
Automated Left Ventricle Segmentation in Cardiac MRIs using Convolutional
Neural Networks

Taman Narayan
tamann@stanford.edu

Abstract

We train a Convolutional Neural Network to perform se-
mantic segmentation on cardiac MRI images to identify the
left ventricle and leverage it to compute the volume of the
ventricle throughout the course of a heartbeat. To help gen-
eralize and prevent overfitting, we propose a series of pre-
processing and data augmentation steps centering around
the application of image filters. We then evaluate the effi-
cacy of a custom loss function designed to ensure consis-
tency between predictions at nearby points in time. Finally,
we demonstrate the value of post-processing the output to
ensure that the final left ventricle prediction is a single filled
and contiguous region.

1. Introduction
Medical imaging is a major component of modern-day

health care, but analyzing and intepreting the resulting
CT, MRI, and PET scans remains a challenging and time-
consuming process. One prominent example is the calcu-
lation of the heart’s ejection fraction, which is a barome-
ter of cardiac health. There are a few different techniques
employed, but they each by-and-large rely on manual seg-
mentation of the left ventricle at some stage of the process.
Given time-series images at several different slices, the pro-
cess can take many minutes to complete.

With the success of Convolutional Neural Network
(”CNN”) architectures in a wide range of settings, it is nat-
ural to focus on how effective they can be in the hospital - at
improving performance, reducing errors, and saving time in
the processing of medical images. We focus on the problem
of left ventricle segmentation in Cardic MRI images, with
the hope that CNNs can prove an effective aid in evaluating
heart healthiness.

In particular, we perform CNN-based pixel-by-pixel se-
mantic segmentation of individual Cardiac MRI images.
Our output is a zero/one prediction of whether each pixel
belongs to the left ventricle, which we compare to a set
of ground-truth contours. As an additional task, we ap-
ply our model to a 4-Dimensional set of images with-

out contours for each patient, with multiple slices of the
heart and roughly 30 frames spanning a single heartbeat at
each slice. Using some geometric approximations, we use
our pixel-level predictions to compute the volume of the
left-ventricle at its end-systolic (smallest) and end-diastolic
(largest) phases and compare to provided volumes.

We find our segmentation model to work pretty effec-
tively, achieving a nearly 80 percent mean intersection
over union (”IOU”) on the test set with ground contours.
The model performs less well when generalized to the pa-
tient level, with a Continuous Ranked Probability Score
(”CRPS”) of around 0.08 when using a naive step function
as the predicted Cumulative Distribution Function.

2. Related Work
There are two major pertinent strands of literature. The

first is a large amount of domain-specific non-CNN ap-
proaches to left ventricle segmentation. One approach [6, 9]
combines a specialized mechanism to find the center of the
left ventricle with a mix of edge detection and smoothness
filters moving outwards from the center. Others [10] use de-
cision forests built on higher-level features constructed from
the pixel data. Still others [15, 13] attempt to map “tem-
plates” to images using a variety of statistical tools. There
are far too many techniques to individually cite, but [11]
contains a thorough review of the field.

The second category of literature is from deep learn-
ing. Existing domain-specific approaches [2, 12] perform
their segmentation by sliding differently sized windows
over the training and test data or sampling random bound-
ing boxes and classifying individual pixels based upon these
patches. More recently, there have been considerable de-
velopments in developing fully convolutional segmentation
models without explicit construction of region proposals or
superpixels. Farabet et al. [3] employ a hybrid technique
of performing convolutions over the entire image at differ-
ent scales and concatenating the resulting features. Long et
al. [8] experiment with how best to translate a course feature
map generated from a series of convolutions and pooling
steps back to a dense pixel space, settling on complex ap-
proach that blends fractionally strided convolutions of dif-

1

ferent sizes into a contiguous whole. Noh et al. [5] show the
success of a simpler upsampling process, simply reversing
a VGG 16-layer net and adding it to the original VGG net to
get pixel-level predictions. It’s the last of these approaches
that most directly motivates our own.

