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Abstract

With oncologists relying increasingly on low-dose CT
scans to detect lung cancer, our project aims to enhance
the automated detection of potentially cancerous lung nod-
ules in these scans. While existing algorithms in the med-
ical imaging domain focus on segmentation and diagnosis
through traditional image processing techniques for iden-
tifying pathological traits, we approach the problem more
generally by training and using convolutional neural net-
works to increase the sensitivity and accuracy of the classi-
fication of potential lung nodules. Using roughly 16,000 im-
ages of candidate nodules as training data, our best model
classifies 89.6% of the actual nodules successfully and sig-
nificantly reduces false positives when compared to previ-
ous attempts at the classification task.

1. Introduction
Worldwide, lung cancer is one of the leading causes of

cancer-related deaths [9]. As such, it is important to be
able to detect cancer in the lungs as early as possible. Small
masses of tissues found in the lungs, called lung/pulmonary
nodules (also known as pulmonary lesions), have the po-
tential to become cancerous. Therefore, being able to iden-
tify nodules is indispensable to diagnosing lung cancer in its
early stages. These nodules, however, are difficult to detect,
as they can be as small as 1-2mm.

In the past, the only way to find such nodules was for
a trained radiologist to manually analyze lung CT scans,
looking for potential nodules. However, this process can
be very tedious and time-consuming. In the past decade,
computer-aided detection (CAD) systems have developed
for both lung nodule segmentation and for the classification
of lung nodules as either benign or malignant(cancerous)
[3]. Our project, in a sense, focuses more on the task of lung
nodule identification - or, more broadly, being able to clas-
sify specific lung scan images as either containing a nodule
or not.

Current lung-nodule segmentation systems are generally

very good at detecting lung nodules; however, in the pro-
cess, they generate many false positives - so much so that
the ratio of false positives to actual positives can be in the
hundreds. It makes sense that these systems would produce
many false positives: when dealing with a deadly disease
such as lung cancer, it is always better to err on the side of
caution, labeling anything that looks somewhat like a pul-
monary lesion as a lesion. However, having so many false
positives can prove counter-productive. Rather than sifting
through all the false positives returned by the CAD system,
it may be more efficient for a radiologist to revert to the
manual methods for detecting the lung nodules.

The objective of our project is to successfully classify
potential pulmonary lesions as nodule or non-nodule us-
ing neural networks, with extra effort towards minimizing
the false negative rate without incurring false positives. As
such, our project is a binary classification problem. The
input to our algorithm is an image of a lung slice that po-
tentially contains a lung nodule (i.e. the output of one of
the existing CAD systems). We then use a CNN to predict
whether the image contains a pulmonary lesion. As base-
lines, we also look at using SVM, kNN, and logistic regres-
sion to perform the same task.

2. Related Work

2.1. Common Radiology Practices

Radiologists have previously relied on examining images
from chest radiography and PET scans to detect lung can-
cer [13]. However, advancements in computed tomography
(CT) in the 21st century made it a more advantageous tool
in both resolution and speed [14]. The manual detection of
solid and subsolid pulmonary lesions in thoracic CT scans
is quite error-prone, with a particularly high false-negative
rate for detecting small nodules due to, for example, their
size, density, location, and conspicuousness. To improve
the hand annotation of nodules, medical experts expand be-
yond an axial scan mode and rely on other techniques such
as maximum intensity projections and 3D volume render-
ings [11]. Maximum intensity projection (MIP) is a volume
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rendering technique for 3D images that projects voxels with
maximum intensity of the parallel rays from a given view-
point onto the plane [8]. This technique makes it easier to
detect denser objects like nodules, since maximum projec-
tions will be concentrated in a particular area, whereas other
structures like thin blood vessels will have maximum inten-
sities more distributed throughout the lung/image.

2.2. CAD systems

Past CAD systems for lung nodule classification gener-
ally depended on deriving a set of input features, based on
the contrast, area, circularity, etc. of the nodules, and feed-
ing them into the ANNs. [15]. In the paper Aoyama et
al. 2002 [2], they classified nodules as cancerous/non-
cancerous through a combination of LDA, heuristics, and
a trained ANN. Suzuki et al [16] created a classifier that
leveraged multiple MTANNs (massive training artificial
neural network), which were trained using input CT images
and teaching images. The outputs of the MTANNs were
then combined to form a final score. M. Antonelli et al. [1]
presented a more novel approach - they described a method
for nodule segmentation and classification using a combi-
nation of image processing techniques and 3D geometric
features. Although the above methods (all pre-2005) were
reasonably successful, they depended on some prior knowl-
edge and intervention. With recent increases in computing
power, disk space, and data availability, CAD systems for
lung nodule classification can now take a more data driven
approach.

