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Abstract

State-of-the-art convolutional neural networks (CNNs)
and denoising techniques were used to diagnose the pres-
ence and severity of Diabetic Retinopathy from Fluores-
cein Angiography photographs. Data was provided by Eye-
Pacs consisting of fudus photographs with varying ranges of
DR severity labeled by clinicians. A convolutional neural
network classifier engineered from GoogLeNet for 5-class
severity classification performed best with an AUC of 0.79%
and an accuracy of 0.45%. This paper improves on past
work in the scale and heterogeneity of the dataset used, to
the best of our knowledge, no other published work on DR
screening deals with a dataset of our magnitude.

1. Introduction

There exist multiple techniques for Diabetic Retinopa-
thy (DR) diagnosis, an ocular manifestation of diabetes that
affects more than 75% of patients with longstanding dia-
betes and is the leading cause of blindness for the age group
20-64 [6]. In this paper we focus on diagnosis through Flu-
orescein angiography (fudus) photographs, which involves
careful examination of photographs taken with expensive
equipment by highly trained clinicians. This detection tech-
nique is very resource intensive and requires very special-
ized clinician knowledge [1]. We aim to develop a computer
vision model that closely matches human performance with
the hope of one day being useful for the clinical community.

For more information on the epidemiology of DR and an
analysis of how early detection of the disease can help slow
or even avert its spread, consult [21]. For a comparative
research paper on studies of risk factors of DR consult Yau
et al. [13]. We stress that Fluorescein angiography is not
the only a technique for diagnosis of DR; a comprehensive
analysis on other detection techniques to diagnose DR can
be found in [8].

The general format of our model is as follows. We take
as input images that have been down-sampled to a tractable

size (256 x 256). These images are preprocessed (normalied
and denoised) and then used to train a convolutional neural
network, either from scratch or via transfer learning. Once
trained, test images are passed forward through the network
and the model attempts to predict the severity of diabetic
retinopathy.

One of the most interesting applications of the work done
in this paper is the use of our model as a standardization
technique. Currently, fudus photographs are labeled quali-
tatively by physicians, which is a rather subjective process.
The goal is for our results to be useful in comparing labels
across different clinicians, with the assumption that qualita-
tive human measurements contain some degree of error.

2. Related Work in DR Screening Models

Previous work has been done in using machine learn-
ing and statistical models for automated DR screening. The
methodologies can be categorized as using architectures
that explicitly try to model features of interest, or method-
ologies that use automated feature extraction.

2.1. Previous Work in Explicit Feature Extraction
Methods

Much work has been done in developing algorithms
and morphological image processing techniques that explic-
itly extract features prevalent in patients with DR. For an
overview of such algorithms consult [19]. Faust et al. [16]
provide a very comprehensive analysis of models that use
explicit feature extraction to DR screening. Shortcomings
of these studies are in the magnitude of their scope (all the
studies present results derived from less than 400 total data
points), the homogeneity of the dataset and, the narrowness
of the explicit features extracted from the images. For in-
stance, Vujosevic et al. [20] build a binary classifier on a
dataset of 55 patients by explicitly forming single lesion
features. The authors in [3] use morphological image pro-
cessing techniques to extract blood vessel, microaneurysm,
exudate, and hemorrhage features and then train an SVM
on a data set of 331 images achieving sensitivity 82% and
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specificity 86%. The authors in [15] report accuracy of 90%
and sensitivity of 90% (on binary classification task with a
dataset of 140 images) using image processing techniques
to extract area of blood vessels, area of exudates, and tex-
ture features which are then fed into a small Neural Net-
work. Recent work by Rahim et al. uses fuzzy image pro-
cessing techniques (fuzzy histogram equalisation and fuzzy
edge detection) for a DR detection system.

