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Abstract

Automated cell segmentation and tracking is an ongo-
ing challenge in biology, with better technology facilitating
higher throughput and clearer data. We build a system for
tracking fluorescent cell nuclei in microscopy data, using
hierarchical visual tracking on convolutional neural net-
works. We instrument an existing cell-segmentation CNN to
provide feature data for cell tracking, in addition to train-
ing our own network, RecogNet, to provide higher-quality
features online. The tracker reaches 60% precision at a 20
pixel threshold, and we present several avenues for further
work in the future.

1. Introduction
A key challenge in biotechnology is data collection: sen-

sitively gathering information on the internal composition
and dynamics of single cells. Historically, these measure-
ments were made in bulk, with the resulting data represent-
ing population averages across millions of cells. This ap-
proach provides information about composition, but con-
ceals small-scale dynamics and variation between cells.
More recently, single-cell analysis, aided by technologies
such as single-cell sequencing, improved imaging, and mi-
crofluidics, has allowed for characterisation of total compo-
sition, as well as dynamics, in individual cells. However,
the technique has a different limitation: data collection and
analysis is time consuming, and statistical power is limited
by the number of cells that can be individually measured by
a human researcher.

High-throughput single cell analysis provides a solution
to these limitations, providing the sensitivity and specificity
of single-cell measurements with the statistical power of
bulk measurements. However, while cells can be imaged
and characterised in unprecedented numbers, data analysis
(particularly image segmentation and cell tracking) is still
a manual and time-consuming process. While tools exist
to aid this process, even modern analysis pipelines require
significant input: pre-filtering of data, hand-tuning of algo-
rithms, and post-analysis curation of the output data. Hu-

man effort is required linearly with cell and image count.
An automated pipeline which could segment and track cell
nuclei with little or no intervention would greatly increase
availability of data, as well as the productivity of biologists.

DeepCell [11] endeavours to solve this problem. The
software uses a convolutional neural network, trained on
various cell types, to automatically segment cells within im-
ages as part of a larger analytical pipeline. However, the
network does not yet track individual cells over time, a par-
ticularly important task for gathering time-series data. This
project aims to add cell tracking capabilities to the DeepCell
software package.

Tracking individual cells over time is generally that of
object tracking, but with several complications particular to
the domain. Rather than tracking a single object across a
confused background, the system must track a large number
of cell, on the order of hundreds per field of view, across a
background which is otherwise clean. Any solution must
distinguish a number of very-similar objects from one an-
other, either through subtle visual differences, motion infer-
ence, or other methods. Although cells exist in a generally
two-dimensional plane, they can overlap and move over one
another. Unique to the cell tracking problem, cells can di-
vide.

This work focuses on a specific subset of cell tracking:
tracing fluorescently-labelled cell nuclei. Following the ap-
proach by Ma et al [8], we leverage the complex features
of deep convolutional neural networks, combined with the
real-time speeds of kernelized correlation filters for track-
ing. This method provides a number of advantages. Where
an existing CNN is used, we realise the efficiencies of train-
ing only one network to perform multiple tasks, as well as
the advantage of pre-computing feature maps during seg-
mentation that can later be used for tracking. By tracking
cells individually, rather than globally-optimizing for min-
imal translocation, we obtain the flexibility to detect cell
events such as division or death, and restart or terminate
tracking.

Overall, we apply hierarchical visual feature tracking in
two modes. First, we use the existing DeepCell segmenta-
tion network to generate segmentation information as well
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as tracking feature maps. Secondly, we build and train a be-
spoke CNN, specifically for the task of distinguishing cell
nuclei, and then use this network to generate tracking fea-
ture maps in real-time. The tracking framework learns a
correlation filter for each tracked cell, training on features
extracted by the convolutional networks. Features at deeper
levels are propagated up to shallower levels, combining ac-
curate tracking using deep semantics with the spatial reso-
lution of the early filters.