2.3. ConvNets in Medical Imaging

Recently, CNNs have become more popular in the gen-
eral medical image processing community. Roth et al.
2015 [10] trained deep convolutional neural networks to
be able to detect sclerotic spine metastases, lymph nodes,
and colonic polyps and were able to increase sensitivity
by 15-30% for each of the tasks. Furthermore, their re-
sults showed ConvNets generalize well to different medical
imaging CAD applications.

Although no recent publications have dealt with
CNNS and lung nodule classification specifically, there
is precedent for using CNNs with lung nodule detec-
tion/classification. Specifically, in Lo, Chan et al. 1995 [5],
they employ central kernels and peripheral kernels in each
layer to distinguish nodules vs non-nodules in chest radio-
graphs, with reasonable success. With today’s technology,
it will be interesting to see how well deeper CNNs perform
with the non-nodule/nodule classification task.

3. Methods
3.1. Baseline Learning Models

As an initial baseline, we utilize simple and linear clas-
sifiers provided by the scikit-learn toolkit to be compared
to the results of our ensemble of CNNs. The relevant algo-
rithms are described in this section.

3.1.1 k-Nearest Neighbors (kNN)

In k-nearest neighbors, a query point is assigned to the
class which has the most representatives within the nearest
k neighbors of the point.

3.1.2 Support Vector Machines (SVM)

The SVM attempts to find the max-margin hyperplane sep-
arating the dataset based on class label, in a high-dimension
feature space. The hyperplane is defined by parameters w
and b. The sample x is predicted to be a positive example
or negative example according to y = sgn(K(w, x) + b),
where K is some kernel (defined below). Finding this op-
timal margin reduces to solving the convex optimization
problem of:

argminw,b
1

2
||w||2 + CΣmi=1εi (1)

where the first term is a penalty according to L2 norm, and
the second is subject to constraints

y(i)(K(w, x(i)) + b) ≥ 1− εi, εi ≥ 0∀i ∈ {1, 2, ..m} (2)

where εis are slack variables to account for non-separability
of the data, and kernel K(x, y) is the inner product of vec-
tors x and y. We chose to experiment with the linear kernel:

K(x, y)linear = xT y + c (3)

3.1.3 Logistic Regression (LR)

This model has the hypothesis parameterized by θ:

hθ(x) = sigmoid(θTx) =
1

1 + exp(−θTx)
(4)

The value of hθ(x) is interpreted as probability of class
1 for example x. Inference is by y = 1{hθ(x)≥0.5}. For
training, we try logistic regression with L2 penalty (C = 1
being the L2 regularization hyperparameter):

θ = argminθ
1

2
Σmi=1(hθ(x

(i))− y(i))2 + C||θ||22 (5)

3.2. Loss Function

In our convolutional models, we chose to use a Soft-
max classifier, which produces normalized probabilities
(between 0 and 1) for the two classes for a given sample,
which we can interpret as a confidence score. The loss func-
tion is:

Li = fyi + logΣjexp(fj) (6)
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The total loss is computed as the average of all losses over
the samples, in addition to a regularization term to make
sure weights are well distributed. The classifier’s goal is to
minimize the difference between the true label probabilities
and the class prediction probabilities, which are calculated
by the softmax function efyi

Σje
fj

3.3. Nonlinearities

In our CNNs, we chose to use ReLU nonlinearities. The
ReLU (Rectified Linear Unit) essentially thresholds an ac-
tivation to 0. Although ReLU nonlinearities can sometimes
lead to ”dead” neurons that never activate, in practice, they
have been found to lead to faster convergence. The ReLU
formula is as below:

F (x) = max(x, 0) (7)

3.4. CNN Architectures

For the binary classification task, we looked at 2 different
CNN architectures that proved successful on the ImageNet
challenge. In addition, we looked at creating ensembles us-
ing the two architectures.