2.2. Previous Work in Methods with Neural Net-
work Based Feature Extraction

In a very recent work, Wang et al. [17] use a CNN
(LeNet-5 architecture) as a feature extractor for addressing
blood vessel segmentation. The model has three heads at
different layers of the convnet which then feed into three
random forests. The final classifier uses and ensemble of
the random forests for a final prediction achieving an ac-
curacy and AUC on 0.97/0.94 on the DRIVE [11] dataset
(a standard dataset for comparing models addressing ves-
sel segmentation). Similarly, the authors in [22] propose a
model that uses convolutional neural networks for the gen-
eral task of thin image segmentation and show benchmark
results on the DRIVE dataset achieving an AUC of 0.89.
Perhaps, the most similar published work to the one pro-
posed by this paper is that of Lim et al. [9] where the au-
thors propose building a convolutional neural network for
lesion-level classification and then use the learned feature
representations for image-level classification, however the
scope of the study is limited in that the dataset used con-
tains 200 images for a homogenous source.

2.3. Background Literature Survey

To inform our model development and result analysis,
we conducted a literature survey of medical journal articles
describing DR features and past work done in DR detection.
Beyond useful for feature extraction and feature engineer-
ing as well as model benchmarking understanding the med-
ical basis for the problem at hand helped focus our model
examination later in the development process (for instance
by examining if neurons in a neural network were in fact
activated by features that were deemed important by our
literature survey). In addition, understanding the medical
basis for our problem informed our analysis of with image
normalization and denoising techniques to use (to try to pre-
serve the most relevant features).

The National Eye Institute provides a standardized de-
scription of the severity class of DR patients (which are the
classes that our classifier predicts). There are four severity
scales, the first three describe non-proliferative DR (NPDR)
and the last proliferative DR (PDR). The severity scales are
characterized through a progression of four stages:

• Mild NPDR - Lesions of micro-aneurysms, small areas
of balloon-like swelling in the retinas blood vessels.

• Moderate NPDR - Swelling and distortion of blood
vessels

• Severe NPDR - Many blood vessels are blocked, which
causes abnormal growth factor secretion [7]

• PDR - Growth factors induce proliferation of new
blood vessels inside surface of retina, the new vessels
are fragile and may leak or bleed, scar tissue from these
can cause retinal detachment. [2]

3. Dataset
3.1. Overview

Data was drawn from a dataset maintained by EyePacs,
and provided via Kaggle. The dataset is composed of multi-
ple, smaller datasets of fudus photographs drawn from var-
ious sources. Each image is assigned a class based on the
presence and severity of DR (see scale explanation in 2.3),
where each image was labeled by a trained clinician. Below
are examples of dataset images:

(a) Fudus p without DR (b) Eye with DR

3.2. Heterogeneity and Noise

The challenges presented by this task and dataset are nu-
merous. The dataset used is highly heterogeneous; the pho-
tographs are from different sources, cameras, resolutions,
and have vastly different degrees of noise and lighting (con-
verse to other published works, see section 2). Resolutions
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ranged from 2592x1944 to 4752x3168. We believe that be-
ing able to generalize to this noisy dataset adds to the value
of the work done here, since the results would likely be
more robust and general. Figure 1 shows some examples
of the poor quality of images in our dataset.

Figure 1: Top images show poor quality images where light-
ing is targeted to a specific neighborhood. Bottom-left im-
ages shows over-exposed fudus photograph in the dataset.

3.3. Preprocessing

Due to the noise in our data, as well as the limited num-
ber of examples of some classes, there were numerous pre-
processing steps we took. From our error analysis, we found
that many of our images had excess black-space on either
side of the eye, part of the preprocessing was removing this
background. The images came in varying sizes and aspect
ratios, so we standardized this by downsizing all images to
256-by-256 images. About 80% of the pictures had an as-
pect ratio of 3:2, so our downsampled/cropped images re-
tained this ratio, but images with other aspect ratios (most
commonly 4:3) became stretched. To approach this issue
we devised an algorithm that altered cropping and down-
sampling based on the aspect ratio of the image. Once the
images had been downsized, we implement various denois-
ing schemes (see Section 4.2).

