
DeepMammo
Breast Mass Classification using Deep Convolutional Neural Networks

Arzav Jain
Stanford University

arzavj@cs.stanford.edu

Daniel Levy
Stanford University

danilevy@cs.stanford.edu

Abstract

Mammography is the most widely used method to screen
breast cancer. Because of its mostly manual nature, the
masses variability in shape and boundary as well as the low
signal-to-noise ratio, a significant number of breast masses
are missed or misdiagnosed. In this paper, we present mul-
tiple Convolutional Neural Network (CNN) architectures to
classify pre-segmented breast masses from mammograms
as benign or malignant. We test our methodology on the
publicly available dataset DDSM. The best classification
performance we achieve on this dataset is an accuracy of
0.929, recall of 0.934 and precision of 0.924, successfully
beating human performance. This result was achieved by
modifying and fine-tuning the GoogleNet model from the
ImageNet challenge.

1. Introduction

Breast cancer accounts for 22.9% of diagnosed cancers and
13.7% of cancer related to death worldwide. In the U.S.,
one in eight women is expected to develop invasive breast
cancer over the course of her lifetime. Routine mammog-
raphy is the standard exam for preventive care and the best
way (as of today) to detect breast cancer without invasive
surgery. However, mammography is still a manual process,
quite prone to human error due to the variable shape and
size of masses [1] and their low signal-to-noise ratio, thus
resulting in unnecessary biopsies or missed masses. The ef-
ficacy of such a manual process is associated with the radi-
ologists expertise and workload [2], where a clear trade-off
can be noted between sensitivity (Se) and specificity (Sp) in
manual interpretation, with a median Se of 83.8% and Sp of
91.1% [2].

The main goal of this paper is to evaluate Deep Convolu-
tional Neural Networks (CNNs) in classifying breast masses
as benign or malignant, not according to radiologists’ diag-
noses but according to the pathology proven outcome (such
as via ultrasound or biopsy) of the masses. Such a system

could work as a second opinion for many radiologists in
clinical practice as well as reveal interesting insights about
discriminative features in benign versus malignant masses.

2. Related Work

Significant work has been done regarding mass detection
using state of the art methods (namely R-CNN and random
forests) as we can see in [3], [4]. Carneiro et al. consider
the problem of classification on the entire mammogram us-
ing multiple views of the breast as input [6]. Classification
of lesions as masses versus calcification as well as classi-
fying masses according to the radiologist’s diagnosis (en-
coded as BIRADS codes 0-6 on the spectrum of normal to
malignant) has also been fairly treated (see [5]). However,
to our knowledge, directly classifying pre-detected masses
according to the final proven outcome (malignant or benign)
using deep learning techniques has not been attempted.

3. Dataset

Our dataset comes from the Digital Database for Screening
Mammography (DDSM) [7], a collaboratively maintained
public dataset at the University of South Florida. It includes
approximately 2500 studies each comprising both the medi-
olateral oblique (MLO) and craniocaudal (CC) views of
each breast. Each of these images is grayscale in .tif
format (one 16-bit channel) and is accompanied by a mask
denoting the pixels that make up the pre-segmented mass if
one exists.

We only consider the mammograms containing masses with
their masks. This resulted in 1820 images from a total of
997 patients (see Figure 1 for examples). These images
were then randomly split by patients into training, test-
ing and validation (respectively 80%, 10% and 10% of the
total dataset). More specifically, there were 1456 images
from 807 patients in the training set, 182 images from 94
patients in the validation set and 182 images from 96 pa-
tients in the test set. The validation and testing sets were
each constrained to have an equal number of benign and
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malignant images so that an accuracy of 50% is expected by
a classifier that predicts by random chance. Consequently,
the training set had a class balance of 777 benign masses
and 679 malignant masses.

(a) Benign (b) Malignant

Figure 1: Sample breast mass images fed as input: (a) be-
nign with a well-defined margin and an oval shape; (b) ma-
lignant with a microlobulated margin and an irregular shape.