2. Related Work
The field of cell segmentation is not new: Gauthier and

Levine reported an improved method for segmenting live
whole-cell images in 1995 [4], using a two-step threshold-
ing approach. It is interesting to note that, while the tech-
nology for imaging and analysis has certainly improved, the
challenge the authors sought to solve is still outstanding.
A decade later, Chen et al reported a multi-step method
based on global thresholding for segmentation, followed
by a watershed algorithm to further separate overlapping
nuclei. Several rules were then used to reconcile over-
separated fragments into nuclei. Tracking is then performed
using a set of rules: a cell is presumed linked to its near-
est neighbour in the subsequent frame, unless another con-
straint (such as that two cells cannot have the same identity
at t+ 1) is violated. The authors report approximately 94%
accuracy at tracking nuclei through a capture sequence.

CellTrack is a software package published by Sacan et
al in 2008. [10] The software provides ready access to a
number of segmentation and tracking algorithms, but still
requires human intervention in the processing pipeline. The
authors also developed a ‘snake’ active contour method for
the task of cell segmentation. Template-matching and op-
tical flow deformation are used to calculate deformation
across timesteps, and the energy of the ‘snake’ contour is
minimised to refine the cell outline.

A common cell-tracking approach based on pre-
segmentation of time series data is based on the linear as-
signment problem, described by Jaqaman et al [7] in the
context of particle tracking within cells. In brief, particles
(or cells) are connected locally by ‘tracklets’, linking po-
sitions from one timestep to another while satisfying con-
straints (particles cannot duplicate) and minimising a cost
equation. The optimisation to find the set of tracklets link-
ing two timesteps is spatially global, but temporally local,
applying only to the present timestep. Next, a temporally-
global optimisation is performed to link tracklets into com-
plete trajectories across time. In general, this will only re-
quire connecting one tracklet to another, but the cost func-
tion allows for tracklets to be reconfigured where it min-
imises the overall cost of the trajectories. The method facil-
itates tracking particle merges and divisions. Overall, solv-
ing the linear assigment problem in this manner is effective

where well-segmented data exists, however cell overlaps are
still problematic. The present state-of-the-art in cell track-
ing is based on hand-curated filters and rules; however ob-
ject tracking generally is embracing machine-learning ap-
proaches.

Hong et al describe a pre-trained CNN combined with an
online Support Vector Machine to track objects. [6] Target-
specific saliency maps are constructed through in order to
improve localisation accuracy. The map is combined with
a generatively-constructed appearance model to locate tar-
gets through Bayesian filtering. Dundar et al train a two-
layer network in both supervised and unsupervised forms,
feeding the convolutional layers into a “Radial Basis Func-
tion Network” to predict a confidence map of the desired
object’s location. [3] Confidence output would be a use-
ful mechanism to augment a linear-assignment tracker, but
the authors report mixed accuracy, and it is unclear if the
approach would generalise to novel datasets.

Ma et al outline the approach we take in this paper. [8]
Rather than requiring a full round of forward and back prop-
agation, the authors train correlation filters over features
extracted from multiple levels of an existing deep convo-
lutional nnetwork. The algorithm leverages the semantic
sensitivity of the top layers of the network to identify tar-
gets, combined with the spatial sensitivity of the low layers
for localisation, but avoids repeating a full pass through the
network during tracking. At each timestep the filter is used
to locate its target within a search window. The window is
then recentered, the filter is updated, and the search con-
tinues. Filter calculations are performed in Fourier space,
dramatically increasing the speed of match processing. [1]

3. Methods and Implementation
The tracking system has three components: CellTrack,

the hierarchical tracker to perform correlation-filter track-
ing based on extracted features; DeepCell, for semantically
segmenting cell images and producing feature maps; and
RecogNet, a custom neural-network specifically trained to
distinguish between cell nuclei, for online generation of fea-
ture maps for the tracker. While we originally sought to use
DeepCell alone due to its success at cell segmentation and
extensive training time, it has several limitations, prompting
the development of RecogNet.