Due to the limited number of training examples for some
classes, we also created augmented images to increase class
sizes. For this, we took each of the images created in the
previous step, and produced a mirrored image of it. Both
the original and mirrored image were then duplicated at
90, 180, and 270 degree rotations, effectively increases our
class sizes by 8x.

3.4. Challenges Intrinsic to DR Screening

In addition to the images themselves being heteroge-
neous, the presence of Diabetic Retinopathy is also hetero-
geneity. One of the main indicator of DR is the existence
of lesions and exudates on the eye. These features, how-
ever, can have vastly different sizes, shapes, and frequency

(see Figure 2). In order to construct a viable model, our
classifier must contain some degree of robustness to these
different features.

Figure 2: Lesions of Vastly different Sizes in DR [9]

3.5. Summary Statistics and Class Imbalance

Our dataset consists of highly imbalanced class-labels.
The table below shows the class proportion statistics:

Class Number Percentage
Negative 25810 73.5%

Mild NPDR 2443 6.90%
Moderate NPDR 5292 15.10%

Severe NPDR 873 2.50%
PDR 708 2.00%

This adds to the difficulty of the task at hand, for an anal-
ysis of how we addressed class imbalance see section 4.3

4. Methodology
4.1. Overview

We begin by trying to solve the 5-class classification task
on our noisy dataset. We denoise, normalize, and augment
the data as described in the preprocessing section, and ad-
dress the class imbalance problem by either over-sampling
the minority classes or using cost-sensitive learning. Next,
we build three different models: a custom architecture built
as a baseline where all layers are trained, a classifier built
using a pretrained AlexNet [14] where only the last layer
is retrained, and a GoogLeNet [18] constructed similarly
to AlexNet. All weights that weren’t loaded via transfer
learning were initialized using the Xavier [10] initialization
scheme. For all three of our models, the final prediction is
made using a softmax layer. Therefore, our loss function is
defined as:

Li = −log
( ewyi∑

j e
sj

)
where syi

is the score for example i’s label, and sj is
the score for a particular label j. The softmax contained in
the log ensures that the prediction probabilities are a proper
probability distribution.
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Upon conducting analysis of our errors, we propose two
problem relaxations, namely a 2-class and 3-class classi-
fier. We then build classifiers for these two relaxations us-
ing a similar pipeline as the one described above. The prob-
lem relaxations are motivated by the idea that the severity
classes are somewhat subjective, i.e. the differences be-
tween an image labeled as mild and an image labeled as
moderate as nuanced and clinicians may disagree in their
labeling.s

4.2. Pipeline and Normalization Schemes

To address the issue of heterogeneity in the dataset, we
conduct a brief overview of image denoising techniques.
For a comprehensive overview of image denoising tech-
niques, consult [5]. Our task necessitates very nuanced de-
noising techniques as certain artifacts of fudus photographs
(such as lexions and exudates) may very well appear to be
noise yet are precisely the features that we would like to
keep for our classifier prediction. In particular, we use Non-
Local Means Denoising (NLMD) as proposed by Buades et
al. [4] as a preprocessing step. The denoising of an image
x = (x1, x2, x3) on channel i at pixel j is implemented as:

x̂i(j) =
1

C(j)

∑
k∈B(j,r)

xi(j)w(j, k),

C(j) =
∑

k∈B(j,r)

w(j, k)
(1)

In the above, B(j, r) denotes a neighborhood of radius
r around pixel j, and the weight w(j, k) depends on the
squared of the Frobenius norm distance (or another induced
norm distance) between color patches centered at j and k
that decays under a Guassian kernel. This denoising tech-
nique was chosen among the ones surveyed because of its
flexibility. In particular, by varying the width of the kernel
we adjust our denoising scheme to better suit the needs of
DR screening. The figure below shows a side-by-side com-
parison of a denoised training example with class label 4
(Proliferative DR).

(a) Original (b) Denoised

Figure 3: Comparison of Non-Local Means Denoising

As demonstrated by the images above, we lose some in-
formation with NLM Denoising, but we are able to preserve

some of the exudates and scar tissue produced by the leak-
ing blood vessels. Additionally, as a baseline normalization
scheme, we also subtract the training image mean from the
datasets.