3.4.1 AlexNet

We looked at a modified version of AlexNet, a CNN archi-
tecture that uses ReLU nonlinearities. The architecture is as
follows: {conv−relu−pool−norm}∗2−{conv−relu}∗
3−{pool}− {fc− relu− dropout} ∗ 2−{fc}, followed
a softmax loss function. The original model takes inputs
of size (227, 227, 3) and outputs scores for 1000 different
classes (for the ImageNet challenge). We instead modified
it so that the final fully connected layer instead outputs only
2 scores - one for nodules and one for non-nodules.

3.4.2 GoogLeNet

GoogLeNet is a 22-layer CNN, containing ”Inception Mod-
ules”. It uses convolutions, max-pooling layers, ReLU non-
linearities, and the softmax loss function. Each ”inception
module” consists of multiple convolutions (with different
filter sizes) and max-pools that are concatenated together.
The original GoogleNet takes inputs of size (224, 224, 3)
and outputs scores for the 1000 ImageNet classes. We mod-
ified the final FC layers to instead output scores for only 2
classes, as we did with AlexNet.

3.5. Ensembles

Ensembles utilize multiple, generally independently
trained, models for the task of prediction. We propose to
form an ensemble, consisting of our best two AlexNets and
best two GoogleNets. Specifically, we look at two different
ensemble strategies:

1. Take the majority class. To break ties, we always
choose the positive (nodule) label.

2. If any of the models in the ensemble predict a positive
label, we assign the image the positive label.

In both the ensembles schemes, we favor the nodule class
so as to minimize false negatives, which is in line with what
radiologists prefer if they are to detect these potentially dan-
gerous lesions early on.

3.6. Gradient Descent Optimization Methods

We experimented with different gradient update rules
used for the backpropagation through layers of our deep
network. The mathematics of a few of those methods are
described in this section.

3.6.1 Batch Gradient Descent with Momentum

The default update rule in Caffe, the main toolkit used for
our expirements, is to do vanilla batch gradient descent with
momentum. While gradient descent updates the weights
based on the negative gradient −∇L(Wt) of the weights,
momentum µ encourages the updates to also change in the
direction of the previous update as follows:

Vt+1 = µVt − α∇L(Wt) (8)

Wt+1 = Wt + Vt+1 (9)

3.6.2 Nesterov Momentum

This strategy works with an accelerated gradient by com-
puting the gradient on Wt + µVt instead of just Wt.

Vt+1 = µVt − α∇L(Wt + µVt) (10)

Wt+1 = Wt + Vt+1 (11)

3.6.3 Adam

An adaptive per parameter update rule, Adam makes use of
momentum as well as maintaining some knowledge of past
updates (not just the previous one) in a decaying cache, such
that the gradient is updated by its moment and velocity:

(mt)i = β1(mt−1)i + (1− β1)(∇L(Wt))i (12)

(vt)i = β2(vt−1)i + (1− β2)(∇L(Wt))
2
i (13)

(Wt+1)i = (Wt)i − α
√

1− (β2)ti
1− (β1)ti

(mt)i√
(vt)i + ε

(14)
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4. Dataset

The Lung Image Database Consortium and Infectious
Disease Research Institute (LIDC/IDRI) contains an im-
age collection of diagnostic and lung cancer screening tho-
racic CT scans1. Our project consists of 888 CT scans
with marked-up lesions that we use as ground-truth labels
for the classification problem. The computed locations in
the mark-up file are generated by three existing CAD algo-
rithms [7] [4][12], which are not perfect. Consequently, the
annotations file additionally contains false positives that we
can incorporate into our training set. The true labeling of
the computer-generated candidate nodules was performed
by four professional radiologists and reveals that we have a
very unbalanced dataset of mostly false positive mark-ups
(i.e. non-nodules). The annotations were provided to us by
the Lung Nodule Analysis (LUNA) challenge as part of the
2016 IEEE International Symposium on Biomedical Imag-
ing.

4.1. Image Extraction

Each of the 888 CT scans consists of a MetaHeader
(.mhd) file and the unprocessed multidimensional scan in
a .raw format. A significant amount of time had to be in-
vested in generating the 2-dimensional images of potential
nodules by translating the coordinates in the mark-up file
to select the correct cross-sectional slices of the lung scan,
crop them, and store them in a traditional image file format.

