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1. Abstract

Understanding the human brain requires advancing non-
invasive human neuroimaging monitoring and analysis ca-
pabilities. Currently, two dominant non-invasive brain
activity collection methods are electro- and magneto-
encephalography (EEG and MEG). They focus, respec-
tively, on recording the electrical and magnetic fields gen-
erated by the flow of electrical current through neurons and
head tissue [1]. This project is part of a year-long neu-
roimaging side project that explores different ways of fusing
MEG and EEG data together and examines whether that fu-
sion increases our ability to predict a user’s intention from
raw MEG/EEG signals. The CS 231n portion of this project
was spent attempting to develop a neural network architec-
ture that could use EEG data alone (64 data streams x 198
time steps per stream) to classify the examples into three
categories based on whether the subject was shown a famil-
iar face, an unfamiliar face, or a control. We implement an
SVM baseline and describe how we can use convolutional
neural networks, recurrent neural networks, and optimally
convolutional recurrent neural networks for the task. We
experiment with those architectures and with transforming
the EEG data into a spectrogram using a Fast Fourier Trans-
form. Although we see disappointing accuracy, we believe
this is the result of poor hyperparameter choice, and that
future work will demonstrate that a recurrent convolutional
neural network is the best way to perform classification over
EEG data. Future work will then extend this into a multi-
modal model to examine whether an EEG+MEG fusion in-
creases our ability to predict a user’s intention compared to
either modality alone.

2. Introduction

Understanding the human brain requires advancing non-
invasive human neuroimaging monitoring and analysis ca-
pabilities. Currently, two dominant non-invasive brain
activity collection methods are electro- and magneto-
encephalography (EEG and MEG). They focus, respec-
tively, on recording the electrical and magnetic fields gen-
erated by the flow of electrical current through neurons and

head tissue [1]. Both EEG and MEG provide good tem-
poral resolution (on the order of 1ms [2]) but poor spatial
resolution (on the order of 1cm [3]). Together, they provide
a more accurate understanding of brain activity than either
modality does alone [4].

Current neuroscience efforts to fuse MEG and EEG data
focus on improving the estimated location of the neural ac-
tivity that generated the observed signals (”source local-
ization”). Source localization using concurrently collected
MEG and EEG signals is more accurate than source local-
ization using MEG or EEG data alone [5]. Source localiza-
tion is useful for furthering our understanding of how the
tasks the subjects are performing relate to underlying neu-
ral mechanisms. We may not, however, always have prior
knowledge about what task the subject is performing when
we look at the MEG and EEG data, as we do during neu-
roimaging studies. In recent years, there has been an in-
creasing interest in using neuroimaging signals to predict
the task the subject is thinking about. These predictions can
then be interpreted as commands and relayed to external
devices like prosthetics, vehicles, user interfaces, and other
control systems. The systems that acquire brain signals, de-
code them into intentions, and relay commands to external
devices are called Brain-Computer Interfaces (BCIs) [6].

Currently, most BCIs focus on collecting and analyzing
EEG signals. If EEG signals perfectly captured the elec-
tric field generated by neuronal activity, or if MEG signals
perfectly captured the magnetic field generated by neuronal
activity, using a single sensor type would be enough to de-
code the signals. However, both EEG and MEG data have
relatively high signal-to-noise ratios, and combining them
has been shown to increase accuracy during source localiza-
tion. This suggests that combining concurrently collected
MEG and EEG data decreases the overall signal-to-noise
ratio. Neurofusion is a year-long project that explores dif-
ferent ways of fusing MEG and EEG data together and ex-
amines whether that fusion increases our ability to predict
a user’s intention from raw MEG/EEG signals. If it does,
we may be able to develop more accurate BCIs by moving
from collecting MEG or EEG signals alone to collecting
both concurrently.
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This project was started as a final project in CS 221 in the
Fall, continued as a CS 231N final project and CS 199 inde-
pendent study this Winter, and will continue this Spring. CS
221 and CS 199 were spent defining the problem, exploring
relevant literature, and choosing a dataset. CS 231n was
spent properly preprocessing the dataset and implementing
some unimodal (EEG only) models.