3. Data

Figure 1. A series of images from a single short-axis slice.

We employ two datasets in this paper. Most impor-
tantly, we use the Sunnybrook Cardiac Data [11] from a
2009 Left Ventricle Segmentation Challenge. It consists of
Cardiac MRI images for 45 patients collected in the Sunny-
brook Health Sciences Centre in Toronto, some with healthy
hearts and a majority with heart conditions of various kinds.
For each patient, a subset of the images have ground-truth
contours drawn by professional cardiologists. There are a
total of 805 such images over the 45 patients, with 526 (30
patients) assigned to the training set, 139 (6 patients) to the
validation set, and 140 (9 patients) to the test set. Each im-
age is a 256 x 256 image cropped to focus on the 128 x 128
central portion of the image, which is where the left ventri-
cle lies in each case.

The second dataset we use comes from the Kaggle Sec-
ond Annual Data Science Bowl [1]. We focus on the train-
ing dataset, which consists of Cardiac MRI images for
500 patients and end-systolic and end-diastolic left ventri-
cle volumes for each patient. We further limit ourselves to
short-axis views of the heart in order to match the Sunny-
brook data. Notably, there are no ground-truth contours for
any images in the Kaggle data.

There is a great deal of the variety in the Kaggle data,
above and beyond that found in the Sunnybrook data; im-
ages come from different hospitals, from patients of all ages
and heart conditions, with differing levels of image quality,
and with various resolutions. To solve the latter problem,
we resize all of the images to either 192 x 256, 256 x 192,
or 256 x 256, depending on their initial shape, and then take
the central 128 x 128 portion.

4. Methods

4.1. Core Model

We employ a fully convolutional semantic segmenta-
tion model that combines pooling and upscaling layers to

Figure 2. We use a symmetric downscaling and upscaling ap-
proach similar to Noh et al. [5], from where this image is taken.

both start and end with the same resolution. We imple-
ment the model in Theano/Lasagne and train the model on a
NVIDIA GRID K540 GPU. The model is eight layers deep,
consisting of a series of three CONV-RELU-POOL lay-
ers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer
(with 128 3x3 filters), three UPSCALE-CONV-RELU lay-
ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV-
SIGMOID layer to output pixel-level predictions. Its struc-
ture resembles Figure 2, though with the number of pixels,
filters, and levels as described here.

While the back half of similar models has been imple-
mented with fractionally strided convolutions, we employ
simple upscaling layers paired with convolutions as a rough
approximation, since fractionally strided convolutions are
not implemented in the software package used in this paper.
Both approaches seek to scale up the shrunken feature map
up to the scale of the original picture and do so by aggregat-
ing nearby activations using shared weights.

The purpose of using a “downscale then upsize” model
like this one is to incorporate features from a wider scale
into the prediction of a given pixel’s class. Without pooling
layers (or strided convolutions), the effective receptive field
of neurons in the net would grow very slowly with the 3x3
filters used here; after 8 layers, pixel feature maps would
only contain information about a 17x17 pixel region around
them. Meanwhile, a CONV taking place after just two
pools is already incorporating information from an 18x18
surrounding region, and requires substantially less memory
on the GPU as well. It is the combination of local and semi-
local features that is key to effectively segment an image,
and the number of filters increases in layers towards the
middle to reflect their storing information about all of their
consitutent pixels as well as regional features.

In training the model, we use a binary cross-entropy loss
between the predictions for each pixel and the actual value

L =
1

B

B∑
b=1

1

R

R∑
r=1

−(Gb
rlog(P

b
r) + (1−Gb

r)log(1− P b
r))

where B represents the number of samples in the batch, R
represents the number of pixels in an image, Gb

r represents
the ground truth prediction at pixel r in image b, and P b

r

represents the prediction (between zero and one) for pixel r
in image b.