4.3. Addressing Class Imbalance

We address class imbalance in two approaches: using
cost-sensitive learning, and using class balanced training
sets. As a cost-sensitive learning approach, we modify our
loss to be a generalization of the multinomial logistic loss.
Specifically we use the InfoGain Loss as described in [12].
The loss is computed as:

L =
−1

N

N∑
n

Hlnlogp̂n (2)

where Hln denotes the ln row of H , an info-gain matrix.
For simplicity we use a diagonal matrix defined as:

Hij =

{
0 if i ≡ j

1− fi otherwise

where fi is the frequency of class i in the batch.
As another approach, we address class imbalance by

training on a class-balanced subset. We preprocess the
dataset by producing augmentations of underrepresented
classes to increase the class size, and subsample from the
overrepresented classes. This allows us to have a uniformly
balanced training set.

4.4. Baseline

As a baseline, we built a convolutional neural network
from scratch that acts as our control. The model is trained
using randomized hyperparameter search. The architecture
for our baseline is:

[Conv - ReLU - Pool]x2 - Affine - Softmax

The model was initialized using the Xavier initialization
scheme, and updated using Adam. The model served the
purpose of guiding our research and the results motivated
some of the decisions in our improved transfer learning
models.

4.5. Convolutional Network Architectures

4.5.1 AlexNet

The first pretrained model we use was AlexNet [14].
AlexNet, developed in part by Alex Krizhevsky in 2012,
is one of the best CNNs today, having won the imagenet
challenge. We utilized this model by loading the pretrained
weights, and only retrain the final fully connected layer to
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predict 5 classes rather than 1000. This usage of transfer
learning is viable because many of the early layers of the
network learn similar features, such as edges and lines. By
loading these pretrained weights, our model effectively al-
ready knows how to detect lines and edges, and need only
learn how to use them to make predictions for our prob-
lem. Below is an image that show the basic architecture of
Alexnet from the original paper.

Figure 4: Architecture for AlexNet [14]

4.5.2 GoogLeNet

The second pretrained model we used was GoogLeNet [18].
GoogLeNet, which was developed at Google, won the im-
agenet challenge in 2014, setting the record for the best
contemporaneous results. Motivations for using this model
was a deeper architecture, the addition of Inceptions Layers
and the possibility of using an ensemble classifier from the
three different heads of the net output in future work. Sim-
ilar to Alexnet, we loaded the pretrained weights into our
network, and retrained the final layer to predict 5 classes
rather than 1000. Below is an image which demonstrates
the GoogLeNet’s general architecture. Similarly we also
retrain the last two layers of the net as a different scheme.

Figure 5: Architecture for GoogLeNet [18]

4.6. Problem Relaxations

As part of our error analysis, we concluded that the
problem could be simplified in a way that would still yield
actionable results to the clinician community. We propose

two other characterizations of the problem:
· 2 Class - Binary classification of DR presence
· 3 Class - Merge classes 1 with 2, and 3 with 4

The motivation for proposing the binary classification
problem is self-evident; automatically diagnosing the pres-
ence of DR (even without a severity measure) is useful
in and of itself. The motivation for proposing the 3-class
severity classification problem is twofold. Firstly, it tests
our hypothesis that we could simplify the problem given the
highly noisy data, and secondly it acts as a coarser measure
of severity that may in fact be more robust to subjectivity.
As our survey of medical journals informed us, the severity
classifications are qualitative and can have a certain degree
of subjectivity. That is, a clinician may label a fudus pho-
tographs as ”Mild DR”, whereas another may label the same
image as ”Moderate DR”.

5. Results
Our models were run AWS machines with 8 Intel Xeon

E5-2670 (Sandy Bridge) processors and a gpu with 1,536
CUDA cores. Both the custom and transfer-learned models
were developed leveraging Caffe, a framework developed
by the Berkeley Vision and Learning Center [12].