Our specific task for cs231n is (after preprocessing) to
classify each example (64 channels x 198 time steps per
channel) into three categories based on which of the three
stimuli the subject was shown: a familiar face, an unfamiliar
face, or a control.

3. Problem
The data was obtained from openfMRI, a website dedi-

cated to the free and open sharing of neuroimaging datasets
[7]. The data collection methods and equipment are de-
scribed in [8]. The information is summarized here for con-
venience.

3.1. Task

The task began with the appearance of focus screen de-
picting a white cross centered on a black background for a
random duration between 400 and 600 milliseconds (ms).
One of three stimuli (a familiar face, an unfamiliar face, or
a scrambled face) was then superimposed onto the white
cross for a random duration between 800 and 1,000 ms.
The subjects were then asked to press one of two buttons
based on whether they thought the image was more or less
symmetric than the average symmetry of a practice set the
subjects had seen earlier. The experimental design groups
each trial into one of three conditions based on the stim-
ulus shown: familiar face, unfamiliar face, and scrambled
face. This task was chosen because previous neuroimag-
ing studies have shown that the brain activity differs when
processing an unfamiliar faces versus a familiar face.

Figure 1. Stimuli examples. Familiar face (left), unfamiliar face
(middle), scrambled face (right).

3.2. Data

There were 19 subjects. Each subject had 6 runs. Each
run was 7.5 minutes long and had an average of 148 tasks.

Figure 2. Distribution of 148 conditions of Subject 1 Run 1.

Figure 3. Raw MEG and EEG data from Subject 1 Run 1.

Subject 1 Run 3, Subject 4 Run 2, and Subject 6 Run 3 were
corrupted, leaving us with 111 runs for a total of 16,354
events: 5,448 for the familiar face condition, 5,462 for the
unfamiliar face condition, and 5,444 for the scrambled face
condition.

There were 404 channels recording data at a sampling
rate of 1,100 Hz during each run with a lowpass filter of
350 Hz. 71 channels measured EEG data. 306 channels
recorded MEG data. The rest recorded eye movements,
heart rate, environmental noise, head position, and stimuli
presentation.

3.3. Preprocessing

All MEG and EEG (together: MEEG) data was run
through Signal Space Separation to remove environmental
noise. The MEEG data was then cropped into epochs that
include the 500 ms before and 1,200 ms after stimulus on-
set. The epochs were run through a Savitzky-Golay 32 Hz
low-pass filter to remove environmental noise. The first and
last 400 ms were cropped to remove filter artifacts, leaving
us with data from 100 ms before and 800 ms after event on-
set. At a sampling rate of 1,100 Hz, this is 991 time steps
per epoch. This approach matches the preprocessing steps
done during the technical validation of [8].

The epochs of each condition were averaged to create
grand average Evoked Response Potentials (ERP) describ-
ing the neuronal activity that resulted from each of the stim-
uli. The ERP graph roughly matches the ERP graph created
during the technical validation of the dataset in [8]. The dif-
ference can be explained by slight differences in preprocess-
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Figure 4. This author’s grand average ERP graph (channel:
EEG65).

Figure 5. The data’s original author’s grand average ERP graph
(channel: EEG65).

ing. The original authors mean-center the channels relative
to the average across electrodes, which we perform later in
the preprocessing step. Additionally, the original authors
manually remove bad EEG channels and reference the re-
maining channels, which we’re not doing to ensure all ex-
amples have the same dimensionality. Finally, the original
authors reject all trials in which the amount of eye move-
ment pass a threshold, which we’re not doing because the
eye and muscular movements don’t change depending on
the condition.

The ERP graphs for most EEG channels and most MEG
channels showed a (varying) discernible difference between
each of the three conditions. This demonstrates that the data
is being segmented correctly and that the signals for each of
the three conditions can be differentiated.

