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Abstract

In this paper, we focus on segmenting NISSL stained
mouse brain images into main brain regions - grey (cere-
brum, brainstem, and cerebellum), fiber tracts, and ven-
tricular systems. We feed mouse brain experimental slices
acquired by the biology department and mouse brain ref-
erence slices from Allen Brain Institute into a fully con-
volutional neural network which is capaable of producing
per-pixel predictions for each image. The neural nets gen-
erates a label for each pixel. We experimented on the ref-
erence mouse brain atlas from Allen Brain Institute and ex-
perimental images from the biology department at Stanford
University. We achieved 96.1% accuracy on test atlas slices
and 92.1% accuracy on the test experimental slcies. The
work can be potentially extended to the automatic segmen-
tation of more salient features that neuroscientists use to
determine finer brain regions in an attempt to facilitate the
manual brain annotation process.

1. Introduction

A longstanding problem in neuroscience research is to
manually annotate brain regions. Due to imaging con-
straints, it is hard to generate human brain images at neuron
size resolution. Biologists have been using light field micro-
scopic mouse brain sections as a starting point to study the
mammalian brain neuron circuitry. The study of the neuron
circuitry often requires finding fine regions of each labeled
neurons.

This project focuses on segmenting NISSL stained brain
images into main brain regions - grey (cerebrum, brainstem,
and cerebellum), fiber tracts, and ventricular systems. The
outcome can be potentially used to facilitate automatic non-
rigid registration of an experimental brain slice to a refer-
ence section as a term in the energy function or to augment
the process of 2D/3D localization of experimental slice to
a reference volume that are both crucial to automatic anno-

Figure 1. Intensity thresholded experimental slice. Top: origi-
nal experimental slice. Down: Intensity thresholded experimental
slice in an attempt to get the hippocampus

tation of the mouse brain slices. Moreover, fiber tracts and
ventricular systems are key features to refer to when biol-
ogists decide the brain regions that a neuron lies in. This
project can also be extended to train on more detailed fea-
tures in the future.

The slice preparation process always introduce artifacts
to the brain images, for example, uneven illumination
caused by uneven staining. Moreover, the main contrast
of images are from NISSL staining where only neuronal
cell bodies are stained. The images are low-contrast and
noisy. Therefore the traditional segmentation on medical
images based on intensity cannot be directly used on the ex-
perimental mouse brain slices acquired by the biology labs.
fig. 1 shows a segmentation result on an experimental slice.
The right side of the image is heavily stained and is much
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Figure 2. An example slice of the annotated reference atlas. Left
side shows the original NISSL stained slice; right side shows the
accompanying annotation slice at the lowest hierarchy.

brighter than the left side. Trying to segment the hippocam-
pal region in this slice purely based on intensity will only
give the user the heavily stained area, and the hippocampus
on the left side is eliminated. In addition to the uneven il-
lumination, the experimental slices are often nonrigidly de-
formed during the sliding and staining process, and there
could also be teared tissues, air bubbles, and tissue folding.

In this project we use multilevel convolutional network
to train the reference mouse brain slices as a starting point.
The input are the atlas mouse brain slices that are accurately
labeled by neuroscientists in details. We parse the region hi-
erarchy and got the labels for the five main regions, namely
background, cerebrum, brainstem, cerebellum, fiber tracts,
and ventricular systems. The output are the integers rep-
resenting the region name for each pixel in the input im-
age. We then input some of the labeled experimental images
from the biology department into the system and finetune
the top-layer hyperparameters on these experimental data.

2. Related Work

Image segmentation has been a long standing vision
problem. There are two main stream of segmentation ap-
proach. The non-semantic methods [12, 1] generate regions
where visual cues are consistent within the segments. The
second stream is semantic methods where the aim is to as-
sign labels to pixels in the images. Existing works either
predict label for the non-semantically segmented regions or
directly predict the category of each pixels. The segments-
based approach is typically more efficient as the number of
random variables are reduced from number of pixels to the
one of segments. The direct approaches [10], on the other
hand, provides finner-grain results.