3.1. Preprocessing

In order to create this mass image dataset ready for use in
our models, we first extract the mass from the full mammo-
gram by taking a bounding box around the pixel-level mask
applied to the original image. Since the context around the
mass is relevant in a radiologist’s diagnosis, we explored
two different approaches in extracting this context:

1. Fixed padding of 50 pixels all around the mass in or-
der to achieve the same context size for all masses re-
gardless of mass dimensions.

2. Proportional padding around the mass by extracting
two-times the size of the mass bounding box. Bigger
masses will thus have more pixels of context extracted
and proportionately so as compared to smaller masses.

Since the pre-trained networks that we fine-tune take as in-
put RGB images with 3 channels, we simply replicate our
grayscale image across the 3 channels. At training time,
we also perform mean subtraction with a mean image com-
puted over the entire training set.

3.2. Data Augmentation

Due to the small size of our training set as well as the clear
dissimilarities between mammogram images and ImageNet
images, we augmented our dataset to facilitate fine-tuning
of pre-trained models. Since masses do not have a particu-
lar orientation and can be expected to be seen in all configu-
rations, performing augmentation with the transformations
listed below should not alter the pathology (and hence the
label) of the mass.

We applied the following transformations offline:

• Rotating: random rotations by angles in the interval
0 ≤ θ ≤ 360. The resulting white corners were filled
with the mean-pixel value of the training set.

• Cropping: the images were resized to 224 pixels along
their shorter side (resizing the other dimension propor-
tionately), after which random 224 × 224-sized crops
were sampled from the resized image.

For each image in the training set, we performed 5 random
rotations and sampled 5 random crops for each rotation,
thus effectively multiplying the training set size by 25. Our
overall training set size was consequently 36,400 compris-
ing 19,425 benign and 16,975 malignant masses. For both
the unaugmented and augmented datasets, we also perform
random mirroring of input images online at training time.

4. Methods

Listed below are the architectures we experimented with as
well as the training and fine-tuning strategies we tried. All
methods were implemented with Caffe [12] on an NVIDIA
GRID K520 GPU hosted on Amazon Web Services.

4.1. Shallow CNN: LevyNet

One simple architecture we experimented with as a baseline
is a shallow CNN with the following layers:

• Input layer

• Convolution (32 3 × 3 filters) - Batch Norm - ReLU -
Max Pooling

• Convolution (32 3 × 3 filters) - Batch Norm - ReLU -
Max Pooling

• Convolution (64 3 × 3 filters) - Batch Norm - ReLU -
Max Pooling

• Fully-connected layer of dimension 128 - ReLU

• Fully-connected layer of dimension 64 - ReLU

• Fully-connected layer of dimension 2

• Softmax

This shallow architecture was inspired by both the first few
layers of AlexNet [9] and [5]. We added the batch nor-
malization (described in [13]) to facilitate training as it was
trained from scratch. We also used Xavier initialization de-
scribed in [14]. This network was trained using a learning
rate of 10−3 with Adam [15] and a ”step” learning policy
with γ = 0.1. We used a batch size of 64. This model is
henceforth refered to as LevyNet.
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4.2. AlexNet

The original AlexNet from [9] was fine-tuned on both the
original and augmented datasets. The architecture remains
unchanged from [9], except for the last fully-connected
layer which was replaced to output 2 classes instead of the
1000 ImageNet classes. We chose a batch size of 128 for all
AlexNet models since that was the largest batch for which
the memory requirements were met by our GPU. The learn-
ing rate multiplier for all layers was set to 0.1 times the orig-
inal value except for the last fully-connected layers which is
learned from scratch from a random Gaussian initialization.
We used the Adam learning rate schedule with a base learn-
ing rate of 10−3, a L2-regularization penalty of 5 × 10−3

and dropout of 0.5 so as to not overfit the training set that is
much smaller compared to the original ImageNet dataset.