The data was split into 80% training and 20% testing
sets. The training set was then split into a smaller 80%
training set and a 20% validation set. This left 10,466 train-
ing examples, 2,617 validation examples, and 3,271 test-
ing examples. The training data was centered around the

mean and scaled to unit variance with respect to the aver-
age values for each channel over all of the training exam-
ples. These means and standard deviations were then used
to center and scale the validation and testing sets.

The training data was then augmented. A common neu-
roscience practice, to save computation time, is to decimate
the time steps by a factor of five. In other words, starting
from the first timestep, only every fifth timestep is kept; the
rest are thrown away. We repeated this with the training
data five times, starting from the first, second, third, fourth,
and fifth timestep. Each training example was thus split into
five training examples, for a total of 52,330 training exam-
ples. Each validation and test example was decimated by a
factor of five (but not augmented) starting from a random
timestep between the first and the fifth, inclusive. The 991st
time step was ignored in all cases so each of the remaining
examples was 198 time steps long.

Additionally, eventual comparisons between EEG data
alone, MEG data alone, and fused EEG+MEG data must be
made depending on the type of data streams present, not the
number of data streams present. To more easily take advan-
tage of the spatial arrangement of the data using a convolu-
tional neural network (more on that later), we want the input
to be rearranged into a square. We thus randomly downsam-
ple the 71 EEG data to 64 channels, the 306 MEG channels
to 64 channels, and the 71 + 306 EEG + MEG data to 32
+ 32 EEG and MEG channels. The ratio of EEG and MEG
channels is a hyperparameter that can be experimented with
in future work.

We started our preprocessing with 19 subjects x six 7.5
minute runs with 404 channels recording an average of 148
events per run for 991 timesteps. We ended with 52,330
training examples, 2,617 validation examples, and 3,271
testing examples that each had 64 EEG channels recording
information for 198 time steps.

4. Methods
Neural networks have produced an explosion of cutting-

edge results in a variety of fields over the past four years.
This has sparked interest in the neuroscience community as
to whether artificial neural networks can be used to learn
more about biological neural networks (e.g., the human
brain) and/or to replace or supplement current neuroscience
machine learning problems. This project explores how neu-
ral networks can be used to tackle the MEG-EEG fusion
problem mentioned earlier.

4.1. Multi-Modal Models

Current multi-modal literature is sparse. There are three
main papers that have been published in the past sev-
eral years covering multi-modal deep autoencoders, multi-
modal deep boltzman machines, and multi-modal deep be-
lief networks [9–11]. The simpliest approach is described
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Figure 6. Example Multi-Modal Deep Boltzmann Machine archi-
tecture. Credit: Srivastava and Salakhutdinov, 2012.

in [10]: pretrain two neural networks, one on EEG data and
one on MEG data, then combine the two neural networks
using a joint representation layer, and then fine-tune the
model using MEG and EEG data concurrently. The model
is then able to classify better than if it used either modality
alone and still retains the ability to perform classification if
one of the modalities is missing. This approach requires de-
signing a neural network architecture that can performs well
when given a single modality (either EEG or MEG). This is
the goal of the cs231n section of this project: design a neu-
ral network architecture that can classify EEG data well that
can then be extended into a multi-modal architecture.

4.2. Baseline

This is a three-way classification problem. Random
guessing is expected to predict the correct class 33% of the
time. A perfect classification algorithm would be expected
to predict the correct class 100% of the time. We need to
verify that our classification problem can be approached us-
ing machine learning algorithms and to evaluate our neu-
ral network performs compared to other machine learning
methods. We choose a common, linear machine learning
algorithm called a Support Vector Machine (SVM) to serve
a simple lower-bound machine learning algorithm.