2

The advantage of using a binary cross-entropy loss here
(as opposed to, say, an L2 loss), is the classification con-
text [4]; the predictions are generated from a sigmoid func-
tion and so always lie between 0 and 1, while the ground-
truths are always 0 or 1. The cross-entropy function uses
these facts to place a much stronger relative gradient on
misclassified points compared to the L2 function, where the
gradient increases linearly in the extent of misclassification.

4.2. Preprocessing

It may seem like cardiac MRI images are quite similar
to one another compared to the dramatic variety in datasets
like ImageNet, lessening the need for substantial data pre-
processing or augmentation. However, the task at hand
– pixel-by-pixel segmentation in images without obvious
foregrounds and backgrounds – means that understanding
the variation that is present is crucial to building a gener-
alizable model, especially in the presence of the relatively
small datasets available to us.

Through a great deal of manual visual inspection and ex-
perimentation, a few things became clear. First, it makes
sense to apply a denoising filter to the input images. A num-
ber of different kinds of visual artifacts, such as light specks
and odd textures, can be smoothly handled without remov-
ing any information that the model would use to distinguish
left ventricular regions.

Figure 3. The effect of applying various image filters to raw im-
ages. Top left: denoising filter cleans up texture. Top right: de-
noising filter minimizes light specks. Bottom left: dark original
and brightened counterpart. Bottom right: contrast enhancement
highlights left ventricle.

It’s not, however, entirely obvious what particular de-
noising filter would be most effective. One option would
be to tune it as a hyperparameter, but given the capacity
of the model to handle significantly more images, we in-
stead throw in different denoising filters as part of a data
augmentation procedure. An additional benefit of introduc-
ing multiple variable-intensity denoising filters, which ef-
fectively slightly blur the image, is that it could help ad-
dress the problem that the Kaggle images have wide variety
in their resolutions while the Sunnybrook images have iden-
tical resolution.

Additionally, there is a great deal of variation in lighting,
both in terms of absolute brightness as well as in terms of
contrast, that could easily trick a CNN attempting to dis-
tinguish boundary areas. To prepare the model to handle
this variety, we throw in brightness and contrast-adjustment
filters into the data augmentation procedure as well.

We proceed with 10x data augmentation using the above
techniques, noting that with more time and compute power
it would be possible to further ramp this up. At test time,
we employ a medium-strengh denoiser to the images before
passing them through the model.

4.3. Time Series Regularization

One aspect of the data that the CNN does not exploit at
all thus far is the expected similarity between adjacent MRI
frames. To remedy this, we build in the expected similarity
across time for a given slice by adding a term to the loss
function penalizing different predictions for nearby frames.
This is implemented by tacking on a random sequence of
images from the same slice in the Kaggle data to each mini-
batch in the training procedure, leaving the loss function

L = BCE(G) + λ

T−1∑
t=1

‖P t+1 − P t‖F

where BCE(G) is the binary cross-entropy loss over a set
of images with ground-truth contours, T is the number of
continuous frames added to the end of the minibatch, and
P t is the matrix of predictions for the tth element of the
time series.

We expect the time series regularization to help resolve a
few problems. For one, it should help the model understand
which types of image variation are relevant to locating the
left ventricle. For example, there may be variations in rel-
ative brightness in the MRI over the course of a heartbeat
that this would help the model ignore. In addition, there
are times where part of the boundary of the left ventricle
not consistently visible throughout the heartbeat due to the
jostling of other parts of the heart; time series regularization
can help the model understand this process. Third, the heart
can look quite different at systole, with sharply shrunken
ventricles that in the absence of explicit linkage with the
rest of the heartbeat cycle could lead the model to not find
any evidence of a left ventricle at all. Finally, since the time
series images are from Kaggle, they should help the model
establish consistency on a new set of images.