Using the Simple Insight Segmentation and Registra-
tion Toolkit (SimpleITK)[6], we read the raw scan in and
converted it into a 3-dimensional array. The annotations
file provides the candidate locations in world coordinates,
which must be converted to non-integer voxel coordinates to
correctly identify the region in the array containing the po-
tential lesion. The image is then normalized for grayscale
coloring and then cropped around the candidate nodule to
generate a 227x227 PNG. Since the provided images are in
black and white, we also converted the images to RGB for-
mat to make the images meet the input channel dimensions
expected for the pre-trained ImageNet models.

Because each 3-D scan has hundreds of false positive
annotations associated with it, we chose to extract all the
nodule examples but undersample the non-nodule crops.
However, we still maintained a class skew of roughly 85%
non-nodule and 15% nodule images. Additionally, we per-
formed mirroring and rotation to augment our training set.
Our final dataset is composed of 15,662 images of poten-
tial nodules, with 2,428 true positives. The organization
running the LUNA challenge split the dataset into roughly
80% training (13,888 crops), 10% validation (853 crops),
and test set (915 crops). Figures 1 and 2 contain example

1https://wiki.cancerimagingarchive.net/display/
Public/LIDC-IDRI

images from each class.

Figure 1. Nodules.

Figure 2. Non-nodules.

5. Experiments
For each of our experiments, the input was the candidate

nodule image, and the output was the predicted class label.
Note that, as a pre-processing step for all the experiments,
we subtracted the mean image (generated from the training
set) from each of the images. As described above, rather
than using cross-validation, we used a single validation set
during training, for each of our models.

5.1. Baseline Models

We used the sci-kit learn library to run each of the base-
line models. To adjust for class skew in the kNN model,
we kept k small (k=10) and used weights such that the con-
tribution of each neighbor is inversely proportional to its
distance from the point. The SVM model used a penalty
error of C=0.001, using the notation convention in equa-
tion 1. (Note that this is inversely proportional to the regu-
larization constant.) Balanced class weights, which adjusts
weights inversely proportional to the class’s frequency, and
L2 penalty were specified in the parameters for both SVM
and the Softmax/LR models.

5.2. ConvNets with Images

The main focus of our project was to use ConvNets on
the images. We used the Caffe library to train and run all of
our models. Note that for each of the ConvNets, we decided
on the final model (i.e. the one we would run the test set
on) based on both the overall validation accuracy and the
validation sensitivity, so as to minimize FNs.
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5.2.1 Transfer Learning

We used pre-trained AlexNet and GoogLeNet models
(on ImageNet, in the Caffe Model Zoo) as fixed feature
extractors for our classification task. Since lung scans are
quite different from the types of images found in ImageNet,
we fixed a limited number of layers from the pre-trained
network and trained the higher layers from scratch. The
idea is that, since earlier convolutional layers tend to pick
up more general features, such as edges, they generalize
more. As part of our experimentation, we tried to find
the optimal number of pre-trained layers to fix in o ur
final models. For the ”fixed” layers, we still allowed for
some learning: rather than set the the learning rate to 0,
we instead set it to 1/100 of the learning rate used for the
rest of the network. In addition, for the experiment with i
fixed layers, we used the model weights from the previous
experiment (with i + 1 fixed layers) as a starting point, so
as to speed up the learning process.

5.2.2 Hyperparameters

In terms of batch size, we used a relatively small size, due
to limited memory resources. For all the AlexNet models,
we used a batch size of 128. For GoogLeNet, on the other
hand, since it is a deeper network, we used a smaller batch
size of 32. Dropout was tried in ranges from 0.25 to 0.75,
and learning rate was tuned using a coarse-to-fine sweep
from 0.01 to 0.00001.

5.3. Unconventional 3D Network

Another variation of our experiments involved manipu-
lating the data by combining multiple image slices around
a candidate nodule, creating an image volume to feed into
the AlexNet CNN, effectively giving the input image more
depth. Additional images were extracted directly above and
below the coordinates given in the annotations to form a
227x227x3 volume as input into our architectures, which
do not use any pre-trained weights. The motivation behind
this idea is that in practice, radiology oncologists look at
volume renderings of the lungs or maximum intensity pro-
jections, techniques that have been demonstrated to produce
more accurate and precise annotations, as mentioned earlier
in section 2.1. We wanted to design an experiment that sim-
ulates this type of outlook on the data, or at least provide
our model with similar information about the lungs. Fur-
thermore, given that our dataset was in grayscale, which can
be represented in one channel, we naturally had additional
channels to feed in more information about each nodule be-
yond a single image crop.