We fine-tuned different AlexNet models on the three differ-
ent datasets:

1. AlexNet (No Aug-Small Context): the unaugmented
dataset with a fixed-size padding.

2. AlexNet (No Aug-Large Context): the unaugmented
dataset with a proportionally sized padding.

3. AlexNet (Aug-Large Context): the augmented
dataset with a proportionally sized padding.

4.3. GoogleNet

We modified the GoogleNet architecture from [11] by
changing the last fully-connected layer to output 2 scores
and removing the two auxiliary classifiers. Although these
classifiers were present in the original architecture to com-
bat the vanishing gradient problem and provide regulariza-
tion, we found that loss convergence was much faster with-
out them.

We considered two parameter variations on the resulting ar-
chitecture:

1. Shallow Training. In order to train the last incep-
tion module faster than the previous layers, the learn-
ing rate multiplier for the inception 5b layers was the
same as that in the original network while the previ-
ous layers had a 0.1 learning rate multiplier. Dropout
was reduced from 0.4 to 0.1 since masses were very
localized to the center of the image and hence ignor-
ing neurons whose perceptive field included the mass
would only hurt the classification score. Instead, to
avoid overfitting the L2-regularization penalty was in-
creased to 5× 10−4.

2. Deeper Training. In addition to the inception 5b
module, the learning rate multiplier for the incep-
tion 5a module was also kept the same as that in the

original network. This allowed deeper fine-tuning of
the convolution layers in these last two inception mod-
ules to better learn high-level features in mammogram
images. To avoid overfitting, dropout was increased
to 0.2 as compared to shallow training and the L2-
regularization penalty was chosen to be 10−3.

In both variations, the base learning rate was set to 10−2, the
batch size was set to 32 (the largest that could fit in memory)
and the learning rate multiplier for the last fully-connected
layer was set to 10 and 20 for the weights and bias respec-
tively to facilitate aggressive learning of these parameters.
In line with the original training process of GoogleNet, we
picked vanilla SGD (Stochastic Gradient Descent) as the
learning rate schedule with a polynomial decreasing policy
at a power of 0.5.

5. Experiments and Results

Described below are the experiments and results from vari-
ous models described in section 4.

Evaluation Metric. As is often the case in medical applica-
tions, recall and (to some extent precision) are key to mea-
suring performance. In the case of mammogram screening,
we wish to greatly reduce the number of false negatives (pa-
tients with malignant masses falsely classified as benign; in
clinical practice, such patients would go untreated) as com-
pared to the number of false positives (patients with benign
masses falsely classified as malignant; in clinical practice,
such patients would only need an additional biopsy to con-
firm the benign mass and hence, the cost of misclassification
is low).

5.1. Learning Process

In Figure 2, we present the loss and train-val accuracies for
our top two models, namely AlexNet (Aug-Large Context)
and GoogleNet (Deeper Training), to get more insight into
the learning process. Both the models successfully con-
verged to a very low loss albeit they both overfit the train-
ing data. The greater noise in the GoogleNet loss and ac-
curacies is due to the vanilla SGD learning rate schedule;
AlexNet was instead fine-tuned using Adam [15] giving a
relatively smoother plot. Note that AlexNet converged at
about 10 epochs whereas GoogleNet took about 35 epochs
to converge, again probably due to the slower SGD learning
rate schedule.

5.2. Fixed Padding vs Proportional Padding

As discussed in section 3.1, we explore the role of context
around the breast mass in aiding classification. To better un-
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(a) AlexNet Accuracies (b) AlexNet Loss

(c) GoogleNet Accuracies (d) GoogleNet Loss

Figure 2: Learning and fine-tuning process for our top
two models: AlexNet (Aug-Large Context) and GoogleNet
(Deeper Training). Shown above are train/val accuracies on
the left and loss on the right.

derstand whether more context around the mass helps in dis-
criminating benign from malignant masses, we fine-tuned
AlexNet on two different datasets - one with Fixed Padding
and the other with Proportional Padding. The results are
presented in Table 1. Given the increased validation ac-
curacy, we find that taking a proportionately larger context
around the mass does encode some information about the
pathology of the mass. Consequently, we use proportional
padding for the rest of our paper.