The conventional semantic segmentation approach re-
quires hand crafted or directly learned features. The infer-
ence approaches [9, 4] are then performed on these features.
These approach are not end to end and requires considerable
efforts in feature engineering. In [7], end-to-end approach

Figure 3. From fully connected to fully convolutional nets.

are proposed for image classification tasks where raw im-
age are feed into deep neural networks and no separate fea-
ture engineering are required. The end-to-end convolutional
neural network approach is proven the state-of-art in differ-
ent high level vision tasks including classification, localiza-
tion and etc. However, it is not directly applied to low level
tasks such as pixel-wise labeling. To adapt to the highly ef-
fective end-to-end approach to the pixel-wise semantic seg-
mentation, Long et. al proposed fully convolutional neural
nets [8] to simultaneously perform classification of all the
pixels within an image. It has been successfully applied to
natural scene and indoor scene segmentation tasks on VOC
and NYU Depth V2 datasets [13].

Specifically for the segmentation problem of the mouse
brain slices, Allen Brain Institute [5] has been manually an-
notating fine regions of the brain and produced a fine de-
tailed volume. An reference slice image is shown in fig. 2.
The reference atlas consists of two brains of the same shape
- one is the original histological image, and the other is the
manually annotated regions. [3] used extended markov ran-
dom field to segment mouse brain MR slices. [2] uses a
proabblistic approach to segment MR microscopic mouse
brain images. However NISSL stained images are much
noiser than MR images, therefore the method is not quite
applicable. The closest work is given by [11] where an ran-
dom forest is trained on the illumination equalized NISSL
stained slices. The result is very good, but the boundaries
of each region are still rough even after edge smoothing.

In this project, we applied the fully convolutional ap-
proach to the mouse brain NISSL stained histological slice
segmentation problem. It is a first attempt to solve pixel-
wise neural image segmentation problem using the new
end-to-end deep learning approach.

3. Methods
3.1. Fully convolutional network

In conventional convolutional neural networks, the last
few layers are typically fully connected layers. Assume
the activation output from the previous layer is x =
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Figure 4. Upsampling for finer-grain prediction.

(x1, x2, ..., xM ) while the activation output of the current
layer is y = (y1, y2, ..., yN ). The fully connected is a gen-
eral mapping y = f(x). It is non-linear if relu or other
non-linear operations are added on top of linear mapping.
The output activation of a fully connected layer can be con-
sidered as a 1D vector. More specifically for the last fully
connected layer, each entry of the 1D vector can be treated
as the score of the sample being assigned to a specific cat-
egory. E.g. in fig. 3, the ”tabby cat” entry in the 1000-
dimensional vector indicates how likely the input image de-
scribes a ”tabby cat”.

As shown in the lower part of fig. 3, we want to pro-
duce a score for each pixel indicating how likely the pixel
is from a specific category. Thus we need to produce a
2-dimensional map instead of a single entry for each cat-
egory. As an direct generalization to fully connected lay-
ers, we define x = {x1,x2, ...,xM} as the output from
the previous layer where xi is a w × h matrix. The output
of the current fully convolutional layer is then computed as
y = (y1, y2, ..., yN ) with yi being also a w × h matrix.
These output activations are now 3D volumns where each
slice corresponds to a single category. As now the input and
output are all 3D volumes, the mapping can be achieved us-
ing conventional convolutional operations. This fully con-
volutional layer provides us a easy-to-plug-in tool to do 2D
prediction built upon convolutional nets.

3.2. Upsampling for dense prediction

As multiple pooling layers are employed in convolu-
tional nets, the spatial scale of the activation are substan-
tially reduced compared to the original input. Thus we
only get very coarse prediction after. The finer-grain out-
puts with the same scale as input can only be achieved us-
ing upsampling mechanisms. The most simple approach

may be bilinear interpolation which is an linear operations.
However we can also learn the weights of filters in a data-
driven way. A non-linear mapping can even be learnt when
these linear interpolations are stacked together with non-
linear operation layers.