The other potential similarity to exploit would be spatial
similarity between neighboring slices. Unfortunately, han-
dling the similarity of MRI scans at nearby spatial locations
is a nontrivial exercise. Since the different slices are cap-
tured at different points in time, there are frequently minor
differences in where the ventricle is located in the different
slices, meaning that metrics such as L2 difference would not

3

be accurate comparisons and would introduce noise into the
training process.

4.4. Postprocessing

Ideally, we would want the predictions to be as if they
resulted from drawing and filling in a single contour. Up
to this point, however, nothing constrains the CNN to pro-
duce a contiguous and filled-in region. To correct this, we
employ a postprocessing sequence on the resulting predic-
tions, as illustrated in Figure 4. In particular, after rounding
the predictions to zero or one, we find the largest connected
component of ones in the resulting matrix and change all
other ones not part of that component to zeros. This returns
a contiguous prediction. Then, we fill in all pixels between
the extreme ones in each row and column with ones, plug-
ging any holes and making the resulting shape more blocky.

Figure 4. Example applications of postprocessing. Top: eliminates
extraneous regions predicted to be the left ventricle. Bottom: fills
in a predicted region.

As an important note, this postprocessing only takes
place at test time. There is nothing in the loss function or
training procedure that directly encourages contiguity.

5. Implementation Details
As in all CNNs, there are a lot of degrees of freedom

in nailing down the particular implementation details even
after laying out the structure in broad strokes. A major one
is the precise architecture. The selection of the number of
filters and number of layers was not too much of a choice;
fewer layers and filters had substantial trouble overfitting to
the data and frequently ended up with nonsensical output
or zero predictions everywhere. Bounding the number of
filters and layers from above were both the limited amount
of training data available to learn useful parameters as well
as GPU memory. The final numbers used proved a happy
medium. We did not fiddle with the choice of 3x3 filters
throughout, relying on the general success of 3x3 filters in
the literature. We also stuck with RELU nonlinearities.

Figure 5. Training and Validation IOU by Epoch

Batch normalization proved effective at increasing the
performance of the network and especially at avoiding the
bad local minimum of zero predictions everywhere. We also
found dropout layers on the back half of of the network to
improve performance on the validation set, while dropout
layers on the initial layers slightly decreased performance.
We found that a dropout percentage of 0.5 worked the best
after testing a few different numbers.

On the side of optimization, we used Adam with a learn-
ing rate of 0.0001. The learning rate was chosen by steadily
lowering the learning rate from a starting guess of 1 until a
steady decline in the loss function was achieved. After val-
idation error appeared to reach convergence, we attempted
lowering the learning rate by a factor of 10, but there was
no meaningful improvement in validation error by doing so.
Interestingly, validation IOU was quite “spiky” for the mod-
els trained, as seen in Figure 5, reaching high values quite
early in the training process but remaining highly erratic
and inconsistent between epochs. This variance likely re-
flects the small number of patients whose images are re-
flected in the validation data, meaning that small changes
in interpretation would affect many the predicted output for
many images.

Each model was trained for roughly 5,000 iterations over
a mini-batch of 50 images, with the latter number selected
with GPU constraints in mind. For models which did not
use data augmentation, this translates to 500 epochs of train-
ing, while it translates to 50 epochs of training over the aug-
mented data.

Some data processing scripts we used [14, 7] built on
those made available by the Kaggle community.

6. Results

We primarily evaluate the model on two tasks. First, we
run it on the test set observations with ground-truth contours
from the Sunnybrook data and compare the pixel-level pre-
dictions. This is the most direct test of the model. Second,

4

we apply it to the Kaggle data to compute left ventricle vol-
umes for patients and compute its accuracy there. There is
a lot of finetuning that could occur on the procedure that
maps from image-level predictions to a cumumlative dis-
tribution function over patient-level volumes that is outside
the scope of the paper, so we just present the results of a
simple approach here.

Figure 6. Sample model predictions of varying quality. Top row
is largely accurate. Bottom left gets most of the left ventricle but
might be confused by a small dark portion in the upper portion of
the ventricle. Bottom right misses entirely, confused by the high
brightness and lack of boundaries between the left ventricle and
other heart organs.

