I. A. Yassine, and A. S. Fahmy. Automatic Local-
ization of the Left Ventricle in Cardiac MRI Images Using
Deep Learning. pages 683–686, 2015.

[7] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for
generic object recognition with invariance to pose and light-
ing. Proceedings of the 2004 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., 2:97–104, 2004.

[8] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional
Networks for Semantic Segmentation. 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3431–3440, 2014.

[9] Y. Lu, P. Radau, K. Connelly, A. Dick, and G. a. Wright. Seg-
mentation of left ventricle in cardiac cine mri: An automatic
image-driven method. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 5528:339–347, 2009.

[10] L. Marak and J. Cousty. 4D Morphological segmentation
and the MICCAI LV-segmentation grand challenge. . . . 2009
Workshop on . . . , 2009.

[11] C. Petitjean and J.-N. Dacher. A review of segmentation
methods in short axis cardiac {MR} images. Medical Im-
age Analysis, 15(2):169 – 184, 2011.

[12] P. Radau, Y. Lu, K. Connelly, G. Paul, A. J. Dick, and G. A.
Wright. Evaluation Framework for Algorithms Segmenting
Short Axis Cardiac MRI. The MIDAS Journal - Cardiac MR
Left Ventricle Segmentation Challenge.

[13] V. Tran. A fully convolutional network for left ventri-
cle segmentation. https://gist.github.com/
ajsander/b65061d12f50de3cef5d#file-fcn_
tutorial-ipynb.

[14] P. VanMaasdam. Image preprocessing: The challenges and
approach. http://www.datasciencebowl.com/
image-preprocessing-the-challenges-and-approach/,
Jan. 2016.

9

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://gist.github.com/ajsander/b65061d12f50de3cef5d#file-fcn_tutorial-ipynb
https://gist.github.com/ajsander/b65061d12f50de3cef5d#file-fcn_tutorial-ipynb
https://gist.github.com/ajsander/b65061d12f50de3cef5d#file-fcn_tutorial-ipynb
http://www.datasciencebowl.com/image-preprocessing-the-challenges-and-approach/
http://www.datasciencebowl.com/image-preprocessing-the-challenges-and-approach/