4. CellTrack
4.1. Acquisition

The hierarchical tracker follows the design of Ma et al.
[8] The tracker uses the ‘kernel trick’, computing circu-
larised kernels in Fourier space, to increase performance.
[5] At each tracked cell, a search window is located over
the cell in the first frame of the input. When running using
DeepCell, this frame is the set of neural network features
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Figure 1. The live visualization interface for CellTrack. (Top) A
global view of the frame analysed, with a bounding box identify-
ing the search window containing the tracked cell; (left) a close
up of the search window containing the tracked cell; (right) the
weighted correlation filter response to the content of the search
window.

at a configurable number of layers, output during segmen-
tation. When running using RecogNet, the frame is a raw
image, and the features are computed by the CNN online.

Once the search window is positioned, a suite of corre-
lation filters are learned by minimising the following equa-
tion:

w∗ = argmin
∑
m,n

‖w · xm,n − y(m,n)‖2 + λ‖w‖22

where w∗ is the learned filter, xm,n is the search win-
dow, for all circular rotations (m,n) ∈ {0, 1, ...,M − 1} ×
{0, 1, ..., N − 1}, and y(m,n) is a Gaussian function cen-
tered at the unshifted window (ie, (m,n) = (0, 0)). In
Fourier space, this minimisation can be performed by cal-
culating the following:

W d =
Y � X̄d∑D

i=1X
i � X̄i + λ

where uppercase variables represent the lowercase vari-
ables transformed into Fourier space, Xd is feature map d
in the layer, and X̄ is the complex conjugate of X . We train

filters on a number of layers of the selected convolutional
network.

4.2. Tracking

At each tracking timestep step, the correlation filters are
matched features within a search window z overlaid on the
last known location of the target. Matches are computed in
Fourier space using the equation:

fl = F−1(

D∑
d=1

W d � Z̄d)

The deeper filters are then propagated to higher levels in
a weighted manner:

fl−1(m,n) + γlfl(m,n)

The estimated new location is found by taking

arg max
m,n

f0

and the search window is realigned to the new location.

4.3. Update

The correlation filters for each feature layer are then up-
dated using a moving average controlled by a learning rate
hyperparameter, η. In our implementation, η = 0.01. For
efficiency, this update is also be performed in Fourier space
(not shown).

4.4. Input/Output

CellTrack takes as input a segmented image indicat-
ing the locations of tracking targets in the first frame of a
time-series sequence, as well as a list of either raw images
(when using RecogNet), or feature maps output by Deep-
Cell. Cells can be selected for tracking, or all segmented
cells can be tracked across the time series. Live output of
the tracking is available for debugging or investigation (Fig-
ure 1).

Each CellTrack run outputs a list containing the learned
filters for each cell, as well as a history of its centroid po-
sitions at each timestep over the run. This data can then
be used to annotate segmented but unlabelled images, or to
directly map cell trajectories.

5. DeepCell
DeepCell is a deep convolutional neural network de-

signed to segment cells. [11] The model has been trained on
several different training sets, allowing for segmentation of
cell nuclei, bacteria, and whole eukaryotic cells under light
microscopy. The network has five convolutional layers, fol-
lowed by a 200-neuron fully-connected layer feeding into
three output neurons. One output indicates whether a target
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Figure 2. Network designs for DeepCell and RecogNet.

pixel is cell interior, one indicates boundary, and the other
background. The full network is effectively convolved over
an input image to segment it at the pixel level. The network
is implemented in Theano, and a sub-tensor optimisation
prevents a full recalculation per pixel. The network’s over-
all output is three masks (nucleus, boundary, background),
composed of the output of an ensemble of five trained mod-
els.

We modified DeepCell to simultaneously extract feature
maps from the convolutional layers during segmentation,
and write them out to disk. Maps from each layer are
composited to form full-size feature mappings, of the same
shape as the final segmentation output. As a result of Deep-
Cell’s segmentation strategy and downsampling during con-
volution this results in a segmented image and feature maps
30 pixels smaller on each dimension than the original. Cells
in the 15 pixel boundary are ignored during tracking. The
subtensor design of DeepCell makes these transformations
more difficult than they would be otherwise, as the pool
layers and strided convolutions have somewhat counterin-
tuitive effects on map dimensions.