6.1. Sunnybrook

The primary metric we use to evaluate the pixel-
level predictions against the ground-truth contours is the
Sorenson-Dice index, due to the prevalence of that metric
among other papers in the segmentation field:

S =
2|A ∩B|
|A|+ |B|

where A is the set of pixels which are actually left ventricle
pixels and B is the set of pixels which are predicted to be
left ventricle pixels.

We also mention the Jaccard index, which we find to be
a more easily interpretable number:

J =
|A ∩B|
|A ∪B|

Both equations are very similar (in fact, they merely dif-
fer by a term |A ∩ B| in the numerator and denominator),
but the Jaccard index has a clean interpretation as the mean
IOU between the predicted and actual left ventricle pixels.

An important feature of both of these metrics, which run
from zero to one, is that they do not overly reward the model
for accurately predicting the background pixels accurately.
Since around 90 percent of the pixels in the sample of MRI
images are not left ventricle pixels, a model graded on pixel-
by-pixel accuracy could score 90 percent merely by pre-
dicting that every pixel is a background pixel. As a result,
differentiating between the performance of various models

Model Test Err. no PP Test Err. w/ PP

Local CNN 30.4 51.2
Raw Pixels 74.9 81.0
Denoising 81.0 85.0
Augmentation 85.5 85.7
Time Reg 82.7 78.8
Challenge 89.0 89.0

Table 1. Sorenson-Dice scores for segmentation on Sunnybrook
test set. PP stands for post-processing on the predictions. Local
CNN refers to a CNN without pooling or upsampling layers. Raw
Pixels refers to a model where the input is the unaltered image.
Denoising refers to a model where the input is denoised images.
Augmentation refers to a model with 10x data augmentation from
image filters. Time Reg refers to a model with time series regu-
larization. Challenge refers to the best results from the 2009 Left
Ventricle Segmentation Challenge.

would become an exercise of parsing very small differences
in accuracy. With the Sorenson-Dice and Jaccard metrics,
meanwhile, all-background, all-ventricle, and random pre-
dictions will all score very poorly.

Moving on to the actual performance from Table 1, we
find the best model to be the one which utilizes preprocess-
ing and data augmentation, as well as postprocessing, but
not the time series regularization. It scores 0.871 on the
Sorenson-Dice index, with corresponds to 0.773 on the Jac-
card index. Its performance is comparable to the best results
from the 2009 Left Ventricle Segmentation Challenge from
which the Sunnybrook data arises. As described in the lit-
erature review, those models were substantially more com-
plex and domain-specific and generally were built to predict
contours. It’s quite remarkable that a seemingly naive ap-
proach of pixel-by-pixel prediction with some blunt tools to
force the prediction into a contiguous filled region performs
similarly to those models.

The “local” CNN mentioned in the results table to serve
as a comparison is nearly identical to the front-half of the
baseline model used in this paper, with the exception that it
does not use pooling layers. Thus, the prediction for each
pixel is the result of repeated shape-preserving convolutions
gathering local features only. It also uses 5x5 filters instead
of 3x3 filters to slightly expand the scope of its local fea-
tures (3x3 filters performed quite poorly given the 4-layer
structure employed, though it is likely they would perform
better if more layers were added). Getting this local model
to avoid the local minimum of zero predictions everywhere
was actually quite challenging and ultimately required us-
ing a different loss function entirely - one which took the
equally-weighted average of cross-entropy loss over back-
ground and ventricle pixels instead of lumping them to-
gether, thereby dramatically increasing the penalty for miss-
ing the less-populous ventricle pixels. This weighted loss

5

performed worse than a standard unweighted cross-entropy
loss for all non-local CNNs.

Figure 7. Example predictions on neighboring frames from a
model without time series regularization.