5.4. Evaluation Metrics

Our primary metric is the sensitivity, or true positive rate
(TPR), of the models, since in the medical realm a method
that fails to identify all health-threatening nodules (the
positive class) puts the patient at risk. Another major area
of improvement that we hope to achieve is also in reducing
false positives, so evaluating the specificity and positive
predictive value (PPV) of our model is also important.
For reference, the relevant formulas for each metric are
displayed below.
Sensitivity = TP

TP+FN Specificity = TN
TN+FP

PPV = TP
TP+FP NPV = TN

TN+FN

Applying the technical approaches described in the
Methods section, we expect our neural networks to out-
perform our baseline classifiers since the neural network
should have access to more salient features than our base-
lines, which rely strictly on individual pixel values and loca-
tions. For the purposes of fine-tuning our model, it is easiest
to make adjustments as we monitor the loss and validation
accuracy over epochs, which are accessible by Caffe logs.

6. Results
The results of our baseline and ConvNet models are sum-

marized below. Note that, since the LUNA challenge is cur-
rently ongoing, we have no results to compare our model
against. Therefore, we have several baselines for compari-
son.

6.1. Baseline Results

We ran some preliminary linear classifiers and kNN as
baselines. Because the purpose of this project was to focus
on convolutional networks, only the test results are reported
below in Tables 1, 2, and 3.

A
ct

ua
l

Predicted
p n

p′ 40 85

n′ 19 773

Table 1. kNN confusion.

A
ct

ua
l

Predicted
p n

p′ 53 72

n′ 158 634

Table 2. SVM confusion.

With respect to the positive class, the kNN (k=10) has
poor recall, though it does not generate as many false posi-
tives as the other two linear models. Because we really do
not want false negatives, this model is unacceptable for the
classification challenge at hand. The linear SVM is able
to correctly label an additional 10% of nodules in the test
set, but at the expense of many false positives. Of the three
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A
ct

ua
l

Predicted
p n

p′ 66 59

n′ 264 528

Table 3. LR confusion matrix.

baseline models, the logistic regression/softmax classifier
recalled the most nodules (52.8%), but the precision for
class 1 (PPV) was only 0.20, indicating that this classifier
gave many false positive labels as well.

6.2. ConvNet Results

The results for each of the ConvNets are summarized in
Table 4. We also provide sample false negatives in Figure 3
and sample false positives in Figure 4. Since the ensembles
combine the results of AlexNet and GoogLeNet, we only
show images for AlexNet and GoogLeNet. Results for each
of the individual models can be seen below.

Nodule Non-nodule
CNN Model Sens. PPV Spec. NPV

AlexNet 80.8% 82.1% 97.0% 97.0%
GoogLeNet 79.2% 86.8% 98.1% 97.0%
Ensemble1 84.0% 82.7% 97.2% 97.5%
Ensemble2 88.0% 70.5% 94.2% 98.0%

3D AlexNet1 85.6% 90.7% 98.6% 97.7%
3D AlexNet2 89.6% 86.2% 97.7% 98.3%

Table 4. CNN results on test set.

Figure 3. From left to right: false negative for AlexNet only,
GoogLeNet only, 3D AlexNet2 only, and all models.

Figure 4. From left to right: false positive for AlexNet only,
GoogLeNet only, 3D AlexNet2 only, and all models.

6.2.1 AlexNet

In the final AlexNet model, we ended up fixing the first 3
convolutional layers from the pre-trained model and train-
ing from scratch the remaining 2 convolutional layers and
all of the fully connected layers. Figure 5 shows loss over-
time, with each series representing a model with a different
number of fixed layers. Note that training the 4th convolu-
tional layer from scratch did not make a huge impact on the
loss function.

In terms of hyperparameters, we started off with a learn-
ing rate of 0.01 (and a learning rate of 0.0001 for the fixed
layer); in addition, for the final training phase, we lowered
the base learning rate to 0.001, as the loss had started to
plateau. For regularization, we used a λ = 0.0005.