5.1. Evaluation Metrics

For our models, we had 4 main metrics for evaluating
their performance on the data. The first was accuracy, which
is simply the proportion of examples that were classified
correctly, which could be calculated for all predictions. The
other three metrics, recall (proportion of positives correctly
predicted), precision (proportion of positive predictions that
were correct), and AUC (area under ROC curve) had to be
calculated on a per-class basis since this is a multi-class
problem.

5.2. Hyperparameters

For our baseline model, hyperparameters were selected
using a random search of the parameter space. Due to the
limited amount of time and computational resources avail-
able to us, we were not able to run as thorough a search
as we would have liked, but we settled on a learning rate
of 0.00001 with momentum 0.9 and decay of .005. We
do concede that, given the rather poor performance of our
baseline, there are likely a better set of hyperparameters,
we elected to focus our time and resources on the transfer-
learning models. For our batch size, we used 25 images. We
chose this value because it was one of the largest batches we
could use as constrained by the memory of the machines.

For both AlexNet and GoogLeNet, baseline hyperparam-
eters were provided in the model’s description. In both
cases, we took the existing parameters and perturbed them
by an order of magnitude in both directions to see how this
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altered our prediction (in addition we also tried increasing
the learning rate multiplier for the layers that were trained
from scratch). In most cases, we found that this perturbation
lead to a decrease in the model’s overall performance, but
in a few cases, these perturbations lead to improved results.
One such example of the latter case is with AlexNet. When
first training AlexNet, we found that our loss would become
very large very quickly, and then never change. To attempt
to correct this, we performed randomized hyperparameter
search on the learning rate bounded a few orders of mag-
nitude above and below the initial parameters. By exam-
ining the loss and training accuracy we determined a final
learning rate an order of magnitude lower than the given.
Further refining the learning rate beyond this did not lead
to noticeable improvements, but the initial alteration was
highly beneficial. Just as in the baseline, we used a batch
size of 25 since larger batch sizes could not be handled by
our machines.

We also attempted to use the Adam update rule for both
GoogLeNet and AlexNet. In the case of GoogLeNet, the in-
troduction of Adam lead to a much faster convergence time,
which allowed it to out-perform AlexNet. When introduced
into AlexNet, however, the results of the model were equiv-
alent to a random prediction. We attempted to further tune
the hyperparameters so that Adam would be viable, but after
much time spent, we were unable to produce better results.
We advocated for a more thorough search under a larger fi-
nancial budget and longer time frame. To account for the
slower convergence expected, AlexNet is trained for more
iterations.

5.3. Model Performance

Note that all results for the following models are based
on a uniformly distributed class set in the testing data.

5.3.1 Baseline

Our baseline performed rather poorly. In the 2-class, 3-
class, and 5-class cases, it performed slightly better than
randomly guessing on the validation and test sets. When
tested on the training set, however, it was able to perform
noticeably better than randomly guessing; we can conclude
that the network was at least able to learn some decision
boundaries. Below summarizes the results for our baseline
on the test set, where the recall and precision have been av-
eraged across all classes:

Accuracy Recall Precision
2-Class 0.541 0.502 0.489
3-Class 0.353 0.387 0.301
5-Class 0.227 0.201 0.235

5.3.2 AlexNet

After developing our baseline, the first model we tried was
AlexNet. Loading the pretrained model and retraining the
final layer greatly improved on the results produced by our
baseline, and generated our first legitimate results. We were
able to achieve a training accuracy of 72.9% on the 5-class
problem, so we were clearly able to overfit our data. In-
terestingly, even as we continued to overfit more and more
(loss ¡0.1), our validation accuracy remained relatively con-
stant. We attempted to introduce higher regularization via
layers’ weight decay parameter to counter this traning-set
overfitting, but the effect was an overall decrease in our val-
idation performance, so we elected to omit it. The accuracy
results for AlexNet on varying numbers of classes is sum-
marized below under the best learning rate and hyperparam-
eters that were searched.