Interestingly, the time series regularization model per-
forms worse with post-processing, the only model to do
so. Anecdotally, as illustrated in Figure 7, the reason for
this seems to be that the most prominent disagreements be-
tween predictions over nearby frames tended to be over the
classification of extraneous pixels away from the left ven-
tricle and pixels deep within the interior of the left ventri-
cle. These issues would both be resolved by postprocess-
ing. Whatever insight the model gained over predicting
those regions accurately would have to be weighed against
the slightly higher uncertainty over the prediction of border
pixels, which would generally “legitimately” differ between
nearby frames. In this case, the calculus came out slightly
against the inclusion of frame-by-frame regularization.

6.2. Kaggle

The most natural metric to evaluate performance on the
Kaggle data would probably be Root Mean Squared Error
(”RMSE”), since the final output is two real numbers for
each patient. Since the CRPS metric is used in the competi-
tion, we also present that. Normally, CRPS is used to judge
predicted cumulative distribution functions. However, since
we simply output a point estimate for each value in this pa-
per (though a lot more clever things could be done), it re-
duces to

CRPS =
1

1200N

N∑
m=1

|V m
D − Pm

D |+ |V m
S − Pm

S |

where N is the number of patients evaluated, V m
D is the

actual end-diastolic left ventricle volume, V m
S is the actual

end-systolic volume, and Pm
D and Pm

S are the predicted vol-
umes.

To get to a point-estimate of end-systolic and end-
diastolic volumes, we use the following procedure:

1. Apply the CNN and postprocessing to compute final
0/1 pixel-level predictions for each image.

Model RMSE CRPS

Raw Pixels 72.5 0.094
Denoising 70.4 0.091
Augmentation 65.6 0.084
Time Reg 66.9 0.085
Median 67.6 0.093

Table 2. Model performance on Kaggle training data. First
hundred patients used due to computational constraints. Post-
processing used for all models. Raw Pixels refers to a model where
the input is the unaltered image. Denoising refers to a model where
the input is denoised images. Augmentation refers to a model with
10x data augmentation from image filters. Time Reg refers to a
model with time series regularization. Median refers to a predic-
tion of the median value for the dataset for each observation.

2. Count the number of left ventricle pixels and scale to
account for the image resolution and any resizing to
get an area.

3. Choose the smallest and largest areas in each slice.

4. Stitch together the areas for each slice by approxi-
mating the volume of the region between neighboring
slices as a frustum (cone with its point chopped off)

As we can see in Table 2, the best performer is again
the model with data augmentation but without time series
regularization, though the time series model is a lot closer
here than in the testing on the Sunnybrook data. The high-
est CRPS achieved is 0.084. This beats a model predicting
the median volume for each patient by about 10 percent.
This might not seem like much, but it’s worth noting that
Kaggle’s Deep Learning Tutorial [14] ends up with a seg-
mentation model that performs about twice as poorly as a
model that predicts the median each time.

There are a number of things that could be done, even
holding fixed the pixel-level predictions, to score better on
the CRPS. One strand is better approximating the volume.
This could be achieved by analyzing whether the frustum
is the best approximation to use and, if so, calibrating the
resulting volumes against a portion of the Kaggle data so
that their means match. We could also explore whether or
not taking the absolute minimum and maximum area in each
slice is the appropriate way to go, as opposed to trusting the
Kaggle data to be arranged in order of time and so picking
the overall minimum and maximum volume time slice (the
answer appears to be that it usually is arranged in such a
way).

Another way to improve CRPS performance would be
making the final predictions more error-resistant. One way
would be to set a floor and a ceiling for individual frame-
level predictions to avoid nonsensical outcomes like zero
area in a given slice. Since only the extreme values are used

6

in the current calculation, the final output is very suscep-
tible to these errors. Another technique would be fitting a
smoother to the predicted areas in each slice and taking the
maximum and minimum of those smooth functions instead
of the raw output.