Figure 5. Loss overtime with AlexNet

Figure 6. Top 36 activations at
Conv1 layer on a test image.

Figure 7. Top 36 activations at
Conv5 layer on a test image.

6.2.2 GoogLeNet

As with AlexNet, we performed transfer learning with the
GoogleNet. We found that, like with AlexNet, the first few
layers worked well as fixed feature extractors. In the final
model, we ended up training from scratch four of the in-
ception modules. In terms of hyperparameters, for our best
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Figure 8. Saliency map Figure 9. Gradients into pool5

GoogLeNet, like with AlexNet, we originally used a learn-
ing rate of 0.01, which was lowered overtime to 0.001. The
”fixed” layers were given a learning rate of 0.0001. In terms
of regularization, we used λ = 0.0002.

As seen in Table 4, notice that the sensitivity is lower
than than the best AlexNet model, but the specificity is
higher. In Tables 5 and 6, we give the confusion matrix
for the validation and the test sets. Note that Table 5 rep-
resents the model that achieved the lowest number of false
negatives, using the GoogLeNet architecture.

A
ct

ua
l

Predicted
p n

p′ 115 34

n′ 13 691

Table 5. GoogLeNet validation
confusion matrix.

A
ct

ua
l

Predicted
p n

p′ 99 26

n′ 15 777

Table 6. GoogLeNet test con-
fusion matrix.

6.3. Ensemble Methods

For both the ensembles, we used the two GoogLeNet and
two AlexNets that achieved the highest validation accuracy.
The results for the ensemble methods can also be found in 4.
Notice that in both ensembles, particularly with Ensemble2
(choose positive if any model chooses positive), we see an
increase in sensitivity and a substantial decrease in the PPV.

Both the AlexNet models we used came from different
snapshots of the weights from the same training session
(with all but 3 conv layers trained from scratch). The same
was the case with the GoogLeNets.

6.3.1 Unconventional 3D Network

With the unconventional 3D Network, we used the general
AlexNet architecture, but trained all the layers from scratch.
We first overfitted a model on a small subset of the training
data. We then used the resulting weights as a starting point
to train the model of the full train set.

In figure 10, we see the validation accuracy over roughly
the first 3000 iterations. Note that, with the pretrained
weights, we immediately get an overall accuracy of around
94%.

The final two models we chose were the ones with the
highest overall validation accuracy (3D AlexNet1) and the
one with the highest validation sensitivity (3D AlexNet2).
In the case of the latter, we see that even on the test set, it
has high sensitivity.

For hyperparameters, we found that using the same
learning rate as in the AlexNet with the regular images as
input caused the losses to explode. As a result, we used
a starting learning rate of 0.005 that decayed overtime to
0.001. In terms of regularization, we found that using 0.001
worked well.

Figure 10. Validation accuracy overtime with Unconventional 3D
Network

7. Discussion
Comparing the models, it is clear that our lack of exten-

sive feature extraction for the baseline models makes it a
poor classifier. Note that, with a random model (flipping a
weighted coin, where the non-nodule class has probability
85%), we can achieve a sensitivity and PPV of 15% and a
specificity and NPV of 85%.

In terms of the ConvNets, we see that, when comparing
AlexNet to GoogLeNet, AlexNet seems somewhat better at
at minimizing false negatives whereas GoogLeNet seems
better at minimizing false positives. As a result, as seen in
Table 4, we find that the sensitivity is higher for AlexNet
and specificity (and the PPV, for that matter) is higher for
GoogLeNet. The ensembles, as expected, achieve a higher
sensitivity than than the individual models. This is expected
as, particularly with Ensemble 2, there is a bias towards the
nodule class. However, because of this bias and the class
skew, we also see an increase in false positives, resulting in
a significant drop in the PPV.

Qualitatively, the saliency map from our best AlexNet
in Figure 8 demonstrates a focus on the center of the crops
where the nodule is located and takes on a large blob shape.
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This observation is further supported by the results of the
pooling layer in Figure 9, which shows that the gradients
are being updated mostly in the same region. The initial
layers of AlexNet, which were fixed, capture very basic fea-
tures about images that were still relevant to us, such as the
edges of objects in the image which ”light up”, as in Fig-
ure 6. Our own convolutional layers trained from scratch,
such as conv5 in Figure7, activate based on a structure more
sophisticated and relevant to the shape of lesions.