Another option was to choose a current high-performing
algorithm from the field of neuroscience. There is currently
no clear state-of-the-art algorithms on the facial recogni-
tion task this data focuses on, though there are other tasks
that have had neural networks applied to them. Addition-
ally, other machine learning algorithms like Bayesian Net-
work and Markov Chains have been applied to EEG prob-
lems. However, all current literature on working with this
dataset is related to the multi-modal fusion of MEG and
EEG data on the specific problem of trying to increase the
accuracy of source localization using one modality as soft
constraints on a Bayesian Network. Future work could in-
clude using other machine learning methods, choosing dif-
ferent datasets, or attempting to perform source localiza-
tion with artificial neural networks. For the sake of time,

Figure 7. Spatial arrangement of EEG electrodes (MEG electrodes
not shown for clarity).

this project is limited to comparing neural networks with an
SVM baseline.

4.3. Recurrent Neural Network

The data is temporally arranged (as time series data) and
brain activity at one time step is related to brain activity
at the next time step. In other words, information about
past timesteps in addition to information at a current time
step should help you learn more about what happens next.
This type of problem is well-suited for a Recurrent Neural
Network.

4.4. Convolutional Neural Network

The electrodes are arranged spatially over the subject’s
scalp. We can project their locations onto a simplified
model of the skull (a hemisphere) and finding the group-
ings of k electrodes that minimize the total distance between
electrodes within each group, as done in [12].

We can then arrange the channels based on their spatial
groupings. For example, assume we found the k=4 group-
ings. We could then group the 16 best groupings (the 64
channels that compose the top 16 k=4 groups) into an 8x8
square, where each of the 16 squares contains the informa-
tion for the spatially close four channels inside that group.
This spatial arrangement makes the data well-suited for a
convolutional neural network.

There are also multiple ways of transforming the data
using Fast Fourier Transforms. The data over the entire time
series can be grouped into a frequency vs power spectral
density graph, where the nth frequency bin represents the (n
* sampling rate / channel length) frequency (in Hz) and its
corresponding power spectral density value that represents
the energy at each frequency (in V 2/Hz) over the entire
time series. This, however, eliminates the temporal nature
of the data, likely reducing the overall predictive power of
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Figure 8. Electrodes projected onto a simplified model of the skull
(a hemisphere) (different dataset, source: [12]).

Figure 9. The 2D k=3 groupings of nearby channels (different
dataset, source: [12])

the data.

An alternative is to transform the data into a spectro-
gram, a visual representation of the energy distribution over
spectrum of frequencies in the signal over time. This ef-
fectively increases the amount of information known at
each timestep, theoretically increasing the overall predictive
power of the data at the cost of added computational com-
plexity. This would transform the data from 64 channels x
198 time steps to 64 channels x 198 timesteps x N frequency
bucket values per timestep. To reduce the number of dimen-
sions of the data cube, the spectrograms of each channel
could be concatenated (perhaps by nearest-neighbor group-
ings) or individual channels could be analyzed at a time.

Figure 10. Example transformation of raw data
into spectogram. Image credit: http://www.timely-
cost.eu/sites/default/files/ppts/2ndTrSc/Niko Busch - Time
frequency analysis of EEG data.pdf

4.5. Recurrent Convolutional Neural Network

The neural network model could alternatively take ad-
vantage of both the spatial and the temporal structure of the
data and perform both spatial convolutions and recurrences.
It could arrange the channels spatially, as in the CNNs, and
then look at each of the timesteps individually. That is,
the model could consider, at each timestep, an 8 channel
x 8 channel data square. This data structure is similar to a
video: a series of spatially arranged data squares (i.e. im-
ages) that are related to each other over time and looked at
one frame at a time (i.e. frames in a video). This means the
model could take advantage of all techniques currently be-
ing used to analyze videos, such as recurrent convolutional
neural network models as described in [13], to analyze the
EEG data.

Additionally, if the spectrogram format is found to in-
crease the predictive power of the data at an acceptable
computational cost, each ”image” could be a spectrogram
representation, and the recurrent convolutional neural net-
work model could look at an 8 channel x 8 channel x N
frequency bucket values 3D data cube at each timestep.