Classes Accuracy
2 0.6695
3 0.5705
5 0.4073

From the above table, we can derive a few insights. First,
although the binary classification task of detecting Diabetic
Retinopathy may be easier than the original task, we were
not able to show this with our classifier. The 2-class model
only performed 17% better than random, while the 3-class
and 5-class models performed 24% and 21% better re-
spectively. Second, we find the interesting result that the
we were able to achieve a higher evaluation metric on the 3-
class problem. In addition to accuracy, we also break down
the recall and precision of the 5-class model by class, allow-
ing us to analyze which classes our model performs poorly
at. Below summarizes these results:

Class Recall Precision
0 0.398 0.306
1 0.386 0.343
2 0.294 0.254
3 0.282 0.458
4 0.456 0.571

From the above, we see that classes 3 and 4 have rela-
tively high precision, while classes 0, 1, and 2 have rela-
tively low precision. This indicates that our model is less
likely to predict 3, but when it does, it tends to be cor-
rect. In contrast, the model seems to more liberally predict
classes 0, 1, and 2, which as a result causes its precision to
go down. One interesting result that can be drawn from the
above is that the model is relatively good at identifying im-
ages of class 4 compared to the other classes. This is likely
a result of many class 4 images displaying extreme cases
of Diabetic Retinopathy in which there are numerous, large
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lesions on the eye, allowing for easy identification. In addi-
tion to the results above, we also provide the ROC curve for
the 5-class version of AlexNet below, where the AUC for
each class is given by the legend:

5.3.3 GoogLeNet

The second model on which we attempted to use transfer
learning was GoogLeNet. In general, GoogLeNet seemed
to perform marginally (1−2%) better than AlexNet in virtu-
ally all situations where we tried both. Similar to AlexNet,
we were able to achieve a significantly higher training accu-
racy than validation accuracy (74.2% vs. 41.7%), indicating
that we were overfitting our training data. We again tried
to alter the weight decay parameter via randomized hyper-
parameter search. Below summarizes our accuracy results
across varying class numbers:

Classes Accuracy
2 0.7105
3 0.5821
5 0.4168

When compared to the results obtained via AlexNet, we
can see that GoogLeNet preformed better in every cate-
gory. Most noticeably, we can see a nearly 5% improve-
ment in the binary classification task, while the 3-class and
5-class problem experienced marginal, but non-trivial, im-
provements. In contrast to what the results from AlexNet
conveyed, it seems that the binary classification problem is
on par with the 5-class problem in terms of performance.
Even with this substantial improvement in 2-class perfor-
mance, however, the 3-class version of the problem still
produces the best results. To better understand what kind

of predictions GoogLeNet is making, we again break down
the recall and precision by class:

Class Recall Precision
0 0.288 0.343
1 0.536 0.379
2 0.334 0.327
3 0.567 0.575
4 0.567 0.762

The above table tells us a few things. First, similar to
AlexNet, GoogLeNet has a high precision for class 4 com-
pared to the other classes. This again indicates that the
model is good at prediction class 4 (notice also the compar-
itively high recall 0.567). In addition, GoogLeNet seems to
be much better than AlexNet at predicting class 4, as both
the recall and precision for GoogLeNet are higher. One in-
teresting result for GoogLeNet is that classes 0 and 2 seem
to be fundamentally harder to predict than classes 1, 3, and
4. This is evident from the recall for classes 1, 3, and 4
being much higher (¿0.2) than those for classes 0 and 2,
and the precisions being higher as well. This is in contrast
to AlexNet, where class 4 seemed to be the only class that
was noticeably easier to predict. Below is the 5-class ROC
curve for GoogLeNet, where the AUC is provided in the
legend for each class.

