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Abstract

In this paper we look at the use of Convolutional Neural
Network methods to train a model to predict developmental
bone age of a patient given x-ray images. We use the Digi-
tal Hand Atlas dataset which is composed of scans indepen-
dently annotated by two radiologists. Previous methods for
this task generally involve a pipeline of segmentation and
hand crafted feature extraction. We look to move away from
this approach given recent advances in the effectiveness of
convolutional neural networks for image classification.

We find that using a convolutional neural network ap-
proach for this image classification task, we are able to
achieve a top one and two accuracy of 46% and 70% re-
spectively with root mean squared error of 1.1 years, on
our validation set. We observe that our largest jump in ac-
curacy resulted from augmenting our dataset with random
distortions. This seems to indicate that the performance is
largely dependent on the number of training examples and
would likely see further improvement with more data.

1. Introduction
Bone age assessment is a standardized process by which

a medical practitioner determines the skeletal maturity of
a child through a scan of their hand. Due to the nature
of skeletal growth, this test is only accurate between the
ages of 0 to 19. It is commonly used in comparison with
chronological age as an indicator for developmental issues
for a child. It is also useful in determining age where birth
records are not accessible. This is particularly important in
many parts of the world where most births are not recorded
and accurate age estimates are needed later in life for events
such as immigration and sporting [7].

The standard test for bone age assessment involves a ra-
diological scan of the left hand which is then manually com-
pared to a atlas of reference images. In this manual method
the radiologist generally looks for certain characteristics of
the image in regions of interest and either gives a holistic
assessment as in the GP method [5], or gives a assessment
which is a function of sub-scores given for specific parts of

Figure 1. Example left hand scans across various ages from the
digital hand atlas dataset

the image, as in the TW2 method [14].
Automated methods for bone age assessment have been

proposed in the past. These methods generally involve seg-
menting the scan into regions of interest and running a clas-
sifier on the results. In this paper we aim for a more general
approach where we avoid creating hand crafted features by
training a convolutional neural network directly on the input
pixels.

2. Problem Statement
We formulate the bone age assessment problem as a clas-

sification problem where we receive left hand radiological
scans as input and output a class corresponding to age as
output. We will use the digital hand atlas dataset, a dataset
created by the Childrens Hospital Los Angeles, funded by
the NIH, composed of around 1400 hand scans across 19
years of ages and stages of bone development [4].

Examples of images from the dataset are shown in Fig-
ure 1. Each image is associated with the child’s chrono-
logical age as well as annotated with developmental age
assessments by two independent radiologists. The dataset
also provides a racial and gender breakdown of the subjects.
While there is evidence that these dimensions influence the
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Figure 2. Age Ground Truth Distribution

development of skeletal structure, we do not use them in
our model as it would greatly reduce the number of cases
for each class in our already limited dataset. For the ground
truth labels we will use the floor of the average of the two
radiologist ratings for the image. The reason we use the
radiologist’s assessment of the childs bone age instead of
their actual chronological age is that our aim is to replicate
the process of assessing developmental age, not chronolog-
ical age. Figure 2 shows the distribution of ground truth age
labels for our dataset.

We later evaluate our results by measuring the accuracy
of our classifier on a validation set. To get this split we
partition our data into a training set and a validation set.
The training data contains roughly 75% of the original data
(around 1,000 images) while the validation set contains the
rest. The split was done randomly, while roughly keeping
the same portions of each class in each set. In addition to
accuracy we will also look at the confusion matrix gener-
ated by our classifier to see if the errors are reasonable in
terms of getting close to correct age category. To measure
this we will look at the root mean square error (RMSE) of
our classifier.

3. Related Work
Many classic computer vision and image processing

techniques have been applied to the general problem of
medical image classification with varying success. In the
past, these techniques have generally involved some assort-
ment of segmentation, frequently background subtraction,
and hand crafted features with a learning model on top.
While these methods have achieved reasonable accuracies
in many domains, they generally require very specific hand
engineered features to work, which greatly diminishes their
ability to generalize to related problems.