Looking at AlexNet, with regards to transfer learning, we
see there is not a significant difference between loss when
fixing conv layers 1 to 4 and 1 to 3, as seen in Figure 5. This
indicates that the pre-trained AlexNet weights worked well
as fixed feature extractors - they were still able to pick out
relevant features for identifying nodules.

For GoogLeNet, we see that in Table 5 and 6, there are
actually more false negatives than false positives, despite
there being more negative (non-nodules) than positive (nod-
ule) examples in the dataset. A similar pattern was found in
all of the other models - hence, sensitivity tends to be sig-
nificantly less than specificity. Given the large class skew,
it makes sense that there would be a bias towards the non-
nodule class. All of the models try and minimize softmax
loss, which weights each class evenly; thus, it is easier to
minimize loss by correctly labeling all non-nodules image
(note that this would lead to a, minimum, 85% accuracy)
rather than focusing on labeling all nodule images correctly.

Finally, observe that, overall, the 3D AlexNet models
tend to have consistently high values for sensitivity, PPV,
specificity, and NPV. This makes sense, as they are able
to incorporate surrounding features and, somewhat, the 3D
structure of the nodule into their prediction.

7.1. Overfitting

We naturally expect some overfitting due to the class im-
balance of our dataset. To mitigate class skew, we intention-
ally undersampled negative examples in our dataset. With
respect to overfitting in the learning process, we tried in-
creasing dropout, using higher regularization, and setting a
smaller batch size, which allows for gradient updates to be
a bit noisy and not too stringent to our training data.

7.2. False Negatives/Positives

As seen in Figure 3, we find that all the models tend to
mislabel nodules when they do not have the more obvious
features of a nodule - the round/spherical shape; note that,
at first glance, most of the images look more like blood ves-
sels rather than nodules. However, the GoogLeNet missed
an image with the characteristic round, white spots, demon-
strative of the tradeoff between false negatives and false
positives. In the case of false positives, as seen in Figure
4, all the models tend to misclassify images with the white
spheres, characteristic of nodules.

On the whole, our model seems to perform well when
the nodules are round, bright white appearance. Since this
is the characteristic appearance, nodules that skew signifi-
cantly for this model - or non-nodules that fall too close to
this model - inevitably cause errors. It is important to note
that, since the ground truth labels were given by radiologist,
it is possible that some labels are incorrect due to human er-
ror. So, it is still worthwhile to investigate the examples our
models erroneously classify as nodule/non-nodule.

7.3. Recovering Previous False Negatives

We had an additional test set of size 60 consisting of
nodules that the original CAD algorithms missed. Our best
model, the 2nd ensemble, was able to correctly classify 37
of these nodules. Given its bias towards the nodule class,
it makes sense that it would give the best results. With the
exception of the 3D AlexNets, the remaining models were
able to detect between 30 and 31 of the nodules. With the
3D AlexNets, however, they only correctly classified 25 and
26 nodules, respectively. This could indicate that the 3D
AlexNets are closer in line to the original CAD systems in
how they identify nodules. Regardless, it is promising that
our models are able to detect nodules that the original CAD
systems missed.

8. Conclusion and Future Work

Given the deadliness of lung cancer, it is important to
be able to identify lung nodules - masses of tissue that can
become cancerous. While CAD systems exist for this task,
they often produce too many false positives to be of use to
oncologists. However, we found that CNNs can success-
fully be used to classify candidate nodules, with relatively
high sensitivity and very high specificity. In particular, we
found that the unconventional 3D AlexNets were particu-
larly good at identifying nodules, as compared to the other
models. We believe this can be attributed to the fact that a
higher dimensional outlook on the CT scan provides more
salient features about the structure of the candidate nod-
ule being classified. Additionally, we found that ensembles
provide a good means for achieving a high sensitivity, but
came at the cost of more false positives, unlike with the 3D
AlexNets.

This shows promise for incorporating 3D features and
structures into the CNNs for nodule classification. Given
more time, it would be interesting to incorporate more of
the 3D structure (i.e. use more than 3 lung slices) to help
classify lung nodules. It would also be useful to see how
well our classifier performs when incorporated into a seg-
mentation system. We would then be able to produce an
end-to-end system for identifying lung nodules.
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