
 

Figure 1. The 

Dataset. 

Each view consists 

of 30 MRI time 

series images of one 

heartbeat. 

Accentuated in red 

(not in the dataset) is 

the area to be 

calculated in a short 

axis slice. Total LV 

volume is calculated 

as the sum of these 

sax slice volumes. 

 

Abstract 

 

End-systolic and end-diastolic volumes of the left ventricle 

are important statistics in diagnosis of cardiac function. 

We describe a CNN model to automate the process of by 

estimating volume from multiple time series of MRI 

images taken from various positions and angles through 

the heart. We also show evaluation metrics for competing 

in Kaggle’s Second Annual Data Science Bowl. 

1. Introduction 

Each day, 1,500 people in the U.S. alone are diagnosed 

with heart failure. [1] A key indicator of heart disease is 

ejection fraction, which is determined by end-diastolic and 

end-systolic volumes of the left ventricle (LV). End-

systolic volume is calculated when the LV is the most 

contracted, whereas end-diastolic volume is when the LV 

is most filled with blood. Unfortunately, determining these 

volumes can take around 20 minutes for a skilled 

cardiologist to complete1. Automating this process would 

free the cardiologist for more important tasks. The goal of 

our research is to have a CNN model learn to efficiently 

estimate LV volume from a series of MRI images taken 

from different positions through the heart. Kaggle serves 

to catalyze the solution to this problem through its Second 

Annual Data Science Bowl competition.  

 

 

 

 

 

 

 

 

 

End-systolic and end-diastolic volumes are used to derive 

the ejection fraction (EF). EF is the percentage of blood 

ejected from the left ventricle with each heartbeat. [1] 

Both the volumes and the ejection fraction are predictive 

of heart disease. While a number of technologies can 

measure volumes or EF, Magnetic Resonance Imaging 

(MRI) is most commonly used to assess the heart's 

proficiency.  

To produce the dataset we are using, each patient had 

multiple MRI time scans of the heart taken in various 

locations and positions (angles). An entire study of a 

patient consists of all slices of the LV. A slice is a 2D 

image taken through the LV at some specified location 

and position (angle). Each slice in the study is a scan 

repeated over a full cardiac cycle to produce a time series. 

An example of the data can be seen in Figure 1. Our 

dataset consists of studies of both healthy patients and 

patients with heart problems. 

Using the data as described above, the input to our model 

is a 4D tensor containing all time series slices from all 

studies in the dataset (a single input is a large stack 

of  MRI images of a single patient).We train a CNN to 

predict systole and diastole volumes using a regression 

model trained with a mean squared error loss function. 
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2. Related Work 

Solutions to the problem of left ventricle segmentation 

have been proposed since the early 1900’s [2]. Methods 

that have been proposed before the 2000’s include: 

Bayesian Classification [3], superquadratic fitting [4], and 

heirarchical LV modeling [5]. AI methods for LV 

segmentation did not appear until 1985. [6] 

 

More recently, a method proposed by A. Newton uses 
an algorithmic approach to calculate systole and 
diastole volumes. [7] This method first calculates the 
location of the LV in an image using a Fourier 
Transform of the time series for each slice. Since the LV 
is pumping blood over the entire cycle, this region is 
expected to have the highest frequencies in the time 
series. The center of the LV can then be estimated 
using the method in Lin et al [8]. After finding the 
center, a region of interest (ROI) is proposed for the 
area that the LV takes up during the systolic and 
diastolic phase in the given slice. The estimated areas, 
along with metadata containing the depth of each slice, 
are then used to calculate total volume of the LV by 
assuming a geometric shape of the LV. 
 

Another method proposed by V. Tran calculates 
volume through semantic segmentation of MRI heart 
scans with a CNN. [9] Long et al. has shown that CNNs 
can efficiently learn to make per-pixel predictions for 
semantic segmentation. [10] A semantic segmentation 
model is trained in Caffe on the Sunnyrook dataset, 
which contains slices of the LV that have been 
segmented by a medical expert. The model is then 
trained to calculate the systolic and diastolic LV 
contours for a given slice. After the slices have been 
segmented to get the areas of the the LV, the method 
proposed by A. Newton can then adapted to 
algorithmically estimate volume of the LV. [11] 
 

3. Dataset and Features 

 

The dataset consists of heart MRI scans of 500 patients. 

Each study contains roughly 11 slices, and each slice is a 

time series of 30 frames. 

The most informative slice position is the short axis, or 

“sax”, which is sliced perpendicular to the long axis of the 

heart. Cardiologists typically use these particular slices to 

calculate volumes. Figure 2a shows the location of these 

cuts in relation to the heart. Additionally included in the 

dataset were long axis slices of the four chamber and two 

chamber left views of the heart. However, since the sax 

slices in each study are taken along the entire length of the 

long axis, we choose to only use sax slices for training our 

model because these slices contain all the information 

necessary to make an estimate of the LV volume.  