Similarly for the problem of bone age assessment, many
of the best methods involve segmenting the image into re-

gions of interest and creating custom descriptors for these
regions [2]. In one example, a method was created to seg-
ment out the region representing the Carpal Bone which was
determined to be a good predictor of age for children un-
der 7 [17]. The method performed well for ages below 5
(80% - 100%), however the performance fell off after such
point. Another system segments the different bones in the
image and measures their distances, followed by a lookup
on a standardized chart which gave the relation of length
ratios to bone age [8]. They compare their predictions with
chronological age and get a mean difference of 1.57 years
with 6% of the images rejected due to segmentation issues.

A popular commercial product for bone age assess-
ment, called BoneXpert, is able to obtain 0.72 RMSE [15].
They use an active appearance model (AAM) to statistically
match images on the grounds of shape and appearance pa-
rameters. As pointed out in [10], however their method re-
lies on a relationship between bone age and chronological
age, which is used as an input. The method also cannot
handle too much noise in the image, rejecting a small per-
centage of input. In [10], they generate a continuous distri-
bution of synthetically generated images by using software
to interpolate between different aged scans. They then es-
tablish a method which uses a combination of SIFT features
and SVD to create an image descriptor which is then used
to train a fully connected neural network.

However this method, along with other similar ones, are
not robust to images which may deviate from their internal
models. This would include images which have high noise
and ones which are misaligned from the standard template.
Due to the varying datasets used and limited details released
regarding these approaches we were not able to benchmark
their performance on our dataset.

More recently, motivated by the success of deep learn-
ing techniques in general image classification [9][12][13],
researchers have been exploring such methods on medical
imaging. Researchers have applied the CNNs and variants
to areas such as classifying patches of a lung CT scans to
detect interstitial lung disease using a shallow network con-
volutional network [6]. In another example a pre-trained
convolutional network is used as a feature extractor to clas-
sify chest x-ray pathology [1]. In many of these applica-
tions convolutional networks have been comparable or out-
perform previous state of the art results.

One issue that is more relevant to the medical image do-
main is collecting an annotated dataset of sufficient size to
train a neural network. The impact of the size of the dataset
on performance is examined in [3]. There they are able to
achieve very high accuracy (> 99%) for a body part clas-
sification problem with 200 cases. Our dataset involves the
classification of images, which many be more ambiguous
and granular in nature, however this number provides some
reassurances in terms of the magnitude of images required
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Section Type Parameters
Layer 1 conv3-64 1,728

conv3-64 36,864
maxpool 0

Layer 2 conv3-128 73,728
conv3-128 147,456
maxpool 0

Layer 3 conv3-256 294,912
conv3-256 589,824
conv3-256 589,824
maxpool 0

Layer 4 conv3-512 1,179,648
conv3-512 2,359,296
conv3-512 2,359,296
maxpool 0

Layer 5 conv3-512 2,359,296
conv3-512 2,359,296
conv3-512 2,359,296
maxpool 0

Layer 6 fc-4096 102,760,448
Layer 7 fc-4096 16,777,216

fc-19 77,824
softmax 0

Total 134,325,952

Table 1. VGGNet architecture and number of parameters

to train a high accuracy classifier.

4. Approach
Given this image classification problem we apply dif-

ferent convolutional neural network architectures to train a
classifier from the raw input pixels of the image. We use
VGGNet as our baseline model. This network was one of
the winners of the ImageNet challenge in 2014. To mitigate
the issues with having a relatively small dataset, we use data
augmentation methods such as random flips, rotations, and
cropping to synthetically increase our training set size. We
also use pretrained weights from models trained on large
image repositories such as imagenet to initialize our weight
parameters and fine tune our network with these weights.
Finally we modify our loss function to take advantage of
the fact that good predictions should be close together in
range.

4.1. Pretrained Weights

We use VGGNet, chosen for its simple architecture, as
our base model for this task. The fully architecture de-
tails along with the number of parameters at each layer are
shown in Table 1. We retrieved the pretrained weights from
Caffe Zoo, an online repository for pretrained network data,
and convert the data format for our use. When using these

Figure 3. VGG16 RGB filters to Greyscale

pretrained weights from VGGNet, along with most other
publicly available models, we need to make a decision in
how to convert the input filter layer dimensions from RGB
to grayscale. The reason for this is that imagenet is com-
posed of RGB images while our radiological scans, and
similarly most medical images in the standard DICOM for-
mat, is composed of grey scale equivalent images.