The computation flow of a deconvolutional layer just ex-
actly reverse the flow of a convolutional layer. In the decon-
volutional forward pass, the activation are forwarded from
a single node to a spatial range of nodes in the next layer.
In the deconvolutional backward pass, gradient are concen-
trated from a 2D spatial range to a single node, which is
exactly the way how convolutional layer perform forward
pass. As shown in the first flowing in fig. 4, the data pass
through multiple convolutional layers combined with max-
pooling. From the last conv layer, deconvolutional opera-
tion are performed to recover the original scale using a 32×
upsampling.

3.3. Skipping structure for upsampling

As convolutional operations have blurring effects on im-
ages and max-pooling layers summarize information within
receptive fields. The details in the original images gradu-
ally vanish when more convolutional layers are deployed.
It is intuitive that better details are preserved in lower pool-
ing layers while the higher pooling layers providing more
global information. In the first flowing in fig. 4 which we
call 32x model, upsampling is only performed on the final
results of the fully convolutional layer. Thus the results lose
details and shows an blob effects with blurring. In order
to incorporate more details, we may consider the modifica-
tions in fig. 4.

In the 16x model, we pool out the pool4 layer and merge
it with the upsampled pool5 layer. A upsampling factor of
2 is used to match the scale of pool4 and pool5 layer. After
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Figure 5. Details in merging layers for upsampling.

Figure 6. An overlay image of an experimental slice registered to
its corresponding atlas slice. Purple slice is the experimental slice
warped to the atlas slice; green slice is the corresponding atlas
slice.

merging, another overall 16x upsampling is performed to
recover the original scale.

As an augmentation to 16x model, we upsample the
merging results of pool4 and pool5 with a factor of 2 and
merge it with pool3. The overall merging results will be up-
sampled with a factor of 8 which constructs the 8x model.
The detailed merging strategy is illustrated in fig. 5 as a
zoom in to fig. 4

Another benefit of using skip architecture is to enhance
the gradients in the early layers which is also reported in
res-net [6]. The gradient flows into the early layers using the
branches in case the normal flow of gradient diminishes too
fast after passing though too many layers in the backward
pass.

4. Dataset
The training data is the reference mouse brain volume

from Allen Institute. The whole brain consists of 528 ac-
curately annotated slices. Each slice is about 300 pixels
in height and about 400 in width. We also got data from

the Luo Lab in the biology department referred to as ex-
perimental data in this report. The reference mouse brain
volume is well annotated with regions. The labels are of
hierarchical manner and were processed to get the higher
level region name. The experimental data is not anno-
tated. Due to manual work needed for accurate labeling,
we used freeform based nonrigid registration on the exper-
imental images to register each experimental image to the
corresponding atlas slice. The result of registering an ex-
perimental slice to its corresponding atlas slice is shown in
fig. 6. Even though the hippocampus is not very accurately
registered, the result will not be affected much since we are
only segmenting the main regions. We then used the an-
notation of the corresponding atlas slice as the label of the
experimental slice. The 2D to 3D localization of finding the
corresponding atlas slice in the atlas volume for an experi-
mental slice is based on the result given by an unpublished
algorithm, and the accuracy of this 2D to 3D localization
algorithm has been confirmed by the neuroscientists in the
biology department. We obtained roughly accurate labeling
through the above method for 35 experimental slices each of
which is about 1000 pixels in height and 1500 in width. The
images are all originally one-channel and preprocessed to
be 3-channel images. They are also resized to 500x500 pix-
els images with bilinear interpolation. Labels are obtained
on the original image and downsampled corrspondingly.