5.4. Error Analysis

Analyzing the images that our models incorrectly clas-
sified was challenging in a and of itself since this task is
hard even for trained clinicians and doctors. There were,
however, some common things that seemed to frequently
co-occur with misclassified images when compared to cor-
rectly classified images.
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5.4.1 Black Space

As demonstrated by the example images in section 3.1, most
images have some black space on either side of the eye,
however some do not. When examining predictions for im-
ages, it seemed that images with more black space tended to
be misclassified more frequently. In order to counteract this,
we attempted to crop a fixed number of pixels from either
side of the image, so as to leave only the eye. This was prob-
lematic, however, because not all images had black space,
and we were effectively removing part of the eye. Even
though we were damaging some of the images, the over-
all effect on our performance was positive, so we elected to
keep it. Ideally, we would automatically detect a radius ball
of there the eye is and only remove the outside, but this was
infeasible due to the time constraints of this project.

5.4.2 Image Color

The fact that the images of our dataset come from multi-
ple smaller datasets leads to a high amount of heterogeneity
in the images. One manifestation of this is the fact that the
color of the eye in the image can vary greatly. In some cases,
the eye would appear as a dark green or blue, while other
times it could be a red or yellow. This is problematic be-
cause the colors aren’t necessarily distributed evenly among
classes, so the model may learn that certain colors corre-
spond to a certain class, even though these are independent.
Future work on this project should involve standardize the
images eye color. Projecting the images to gray-scale may
be hurtful as some of the important features (hemorrages)
can only be distinguished via colored images.

5.4.3 Image Brightness

One of the most common types of images that was mis-
classified were those that were extremely dark. As demon-
strated by figure 2 in section 3.2, many images in the dataset
are so dark that most of their features are indistinguishable.
This effectively made the models have very little informa-
tion on which to make a prediction, and as a result, made
near-random predictions on them. Our existing model has
no method for rectifying this problem, but ideally we would
have some process that would detect when an image’s aver-
age brightness is too low, and would somehow increase the
brightness of the region containing the eye.

5.4.4 Bad Images

With images that are too dark, there is at least something
that can be done to improve their quality by enhancing the
information that is present. In some cases, however, there
are images where the information in the affected region is
irrecoverable. An example of this is the bottom-right image

in figure 2 of section 3.2. In this image, the outer ring has
some sort of glare or whitening that causes the information
there to be lost. This makes it so the features from which the
model can make a prediction are substantially reduce, mak-
ing it difficult to predict correctly unless the lesions happen
to occur only in this region.

6. Future Work
In the future, there are a few things we would like to have

done. First and foremost we would like to have a human-
oracle evaluate the difficulty of the learning task. As stated
above, the data is corrupt and highly noisy, having a trained
human physician label a subset of the images given could
help us understand how our models compare to the true dif-
ficulty of the task. If interested please contact the authors of
the paper.
Further work may also include using both of a patient’s eyes
passed through the classifier where the final prediction is an
ensemble of the predictions of each individual eye. Addi-
tionally, we would like to train ensemble learning with the
different head outputs of GoogleNet (to try to combat over-
fiting). Future work may also include more preprocess-
ing, in particular we would like to implement other meth-
ods for denoising the images. Due to time constraints we
were not able to run a model with some of the other denois-
ing schemes in our literature survey. We recommend try-
ing median filters for denoising as these have been shown
to perserve image features. Other work may also include
more sophisticated methods for cleaning up the blackspace
in the images. For our existing implementation, we simple
removed a predefined number of pixels from each edge, but
ideally we would remove blackspace based on the amount
present in the image. We would also want to have increase
the brightness of images detected to be extremely dark, so
as make the features we’re looking for show an increased
contrast with its surroundings. Standardizing the colors of
the eyes either via a grayscale (as a starting point) and in-
tensity transformation would likely also prove beneficial.

7. Conclusion
We presented an analysis of a model for multi-class iden-

tification of the severity of DR from fluorescein angiog-
raphy photographs. The model performs well in compar-
ison to human evaluation metrics. Further work can be
done in exploring more nuanced data normalization and de-
noising techniques. For instance, apriori knowledge of the
sources of error for equipment used to capture fudus pho-
tographs could help in building more robust normalization
schemes. Other work may be in combining weak learners
in ensembles or using an ensemble of classifiers trained on
raw image pixels and trained on explicit feature extractors
(as much work has been done in these, section 2.1).
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