We make this conversion by taking the mean across the
three RGB channels to generate new filter weights which
can be used on single channel grey scale images. This deci-
sion seems reasonable as the process of converting a RGB
image to grey scale would involve the same process. Ad-
ditionally if we think that the filters represent edges, these
edges are also apparent in the grey scale version of these
filters as shown in Figure 3. Thus, at least in theory, they
should hold the same semantic meaning as the original fil-
ters for use in the rest of the network.

4.2. Data Augmentation

Before we feed a batch of training data to our network
we perform several preprocessing steps, which allow us to
artificially increase the size of the training set. We do this
by adding random distortions to the images during training
time, which do not materially change the correct label of
the image. First we perform mean subtraction across all im-
ages. This involves subtracting a single mean pixel value
calculated for each image from all pixel values of that im-
age. We also deploy random crops, which have a ratio of
0.875 to the original downsized image. Since our input for
the various networks are 224 x 224 x 1 in size the origi-
nal image size prior to being cropped is warped to 256 x
256 x 1. During test time we take six fixed size crops, four
corners and two center, and average the scores of these six
crops to get the resulting prediction. We also deploy ran-
dom left right image flips and random rotations in the range
of [-20,20] degrees.

Table 2 shows the number of unique images which are
generated from a combination of the distortions in the train-
ing pipeline. We can see that the random distortions in-
crease the synthetic training size by several orders of mag-
nitude. While these examples are highly dependent, they
help increase the network’s robustness to translations and
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Processing Multiplier Effective Images
Original 1 1,028
Random Rotate 41 42,148
Random Crop 1024 43,159,552
Random Flip 2 86,319,104

Table 2. Synthetic training examples

Figure 4. First convolution filters for Googlenet

rotations in the input image.

4.3. Loss Function

pij =
exij∑
k e

xik

loss =
1

M

M∑
i=1

−log(pyi) Cross Entropy

Since we have a classification problem we use the soft-
max function as our final network output. The above equa-
tions show the calculation of the probabilities from the un-
normalize scores using the softmax function and the associ-
ated cross entropy loss. Since cross entropy loss only takes
into account the correct class when computing gradients, we
sought to augment the loss function to increase the penalty
for predicting ages which were further away from the true
image age compared with ones that were closer. Thus we
added a L2 loss function which is specified below.

loss =
1

M
(

M∑
i=1

−log(pyi
) +

N∑
j=1

pi,j ∗ (j − yi)
2) L2CE

The first part is the standard cross entropy loss and the
second part is the augmented L2 loss. We weight the L2
loss by the predicted probability. We found that empirically
this loss performed better then either the cross entropy or
L2 loss alone.

4.4. Architecture

We test the performance of various architectures on our
dataset and compare our results. This includes our baseline

VGGNet model [12], and GoogleNet [13]. The VGGNet ar-
chitecture involves several repeating series of convolution,
rectified linear units, and max pooling layers followed by
fully connected layers. One negative aspect of VGGnet is
the number of parameters in the model as shown in Table 1.
We can see that most of these parameters occur at the first
fully connected layer. We choose to compare the perfor-
mance of this architecture with GoogleNet which had bet-
ter performance on the Imagenet Challenge (6.7% vs 7.3%
top 5 error) but had 12 times fewer parameters. For both
architecture we initialize their parameters with pre-trained
weight from imagenet. For Googlenet we use a similar pro-
cess for the first convolutional layer where we average the
first layer weights to get a single channel filter shown in
Figure 4.

5. Results
In running our experiments we Adam as our optimiza-

tion algorithm. We use an annealed learning rate strategy as
input to our optimizer. We start at a learning rate of 0.0001
and decay the learning rate by 0.5 every 500 iterations for
5,000 iterations. We start with a relatively low learning rate
so that we do not completely override the pre-trained ini-
tialization on the first few steps. Each training step uses a
batch size of 32 due to memory constraints on the GPU that
was used for the experiments. We trained each network for
5,000 iterations which equates to around 160 epochs of our
training data.

5.1. Evaluation

To evaluate our results we look at two main metrics. The
first is top 1 and 2 accuracy which shows the first and sec-
ond top predictions of our network and compares it to the
ground truth data. In our case the top 2 accuracy is partic-
ularly relevant due to the discretization step in our method
where we defined the ground truth to be the floor of the av-
erage rating from the two independent readings. Due to this
step a 2.9 and 3.1 ground truth will be categorized as 2 and
3 respectively even though they only differed by 0.2 years.
Hence using the top 2 predictions should alleviate some of
the issues with the ambiguity in our encoding scheme. Our
next metric is Root Mean Squared Error which measures,
on average, how far off our results were from the true la-
bels. The full formula for calculating this metric is shown
below.