5. Experiments

We randomly select 428 images from atlas as training
set. Each pixel in the image is assigned to one of the 6 pos-
sible regions: main brain regions - cerebellum, brain stem,
cerebrum, ventricle systems, and fiber tracts - and back-
ground. The rest of altas dataset (100 images) is used as test
set. The atlas dataset has ground truth label for each pixel.
To test our generalization, we also test the trained model on
an unseen data set - experimental data set. The experimen-
tal data are from worse imaging conditions which makes it
harder to perform segmentation. The labels for the experi-
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Figure 7. Visualization of the segmentation of an image from atlas test set. Left: original image. Middle: predicted segmentation. Right:
ground truth segmentation.

mental images are obtained using the method described in
the dataset section.

learning rate 1e-10
learning rate policy fixed
momentum 0.99
number of epochs 10
regularization L2
weight decay 0.0005
weight update rule SGD + momentum

Table 1. Solver Setup

We use the 32-stride version of fully convolutional se-
mantic segmentation network. The network is pre-trained
on PASCAL-context 59-class task. We fine-tune the net-
work for 10 epochs on our training set. The solver settings
are shown in table 1. We evaluate the predictions using
pixel-wise label accuracy:

Accuracy =
#pixel labels correctly predicted

#pixels in the image
.

The results are as follows:

• Test accuracy on atlas dataset: 96.2%

• Test accuracy on experimental dataset: 91.2%

We visualize our results along with original image and
ground truth below. fig. 7 shows the visualization of an im-
age from altas test set. We can see that the predicted seg-
mentation is mostly in accordance with the ground truth.
The predicted result get the main regions correct, but misses
some details around the boundaries. For example, the the
ground truth, it is clear that the lower green regions are com-
posed of two smaller regions, but in the predicted result was
not able to differentiate the two regions.

We also visualize one result from the experimental
dataset in fig. 8. The performance on the experimental
dataset is worse than the performance on atlas dataset. This
is especially true with the boundaries. The predicted result
does not show enough resolution on the boundaries. For
example, the blue regions are all connected as one region
in the predicted result. The green region does not have the
correct shape in the predicted result.

Since the experimental dataset differs from the atlas
dataset, we hand labeled another 25 images from the exper-
imental dataset, and put them into the traininig set. We use
the same protocol, and fine-tune the network for 10 epochs.
The results are

• Test accuracy on atlas dataset: 96.1%

• Test accuracy on experimental dataset: 92.1%

By fine-tuning on the experimental dataset, we see a in-
crease in the performance on the experimental test set.
Since there is not enough training data for experimental im-
ages, the performance increase is minor.

6. Conclusion
In this project we have used an existing convolutional

network to segment mouse brain NISSL stained slices into
main brain regions. We attempted to use this project as a
starting point to test the potential of using deep learning
techniques to solve the medical annotation problem. Even
though the regions we tested are mainly large regions, ven-
tricular systems and fiber tracts are salient small features
that biologists and neuroscientists use to make decision on
region annotation for other less salient regions. We used
Allen reference mouse brain atlas as the main training data
and part of the experimental data to train the network. Since
the experimental data is not very accurately labeled - labels
were automatically generated by nonrigid registration, we
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Figure 8. Visualization of the segmentation of an image from experimental test set. Left: original image. Middle: predicted segmentation.
Right: ground truth segmentation.

expect the result to be more accurate if an accurately la-
beled experimental data could be obtained. Even with the
roughly labeled experimental data, we obtained an accuracy
of 92.1%. The result is generally descent, however the fine-
grain details can be further improved.

7. Future work
In our experiments, we observed fully convolutional neu-

ral nets achieving high overall accuracy in the brain seg-
mentation tasks. We only predict five major regions which
can be further splitted into much more functional areas.
Thus we plan on investigating the performance when we
scale the number of possible labels to a few hundreds. In
order to make the prediction richer in details, we also tried
8s model in addition to the most basic 32s one. Due to the
time limit and improper learning rate selection, we did not
achieve better results with the 8s model than the 32s model.
However we do observed finer-grain prediction from 8s,
though the result is typically contaminated by noisy regions
resulting from small learning rate with insufficient number
of iterations. Thus we also plan to redo the training for
8s model and get a reliable assessment on the upgraded ar-
chitechture.
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