4.6. Dimensionality Reduction

A popular dimensionality reduction technique is Princi-
pal Component Analysis (PCA), which uses an orthogonal
transformation to transform your original, potentially cor-
related data points into a set of linearly uncorrelated data
points (principal components). The number of principal
components is strictly equal to or less than the original num-
ber of dimensions. This is useful for decreasing computa-
tional cost, but eliminates any spatial and temporal structure
of the data. It was found to be unnecessary for the SVM
baselines and as such was not used.

There is, however, an interesting spinoff of PCA that in-
corporates expert neuroscience knowledge: RCA [14]. This
technique uses the same techiniques as PCA to significantly
reduce the number of EEG or MEG channels in a dataset
while keeping the total number of timesteps the same. In
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other words, RCA could transform the original 71 EEG
channels into ¡10 EEG uber-channels, each with a modified
value that depends on what channels were combined where.
This could be incorporated into future work if spatially ar-
ranging the data does not significantly increase predictive
power.

5. Results
All work was done using Python, Keras, Theano, and a

personal laptop. Data was stored in the hdf5 file format.

5.1. Baseline

We chose to do a simple linear model, a Support Vector
Machine, as a baseline. To transform the data into a one-
dimensional input, we simply concatenated all of the feature
vectors. Here are the results.

Model L1, SqH, P L2, H, D L2, SqH, P L2, SqH, D
SVM Iter 1 45.9% 43.8% 42.5% 44.2%
SVM Iter 2 45.6% 42.9% 42.5% 43.0%
SVM Iter 3 44.6% 41.0% 42.5% 42.9%

Table 1. SVM baseline results The first two rows are 10 max iter-
ations. The third row is 3 max iterations, to see how quickly the
models approach their max value. SqH = Squared Hinge Loss, H
= Hinge Loss, P = Primal kernel, Dual = dual kernel.

The L1 penalty, squared hinge loss, primal kernel SVM
model consistently performed the best. We have our base-
line: we want our neural network models to perform better
than (hopefully significantly better than) 45%.

5.2. Recurrent Neural Network

We started by trying to take advantage of the temporal
nature of the data by implementing a Recurrent Neural Net-
work. Here are the results. The first row of accuracy results
is training set accuracy and the bottom row is validation set
accuracy (labels removed so the tables fit inside the col-
umn).

We began with a thrice-stacked Long-Short Term Mem-
ory (LSTM) model that used a categorical crossentropy loss
and a RMSprop optimizer. We used the same hidden dimen-
sion (50) for each layer and set the initial learning rate (.01),
rho (.9), epsilon (1e-06), batch size (128), and number of
epochs (5) for the first model.

The model learns, but there’s a big difference between
training accuracy and validation accuracy, suggesting over-
fitting. Before we tackled overfitting, we wanted to see if
increasing the learning rate by an order of magnitude helped
the validation accuracy.

Messing with the learning rate didn’t help the accuracy,
although it did eliminate overfitting altogether. We turned
it back down to .01 and focused on overfitting. We added

Ep1 Ep2 Ep3 Ep4 Ep5
41.3% 45.3% 49.8% 56.1% 61.4%
38.4% 39.6% 39.1% 38.4% 38.3%

Table 2. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 3 LSTM layers with hidden
dimension (50), learning rate (.01), rho (.9), epsilon (1e-06), batch
size (128), number of epochs (5).

Ep1 Ep2 Ep3 Ep4 Ep5
33.4% 33.1% 33.1% 33.7% 33.4%
33.6% 33.6% 34.8% 34.8% 34.8%

Table 3. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 3 LSTM layers with hidden
dimension (50), learning rate (.1).

dropout (p=.5) after each LSTM layer to in an attempt to
reduce overfitting.

Ep1 Ep2 Ep3 Ep4 Ep5
40.5% 43.2% 45.1% 46.5% 48.3%
38.9% 40.7% 39.2% 39.9% 40.2%

Table 4. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 3 LSTM layers with hidden
dimension (50) and dropout, learning rate (.01).