RMSE =

√√√√ 1

M

M∑
i=1

(argmax
j

(pij)− yi)2

Using these metrics, Table 3 shows a summary of the
results of the various experiments which we ran. We start
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Method Top 1 Acc Top 2 Acc RMSE
Radiologist 0.66 0.97 0.65
BoneXpert NA NA 0.72

VGGNet Base 0.32 NA 2.28
VGGNet 0.46 0.70 1.11

GoogleNet 0.36 0.65 1.25

Table 3. Comparison of Methods

Figure 5. VGGNet base model confusion matrix

with VGGNet base which extracts image features by fixing
the convolutional layer weights and tuning the fully con-
nected layers. Then we augment the loss function with L2
loss and add data augmentation techniques to reach the final
configuration for VGGNet and Googlenet which also used
pre-trained weights as initialization but fine-tuned across all
layers instead of just the fully connected ones.

5.2. Base Model

Using pre-trained weights from VGGNet [12] we fine
tuned the fully connected layers, randomly initializing
weights of the final output layer. For this baseline model
we used only cross entropy loss without the L2 augmenta-
tion. Additionally we used a regularization parameter of 0.1
for the fully connected layers, which empirically was shown
to be the most effective. We were able to obtain a top 1 ac-
curacy of 32% and a RMSE of 2.28 years on the validation
set. We can see this in the confusion matrix shown in Fig-
ure 5, as most of the predictions hover relatively close to the
correct rating as shown on the diagonal.

5.3. L2 Loss

While analyzing the results of our baseline model we no-
ticed some outliers in the predictions. This can be seen as
outliers in the matrix in Figure 5. Since the cross entropy
loss only provides information on the correct class the net-
work is not given valuable information on the degree in
which a prediction is incorrect. While this still produced

Figure 6. VGGNet with Data Augmentation Confusion Matrix

reasonable predictions for the most part, adding in L2 loss
to cross entropy loss increased the performance of our base-
line model to 36% top 1 accuracy and RMSE of 1.96 years.

5.4. Data Augmentation

During training of the baseline model, we noticed that
without a high regularization parameter, the model quickly
fit the training data perfectly. This indicated over fitting as
the model performed poorly on the validation set. To miti-
gate the issue we augmented the data as described in the pre-
vious section. When this method was implemented to just
fine tune the fully connected layers it had a negligible ef-
fect, with top 1 accuracy and RMSE remaining at 36% and
1.91 years respectively. However at this point the training
accuracy dropped to below 65% at its highest from almost
100%. This implied that our model had high bias. To deal
with the issue we fine tuned the whole network instead of
just the last two fully connected layers. This lead to an in-
crease in accuracy and decrease in RMSE to 46% and 1.11
years respectively.

We can see the difference qualitatively when compar-
ing our baseline confusion matrix in Figure 5 with results
from VGGNet with L2 loss and data augmentation shown
in Figure 6. Similarly results from GoogleNet with the same
configurations are shown in Figure 7. We can see that the
predictions are now much closer to the ground truth labels.
Additional we do not see large outliers in our results as we
saw in the baseline method.

5.5. Error Analysis

In order to get a better understanding of where to look
to improve our model we look at images in the validation
set which our model classified incorrectly. Since VGGNet
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Figure 7. GoogleNet Net with Data Augmentation Confusion Ma-
trix

Figure 8. Incorrectly classified images ranging from highest to
lowest squared error

was our best performing model we will use its classification
errors for this analysis. Examples of misclassified images
sorted by largest to smallest squared error is shown in Fig-
ure 8.

While looking at these images there are no very obvious
patterns to the mistakes at first glance. One issue may be
the contrast of the image which is fairly low in several of
these cases. One way to mitigate the issue is to improve
the contrast processing step in the training phase so that the
network increases its invariance to contrast differences.

In Figure 9 we can see sample output from our classi-
fier as it returns a probability distribution over the possi-
ble classes from the softmax function. In many cases even

Figure 9. Sample output from classifier

when the classifier gets its top choice wrong the correct
choice is within the range in which the network assigns high
probability estimates. In these two cases the left one is cor-
rectly classified as age 17 and the right one was incorrectly
classified as age 4 when with ground truth at age 3.