Overall, DeepCell now produces a set of masks and fea-
ture maps, per frame of microscopy input. After hyperpa-
rameter optimization, we build tracking filters using lay-
ers 1 through 4 of the network, with the layers weighted
(1.0, 0.5, 0.2, 0.2) respectively.

6. RecogNet

We decided to also implement our own CNN, due to
the limitations of using DeepCell for feature recognition—
particularly its poor ability to discriminate between cells
(see Results and Discussion, below). RecogNet is a deep
convolutional neural network trained specifically to dis-
criminate between different cell nuclei. The network is im-
plemented in Keras on Theano, and is composed of six 3x3
convolutional layers with ReLu activation, three maxpool
layers, a 1024-neuron fully-connected layer, and a 256-
category softmax output. Dropout is implemented at var-
ious levels of the network. The network runs on GPU, and
is instrumented to output feature maps from each convolu-
tional layer in addition to (or instead of) label classification
scores. Although the network is deeper and contains more
filters than DeepCell, it runs significantly faster due to the
vastly reduced input size: 40x40, versus 426x330 for Deep-
Cell on our data.

Our goal was not so much to perform a classification task
as it was to optimise the convolutional layers to produce fea-
ture maps suitable for inter-nucleus discrimination. In order
to achieve this, however, we cast the optimization problem
as one of categorization. Input to the network consists of
1x40x40 (greyscale) images of centered nuclei, equivalent
to the 40x40 search windows used by CellTrack. We have
multiple images of the same nucleus, captured over time,
annotated in our tracking-training database. We select 256
nuclei, and train the network to classify each nucleus at each

4324



timestep as its correct ID.
Again, this is not to perform identification using the

CNN. First, the problem is remarkably challenging: nuclei
change appearance dramatically over time, particularly dur-
ing cell division. Second, the training would not be gener-
alisable to other cell tracking: our network would only be
able to effectively separate nuclei it had seen before. The
intensive training required is not efficiently repeatable for
every new tracking task. Finally, the category layout based
on arbitrary nucleus ID is an inappropriate means to clas-
sify such similar objects; some kind of learned embedding
may provide better results, as similar nuclei could be clas-
sified closer in multidimensional space. The classification
task does force the higher CNN layers to be able to discrim-
inate fine differences between nuclei: the precise feature
mappings we need for accurate and generalisable tracking
using CellTrack.

RecogNet was trained for 20 epochs, using 13 500 train-
ing and 1 500 validation samples. The data is dynami-
cally loaded and segmented from raw microscopy images
and segmentation data: segmentation data is used to cen-
ter a bounding box around the nucleus in the raw image.
The data is mean-centered across the training set, and nor-
malised to ± 1. We retain approximately 4000 additional
samples as test-set data.

Validation loss decreased from approximately 4 to 0.76
over the course of training, resulting in 0.83% validation
accuracy (0.91% train); remarkable, given the above. Vi-
sualisation of the learned weights shows a transition from
cell-like filters at the shallow levels, to abstract patterns at
deep levels: as we would expect and in contrast to Deep-
Cell.

6.1. Dataset

We used two datasets for development and validation of
CellTrack. The Covert Lab at Stanford has a collection of
time-series fluorescent nuclei images gathered during the
course of experiments. This data has been segmented and
tracked through automatic pipelines, with hand curation of
parameters and results. While the data is not entirely accu-
rate, the experiments have produced an enormous amount
of data. A single fluorescence experiment produces 1̃20
frames of 9̃5 fields of view, each containing 5̃00 cells, for
more than 5 000 000 individual cell images, or 50 000 cell
tracks. Data from the 20150812-Pos5 was used to train
RecogNet, and to develop and test CellTrack. The data is
of fluorescently-labelled fibroblast cells.