A third improvement would be outputting an actual CDF
instead of just a point estimate. The best way to do this
would probably be using the Kaggle training data to cali-
brate the parameters of a smooth CDF function. Addition-
ally, the variance in image-level predictions for a given pa-
tient might turn out to be a proxy for uncertainty in the pre-
dicted CDF and this could be tested.

Again, though, the focus of this paper is on the problem
of semantic segmentation rather than Kaggle optimization,
so we merely suggest these improvements instead of imple-
menting them.

7. Conclusion

We explored a number of techniques to improve CNN
performance on medical images. Attempting to leverage
the unique aspects of the problem, we explored introducing
more variety in noisiness, lighting, and contrast to the im-
ages and found substantial improvements in performance at
test time. Adding a time-series regularization component
to the loss function sounded promising but ended up giv-
ing slightly worse performance overall. And postprocessing
techniques of taking the largest connected component and
filling it in meaningfully improved performance on both the
Sunnybrook and Kaggle data.

Aside from the Kaggle-specific optimizations that could
improve competition performance, there are a number of
broader questions that would benefit from further research.
A big one is how best to leverage spatiotemporal similarity
in MRI images. The type of regularizer tried here turned
out to not improve performance, but there may be a number
of other ways to avoid treating every image as separate and
distinct. It is also an open question how best to output a
filled-in contour using CNNs; the postprocessing approach
here, while effective, seems a bit too crude to be the best
general approach.

More generally, given the prominence of medical imag-
ing, there are great gains to understanding along which pre-
cise axes images differ from one another in order to maxi-
mize performance and generalizability with tools like data
augmentation. CNNs are certainly a fantastic general pur-
pose tool, but the uniqueness of medical images compared
to most other tasks they are employed for may call for
domain-specific best practices. With continued and deter-
mined research efforts, software can make a meaningful im-
provement in the delivery of health care.

References
[1] Data science bowl cardiac challenge data.
[2] O. Emad, I. Yassine, and A. Fahmy. Automatic localization

of the left ventricle in cardiac mri images using deep learn-
ing. In Engineering in Medicine and Biology Society, 2015
37th Annual Conference of the IEEE, 2015.

[3] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2013.

[4] P. Golik, P. Doetsch, and H. Ney. Cross-entropy vs. squared
error training: a theoretical and experimental comparison. In
Interspeech, pages 1756–1760, 2013.

[5] H. N. S. Hong and B. Han. Learning deconvolution network
for semantic segmentation, 2015.

[6] S. Huang, J. Liu, et al. Segmentation of the left ventricle
from cine mr images using a comprehensive approach. The
MIDAS Journal, 2009.

[7] M. Jocic. Keras deep learning tutorial for Kaggle 2nd annual
data science bowl, 2015.

[8] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. CVPR (to appear),
Nov. 2015.

[9] Y. Lu, P. Radau, K. Connelly, A. Dick, and G. Wright. Auto-
matic image-driven segmentation of left ventricle in cardiac
cine MRI. The MIDAS Journal, 2009.

[10] J. Margeta. Machine Learning for Simplifying the Use of
Cardiac Image Databases. PhD thesis, MINES Paris Tech,
2015.

[11] P. Radau, Y. Lu, et al. Evaluation framework for algorithms
segmenting short axis cardiac MRI. The MIDAS Journal,
2009.

[12] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. Turkbey,
and R. M. Summers. Deeporgan: Multi-level deep convolu-
tional networks for automated pancreas segmentation, 2015.

[13] W. Shi, X. Zhuang, et al. Automatic segmentation of differ-
ent pathologies from cardiac cine MRI using registration and
multiple component EM estimation, 2011.

[14] V. Tran. A fully convolutional network for left ventricle seg-
mentation, 2015.

[15] Y. Znehg, A. Barbu, et al. Four-chamber heart modeling
and automatic segmentation for 3-d cardiac CT volumes us-
ing marginal space learning and steerable features. In IEEE
Transactions on Medical Imaging, pages 1668–1681, 2008.

7