Each image contains a variety of meta data including but 

not limited to: slice location, patient position, pixel 

width/height, and slice thickness. The full list of metadata 

is available at DICOM’s website on image standards. [12] 

The data comes from various hospitals using different 

procedures, so there is no uniform standard across images 

for scale, dimensions, and location and position of slices. 

For this reason we use the following prepossessing steps 

to standardize the data.  

From inspection of the data, we choose to crop the images 

to 64x64 around the center of the LV. The center of the 

LV is found through a Fourier Transform method as done 

by A. Newton [13]. Briefly, we take the pixels with 

highest variation throughout the time series of the slice as 

most likely to be the LV, since the LV has the most blood 

flowing through it during the cardiac cycle (see methods 

for details). Next, we re-size each image in the slices to 

64x64 pixels. This is done to make the dataset more 

manageable since the original version is very large 

(approximately 32GB for training data). Finally, we stack 

all sax slices together to create a single input for each 

study.  

3.1 Combining SAX views 

Cardiologists estimate LV volume by combining 

calculated volumes from multiple views of the heart. 

These are called slices, and each slice has its own 30 

image time series to determine systole and diastole. 

Therefore, the optimal way for a neural network to 

determine systole and diastole volumes is to feed in the 

ordered slice time series images of the heart. Figure 2b 

shows this in a graphical format. Each slice was ordered 

according to location, from base to apex (from 15 to 4 as 

in Figure 2) and zero padded to organize the entire training 

set into matrix form. 
 

4. Methods 

 

We chose to use a Convolutional Neural Network model 

implemented in Keras1 for estimating LV systolic and 

diastolic volumes. The approach we take for this problem 

is an end-to-end learnable network. By first standardizing 

and grouping the data in a systematic way, we can feed 

uniform data into a deep network for a more natural end-

to-end learnable regression model. 

 

The first step to standardize the data is to crop each image 

to 128x128 centered on the LV. To do this, we use a 

Fourier Transform approach to estimate where the LV lies 

within the image. 

 

 

1. We used skeleton code provided publicly by Kaggle member Marko Jocic. [14] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We use the 2D Fourier Transform: 

 

 

 
 

The center of the LV can then be estimated using the 
method in Lin et al. [15]  
 

We use a Convolutional Neural Network (CNN) for 

regression on the end-systolic and end-diastolic volumes. 

For a single patient, we take a number of time series from 

slices in order (base to apex) and stack them together into 

a 3D tensor ((n sax slices x 30 images) x height x length). 

Stacking together all sax time series maximizes the 

amount of information fed into the network for a single 

patient. This gives a powerful network all the necessary 

information to calculate volume since it has the entire 

mapping of LV. This model can then use supervised 

learning to regress on the known volumes for each patient 

in the training set. 

 

We train our models using a Root Mean Squared Error 

loss function: 

𝑅𝑀𝑆𝐸 =
1
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We found that a regression approach for our model was 

most natural for the problem of estimating a single  

volume.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also considered using a different algorithm with a 

softmax loss defined as: 

 
 

However, for our particular task and given metric, we 

found that a regression model achieves higher score. This 

is because the accuracy of the models to predict end-

systolic and end-diastolic volumes is judged by 

Continuous Ranked Probability Score (CRPS), which 

requires a predicted cumulative distribution function. It is 

calculated separately as follows for systolic and diastolic 

volumes from their predicted respective cumulative 

distribution functions: 

 
 

where P is the predicted distribution, N is the number of 

rows in the test set, V is the actual volume in mL, and 

H(x) is the Heaviside step function. 

 
We can estimate a CDF for our model based on our 

validation error. This error, which we calculate in terms of 

Root Mean Squared Error (RMSE) can be assumed to be 

normally distributed (heart volumes across a population 

will be normally distributed). Given this, our mean is our 

prediction and our standard deviation is RMSE, which 

allows us to calculate a normal CDF. 

 



 

 

 

4.1 Metadata inclusion 

 

The last aspects missing to correctly calculate LV volume 

is the pixel spacing in millimeters (a pixel is square and 

therefore has the same height/width) which can be used to 

calculate area of the slice of the heart, and slice thickness, 

which is used to convert area into volume of the slice. 

These slices are summed to generate LV volume.  
 

The entire calculation for LV volume is: 
 

∑ 𝑎𝑟𝑒𝑎(𝑠𝑙𝑖𝑐𝑒𝑖)

𝑚

𝑖=1

 

where: 

𝑎𝑟𝑒𝑎(𝑠𝑙𝑖𝑐𝑒𝑖) = ∑ 𝑝𝑖𝑥𝑒𝑙_𝑠𝑝𝑎𝑐𝑖𝑛𝑔𝑖
2 ∗ 𝑠𝑙𝑖𝑐𝑒_𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑖

𝑛

 

𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 

𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑙𝑖𝑐𝑒 
 
The CNN must detect the segment of the heart, identify 

diastole and systole, and then count the pixels and perform 

this calculation. An example of what must be detected can 

be seen in Figure 1. 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We extract the metadata as a tuple of pixel spacing and 

slice width. This data is very important for the calculation 

of LV volume, as discussed above in section 3: Dataset 

and Features.  Each study has its own parameters for these 

variables, and therefore a natural way to incorporate this 

data into the CNN is to append the tuple to the input of the 

fully connected layer. This can be seen graphically in 

Figure 3. 