Model Validation Accuracy
AlexNet(No Aug-Small Context) 0.64
AlexNet(No Aug-Large Context) 0.71

Table 1: Influence of context around the breast mass on the
model performance.

5.3. Augmented Dataset vs Unaugmented Dataset

The small dataset size was a major bottleneck of our prob-
lem and as such data augmentation was an attractive solu-
tion. As can be seen in Figure 3, data augmentation greatly
improves AlexNet’s performance on the validation set. A
deep network such as AlexNet quickly overfits the small
training set in the unaugmented case within approximately
200 iterations (≈ 20 epochs) . Consequently, it gives an
accuracy of 0.67 and recall of 0.66 on the validation set.
As expected, by increasing the training set size with aug-
mentation AlexNet takes longer (about 3000 iterations ≈ 10
epochs) to overfit the training data while at the same time

giving better accuracy of 0.90 and recall of 0.93 on the val-
idation set.

(a) Unaugmented Dataset

(b) Augmented Dataset

Figure 3: Improvement in validation accuracy on AlexNet
due to data augmentation.

5.4. GoogleNet: Deeper vs Shallow Training

As discussed in section 4.3, two GoogleNet models were
fine-tuned with different parameters. The Shallow model
converged within 20 epochs while the Deeper model con-
verged withing 40 epochs. This makes sense since the
Deeper model requires more iterations to better learn the
high-level features at both the inception 5a and incep-
tion 5b modules.

Four snapshots of each model were also taken at regular
intervals during fine-tuning. We show the performance of
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each of these snapshots on the validation set in Figure 4. Al-
though the accuracy of the two models closely follow each
other, the Deeper model does better on recall throughout
whereas the Shallow model does better on precision. Note
that the accuracy, precision and recall for the Deeper model
is best at the 0.75 mark. Thus, we take this snapshot at 30
epochs (= 0.75 × 40) to be our final Deeper model in the
rest of this paper (and in particular, Table 2).

Figure 4: Validation accuracy, precision and recall for the
Deeper Training and Shallow Training GoogleNet models.
The x-axis represents the fraction of the total number of
epochs which is 40 for the Deeper model and 20 for the
Shallow model.

5.5. Visualizations

5.5.1 Saliency Maps

In order to get deeper insights into how the network is mak-
ing classifications and which regions of the input image it is
most sensitive to, we plot the Saliency Maps for five images
from the dataset in Figure 5. The methodology is described
in [16].

From Figure 5(a), we see that the outlines of the masses
are clearly visible in the saliency maps. The image gradi-
ents closely track the mass shape and position; when the
mass is diffuse, the saliency map is as well. This means that
AlexNet successfully learns to attend to the masses while
yet not completely ignoring the context around the mass.

For GoogleNet on the other hand, the saliency maps are
overall more diffuse. The highlighted parts of the mass are
sometimes also different; for example, for the benign tumor
on the far right, GoogleNet attends more to the lower left
part of the mass whereas AlexNet attends more to the top
right.

(a) AlexNet

(b) GoogleNet

Figure 5: Saliency maps for AlexNet (Aug - Large Context)
and GoogleNet (Deeper Training) on five images from the
validation set.

5.5.2 Weights visualizations

In Figure 6, we visualize the weights learned by the first
layer of our networks. It serves as a sanity check; because
the images are in black and white, we expect that after con-
vergence the filters should also be in grey scale (with the
caveat that this layer was trained with a tenth of the global
learning rate and so the pre-trained filters from the Ima-
geNet dataset for both networks may still show up). Figure
6 indeed shows that more than half of the filters are in grey
scale which is satisfactory. The results are similar for both
the AlexNet and GoogleNet. The lack of noise and the pres-
ence of nice, smooth first-layer weights for both networks
indicate that both networks were trained well.