The gap between training and validation accuracies
dropped significantly, but the overall accuracy was still low.
We increased the hidden dimension of each layer to 100 in
an attempt to increase the amount of information the model
can store about the data to try to increase accuracy.

Ep1 Ep2 Ep3 Ep4 Ep5
39.6% 43.1% 44.7% 47.4% 50.6%
40.8% 41.5% 39.0% 41.1% 39.2%

Table 5. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 3 LSTM layers with hidden
dimension (100) and dropout, learning rate (.01), rho (.9), epsilon
(1e-06), batch size (128), number of epochs (5).

The increase in hidden dimensions didn’t change the ac-
curacy significantly. We reduced the model to one layer to
see what affect that would have on accuracy.

Ep1 Ep2 Ep3 Ep4 Ep5
41.3% 48.5% 56.3% 62.9% 68.0%
39.6% 39.1% 39.4% 38.4% 38.2%

Table 6. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 1 LSTM layer with hidden
dimension (100) and dropout, learning rate (.01).
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The decrease in depth didn’t decrease the accuracy sig-
nificantly, but did exaberate the already-worrying overfit-
ting problem. We returned to three layers and introduced
L2 regularization to the weights, activity, and biases in an
attempt to further decrease overfitting.

Ep1 Ep2 Ep3 Ep4 Ep5
37.7% 37.3% 37.4% 37.6% 37.7%
38.0% 35.4% 37.7% 36.7% 36.1%

Table 7. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. 3 LSTM layers with hidden
dimension (100) and dropout, learning rate (.01), regularization
strength (.01).

Turning on L2 regularization eliminated overfitting, but
didn’t improve accuracy. It is unclear why the RNN model
performed poorly. The success of LSTM models in litera-
ture and previous Kaggle competitions suggests this may be
the result of poorly chosen hyperparameters. Future work
will attempt to replicate past success on training RNNs on
EEG data on other problems and run RNN code on a GPU
cluster to accelerate training before coming back to co con-
tinue the RNN hyperparameter search.

5.3. Convolutional Neural Network

Instead of attempting to jump straight into optimizing
a large neural network, we began working with CNNs by
transforming the data into a spectrogram and focusing on
a specific channel we knew had predictive power: Channel
65, the visual cortex-focused electrode graphed in Figure
4. We wanted to ensure this model had strong predictive
power, so we didn’t decimate the data. The width of the
convolutions would then mean temporally adjacent data was
considered together. Additionally, we thought part of the
overfitting above may have been from the highly correlated
nature of the augmented training data: splitting one example
into five examples by decimating it may have just created
five highly correlated training examples that contributed to
overfitting. We were left with the original 10,466 training
examples, 2,617 validation examples, and 3,271 testing ex-
amples. Each example was a data square 1 channel deep x
928 time steps long x 33 frequency bucket values tall. We
then ran this through an untrained VGG CNN architecture
with filters of size (3, 1).

Ep1 Ep2 Ep3 Ep4 Ep5
41.3% 48.5% 56.3% 62.9% 68.0%
39.6% 39.1% 39.4% 38.4% 38.2%

Table 8. Training accuracy on top and validation accuracy on bot-
tom, labels removed for formatting. VGG-like convnet with (3, 1)
filters.

6. Conclusion
The goal of my cs231n project was to architect an ar-

tificial neural network model that could perform a three-
class classification problem on EEG data and that could be
extended into a multi-modal architecture. Neither my re-
current neural network models nor my convolutional neural
network model outperformed my SVM baseline, and I was
never able to implement a recurrent convolutional neural
network model. Previous success of RNNs and CNNs and
rCNNS in related problems and in related datasets, how-
ever, convince me that this is because of my choice of hyper-
paramters, which were limited due to the sheer amount of
time preprocessing this data required and my newbiness to
both neuroscience projects and machine learning projects.
I believe the best model to analyze EEG data is a recur-
rent convolutional neural network model, and I believe with
another quarter’s worth of work I will be able to imple-
ment some high-performing models and begin experiment-
ing with multi-modal architectures.
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