 

4.1) Model Architecture 

 

The model we use has the following architecture. Each 

training example is a 3D tensor with shape (300, 64, 64). 

The first layer is a Batch Normalization layer, which 

accomplishes preprocessing by shifting and scaling each 

batch of data. The layers then proceed as: first, a 

convolution layer with 3x3 filter and stride one is applied, 

followed with ReLu non linearity activation function. This 

is repeated, after which a max pooling layer with a 2x2 

filter and stride 2 is applied. This entire structure is then 

repeated two more times for a total of six convolution 

layers and 3 max pooling layers with ReLu activations in 

between. The network is flattened, and at this point the 

metadata for each training example is concatenated to the 

current activations.  A fully connected layer with 1024 

hidden units is then applied followed by another ReLu. A 

single output is produced by a fully connected layer. This 

architecture can be viewed in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
5. Experiments/Results/Discussion 

 

We trained our models using Adam optimization with a 

learning rate of 1e-4. We train on 80% of the training data 

set and use the remaining 20% for training time validation. 

This allows us to prevent over fitting a model by 

monitoring the loss on the validation set. While k-fold 

cross validation would be a better option, we have limited 

compute available. We use a relatively small batch size of 

8 since our training examples are large and we train on a 

graphics processing unit with limited memory. We 

regularize the fully connected layers of the model with l2 

regularization and a hyperparameter of 1e-1. Since the 

number of times we could run our model was limited by 

the size of the dataset, we chose popular parameters to use 

for training models.  

 

The results of our experiments are plotted in Figure 4. We 

plot three metrics: loss functions for both systolic and 

diastolic models, CRPS loss as a function of time, and our 

predicted cumulative distribution function against the 

ground truth cumulative distribution function. The lowest 

average RMSE loss for systole and diastole on the 

validation set was 27.74 mL and 38.55 mL, respectively. 

The final CRPS loss was 0.0187 and 0.046 for training and 

test, respectively. Our baseline model CRPS validation 

score is 0.134308. This is the validation loss achieved by 

Kaggle’s introductory convolution neural net model. [16]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We noticed high over fitting while training our models. To 

combat this, we employed several techniques. We used 

dropout in three places in the network after ReLu 

activations. The first two dropout rates were 25% and the 

third was 50%. For layer parameters, we chose to reduce 

the number of filters at every other layer. We justify this 

because it reduces the number of parameters in the 

network, which in turn helps over fitting. Finally, we 

augment the data with random shifting which also 

supports a more generalized model. 

 

We also noticed that scores for predicting the smaller 

systolic volume were consistently much better than for the 

larger diastolic volume. We think that predicting larger 

volumes is harder is because the information needed to 

accurately compute larger volumes is spread across more 

pixels, so deeper neurons with larger receptive fields of 

the original image must be involved.  

 

Training and validation losses for RMSE and CRPS can 

be found in Figure 4. 

 

One example of a CRPS predicted probability distribution 

can be found in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Losses. 

a. RMSE Loss function. 

b. CRPS Loss function. 
a 
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6. Conclusion/Future Work 

 

For our project, we aimed to estimate a single volume 

given many MRI heart scans of a patient. We evaluated 

our model on the CRPS function- a metric that compared 

the predicted CDF formed from our predicted volume with 

the ground truth  

CDF. Our highest performing model was a pair of eight 

layer convolutional neural networks trained using a RMSE 

loss function to output a single predicted systolic and 

diastolic volume for each patient. 

 

We noticed that scores for predicting the smaller systolic 

volume were consistently much better than for the larger 

diastolic volume. As mentioned, it may be that predicting 

larger volumes is harder as the information needed to 

accurately compute larger volumes is spread across more 

pixels, requiring a larger receptive field of neurons. Given 

further time, we would want to test using larger filter sizes 

with the diastole model to increase the receptive fields of 

deep neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we had more resources, we could have utilized more 

computing power to train on the entire dataset without 

downsizing and cropping. We also would consider using 

an LSTM model to process the time series data within 

each slice, rather than having a convolutional net layer 

treat each frame as a separate channel as in our current 

model. Moreover, we could have used a hybrid 

convolutional/ LSTM architecture to process each time 

series with an LSTM, feeding into a CNN to predict the 

final volume.  

 

 

 

 

 

 

 

 

 

Figure 5. CRPS Losses with Error Region Highlighted. 

a. CRPS Loss for diastole for a single example. 

Model sigma was 38.55 mL. 

c. CRPS Loss for systole for a single example. 

Model sigma was 27.74 mL. 

Overall CRPS score = 0.0368  

a b 
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