(a) AlexNet (b) GoogleNet

Figure 6: Visualization of the first-layer filters of a trained
AlexNet and GoogleNet.
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Model Accuracy Precision Recall # Epochs
LevyNet (Aug-Large Context) 0.604 0.587 0.703 35
AlexNet (Aug - Large Context) 0.890 0.908 0.868 30
GoogleNet (Aug - Large Context) - Shallow Training 0.912 0.921 0.901 20
GoogleNet (Aug - Large Context) - Deeper Training 0.929 0.924 0.934 30

Table 2: Summary of results on the test set. All models were trained on the augmented dataset with proportional padding.

5.6. Conservativeness

Shown in Table 3 are the accuracies and recall of three mod-
els on the validation set. We see that recall is usually in
the range of or greater than precision, thus suggesting that
our models correctly classify a larger fraction of the ma-
lignant masses (fewer false negatives) than benign masses.
This conservative property of our models is arguably de-
sired given that we don’t want to misdiagnose malignant
masses.

Model Precision Recall
LevyNet 0.649 0.692
AlexNet (Aug - Large Context) 0.904 0.934
GoogleNet-Shallow Training 0.920 0.890
GoogleNet-Deeper Training 0.912 0.923

Table 3: Model metrics on the validation set.

5.7. Final results

Our final results of all models on the test set are presented in
Table 2. GoogleNet with Deeper Training outperforms the
other models by a fair margin (with a recall of 0.934 com-
pared to at most 0.901 for the other models). GoogleNet
seems more suited for fine-tuning because the inception ar-
chitecture make it less prone to the vanishing gradient prob-
lem whilst keeping a very deep structure. The number of
parameters of the GoogleNet is a lot smaller (5 million)
compared to the AlexNet or VGGNet which have over 100
million parameters that sometimes favor overfitting.

We also see that our best model reaches as high as 0.934
recall which outperforms human performance with radi-
ologists showing a recall between 0.745 and 0.923 (accord-
ing to [2]). This result is very promising for real-life use of
such models in clinical practice.

6. Conclusion

We evaluated multiple CNN models on the task of classi-
fying breast masses as benign or malignant. Our approach
validates the usefulness of data augmentation in this appli-
cation as it remarkably increased performance to rival that

of trained radiologists [2]. We showed that more context
around the mass can be essential to classification. We also
visualized a number of masses and their interpretation by
our models to glean better insights into how our models
make their predictions. This information can be very useful
to radiologists to either confirm or deny their past intuitions
as well as present novel ones. Lastly, we demonstrated how
we can transfer learning from models pre-trained on the Im-
ageNet data to a completely different domain such as mam-
mogram images and yet achieve state-of-the-art results.

7. Future Work

A few approaches we would like to explore in the future
include:

1. VGGNet. We experimented with VGGNet by taking
cuts of the original architecture at each of the max-
pooling layers and placing classifiers on top. However,
we were unable to successfully get the loss to converge
in time and hence we hope to try again in the future
given the promising performance of VGGNet in other
domains.

2. Model Ensembles. As is a common trick when work-
ing with CNNs, training multiple models and averag-
ing their predictions at test time would greatly boost
classification performance as has been found in other
domains. We could use two different models such as
AlexNet and GoogleNet or even different snapshots of
the same model such as GoogleNet in the ensemble.

3. Multi-view. In this paper, we treat both the CC and
MLO views of the mass indifferently and make a clas-
sification without that knowledge and separately for
each view. However, as attempted in [6], taking both
the CC and MLO view of the same mass together as in-
put and subsequently performing classification would
be a promising approach. Model ensembles may also
be another idea here with two different CNNs, one for
each view, both voting for the final score.

4. More Data. We obtained very satisfactory results by
augmenting a small dataset of 1820 images. How-
ever, we could greatly improve our classifier’s general-
izability if we were to also train on data from different
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sources such as the INbreast database [8].

5. Semantic Analysis Clustering the last activations map
(with t-SNE for example) would be a great visualiza-
tion tool to see if the clusters match the semantic fea-
tures used by radiologists in making a diagnosis (such
as mass margin and density).
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