6. Conclusion

We have shown that our method of using a convolutional
neural network to replace a pipeline of segmentation and
classification has been successful in achieving results that
are close to the current state of the art method of automated
bone age assessment. We were able to achieve these results
largely through the use of data augmentation techniques to
artificially increase the size of our training set. This indi-
cates that an increase in the original dataset would likely
lead to an additional improvement in the accuracy of our
classifier. Additionally, in our error analysis, we saw that
there are additional types of invariance, contrast invariance
in specific, which we can focus on to improve our overall
accuracy.

Our current implementation treats the convolutional neu-
ral network classifier as a black box function which has
been optimized for our task. For future work, in order to
get a better understanding of the types of features which are
being extracted from the image, we can use gradient based
approaches such as [11] [16] to visualize what the network
is learning. It would be especially interesting to see if the
features which are extracted match up with the regions of
interest which radiologists used to determine bone age from
the GP and TW2 methods.

Additional future work can focus on transfer learning
neural network weights from tasks which are related to the
specific medical imaging task. For instance, in this case,
another task involving classification of x-ray images. The
motivation for this is that, while pre-training on ImageNet
has proven to be effective, having low level features which
are specific to medical images or even image modality spe-
cific may improve the accuracy of such classifiers. Evi-
dence of this was seen in the increase in performance that
was achieved when we moved from fine tuning the final two
layers to tuning the whole network on our given task.

6



References
[1] Y. Anavi, I. Kogan, E. Gelbart, O. Geva, and H. Greenspan.

A comparative study for chest radiograph image retrieval us-
ing binary texture and deep learning classification. In Engi-
neering in Medicine and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE, pages 2940–
2943. IEEE, 2015.

[2] R. Bakthula and S. Agarwal. Automated human bone age
assessment using image processing methods-survey. Inter-
national Journal of Computer Applications, 104(13), 2014.

[3] J. Cho, K. Lee, E. Shin, G. Choy, and S. Do. Medical im-
age deep learning with hospital pacs dataset. arXiv preprint
arXiv:1511.06348, 2015.

[4] A. Gertych, A. Zhang, J. Sayre, S. Pospiech-Kurkowska, and
H. Huang. Bone age assessment of children using a digital
hand atlas. Computerized Medical Imaging and Graphics,
31(4):322–331, 2007.

[5] W. W. Greulich and S. I. Pyle. Radiographic atlas of skeletal
development of the hand and wrist. The American Journal
of the Medical Sciences, 238(3):393, 1959.

[6] K.-L. Hua, C.-H. Hsu, S. C. Hidayati, W.-H. Cheng, and Y.-
J. Chen. Computer-aided classification of lung nodules on
computed tomography images via deep learning technique.
OncoTargets and therapy, 8, 2015.

[7] A. M. Mughal, N. Hassan, and A. Ahmed. Bone age assess-
ment methods: A critical review. 2013.

[8] E. Pietka, M. F. McNitt-Gray, M. Kuo, and H. Huang.
Computer-assisted phalangeal analysis in skeletal age assess-
ment. Medical Imaging, IEEE Transactions on, 10(4):616–
620, 1991.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[10] J. Seok, B. Hyun, J. Kasa-Vubu, and A. Girard. Automated
classification system for bone age x-ray images. In Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Con-
ference on, pages 208–213. IEEE, 2012.

[11] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[12] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[14] J. M. Tanner, R. Whitehouse, W. Marshall, M. Healty, and
H. Goldstein. Assessment of skeleton maturity and maturity
and prediction of adult height (tw2 method). 1975.

[15] H. H. Thodberg, S. Kreiborg, A. Juul, and K. D. Peder-
sen. The bonexpert method for automated determination of

skeletal maturity. Medical Imaging, IEEE Transactions on,
28(1):52–66, 2009.

[16] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson.
Understanding neural networks through deep visualization.
arXiv preprint arXiv:1506.06579, 2015.

[17] A. Zhang, A. Gertych, and B. J. Liu. Automatic bone age
assessment for young children from newborn to 7-year-old
using carpal bones. Computerized Medical Imaging and
Graphics, 31(4):299–310, 2007.

7