While hand-annotated cell tracking dataset of signifi-
cant size are rare (as a result of the difficulty of produc-
ing them), the Biomedical Imaging Cell Tracking Challenge
produces and distributes annotated datasets for their annual
cell-tracking competition.[9] Past years’ datasets are avail-
able online. We selected the N2DL-HeLa dataset to use

as an independent test set of tracker accuracy. Although
the cells are HeLa cancer-line cells, the nuclei have sim-
ilar morphology and movement profiles as the Covert lab
dataset. The nuclei in the dataset do divide more frequently;
a factor contributing to low test performance. The dataset
has two timeseries of 91 frames, each containing 5̃0 cells.
Each series has hand-segmented masks for certain frames,
and hand-annotated ID masks for every frame.

6.2. Validation

Wu et al. describe a series of benchmarks appropriate
for measuring tracking performance. [12] They define a
precision metric, where precision is the percentange of pre-
dictions made by the tracker within a threshold Euclidian
distance of the ground truth for that prediction. A pre-
cision curve is plotted based on the calculated precision
across a range of thresholds. Their success metric measures
the overlap between the predicted object bounding box and
ground truth. We do not use this measure, given that bound-
ing box prediction is based on the output of segmentation
once we’ve predicted the identity segment’s centroid. We
use the precision metric to quantitate the performance of
our tracker under various conditions.

Tracking was performed on both the 20150812-Pos5
dataset (200 cells), and on N2DL-HeLa-1 (approx 50 cells).
We first identified ground-truth ids corresponding to our
tracked cells by sampling the acquisition coordinates for
each cell in the ground-truth data. Once we had labels
for each cell, we built a trajectory of (x, y) coordinates
by taking the centroid position of the labelled cell at each
timestep. Where a track disappears from the ground truth
data (such as a cell death or division), we cease compari-
son with predicted values. We then compared the computed
ground truth trajectory with that predicted by CellTrack,
calculating precision as above.

7. Results and Discussion
We tested the tracking system using both DeepCell fea-

tures, and RecogNet. DeepCell performs reasonably on the
dataset, reaching 60% accuracy rapidly, levelling off, and
then further improving as the threshold is relaxed (Figure
3). Precision is approximately at 60% at the 20 pixel thresh-
old taken as representative by Wu et al.[12] While this is
a promising start, it does not meet the high accuracies re-
ported by Chen and Jaqaman [2, 7].

Qualitative diagnosis, by following individual cells as
they are tracked, suggests a major cause of inaccuracy.
First, where another cell enters the search window, the cor-
relation filter tends to see the other cell as a possible match,
“jumping” to it if the correlation exceeds that of the actual
cell in magnitude. While this problem could be ameliorated
by applying a momentum term to the moving search win-
dow, the larger problem is that the correlation filter, even
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Figure 3. Precision curve for CellTrack using DeepCell features
on 200 cells from the 20150812-Pos5 dataset. X axis is thresh-
old in pixels, Y axis is the percentage of predicted points within
threshold pixels of ground truth.

Figure 4. Comparison of learned filters between RecogNet and
DeepCell. The left two columns are RecogNet, right are Deep-
Cell. Levels one through five are top to bottom. Two filters were
chosen per Net/Layer combination.

trained on CNN features, cannot distinguish cell nuclei. We
visualized the deep filters in DeepCell, finding that they still
preserved relatively intact spatial information, rather than
the abstract patterns normally seen in CNNs (Figure 4). We
hypothesised that because DeepCell only needs to predict
whether a given pixel is nucleus or background, optimisa-
tion does not select for discrimination between nuclei. It

Figure 5. Cell trajectories predicted by RecogNet. Note the persis-
tent bias toward the top-left.

was this hypothesis that led to the design of RecogNet.
RecogNet is significantly less effective at tracking nu-

clei, with precision below 10%. An analysis of the predicted
trajectories on both datasets shows a persistent tracking bias
toward the origin (Figure 5). Moreover, the correlation fil-
ters maintain a persistent positive at the dead-center of the
search window, in addition to appearing insensitive to other
content in the window. Optimising the filter weight val-
ues, learning rate, and layers used for correlation has not
changed this behaviour, but it may be that weights from
the network need normalisation, or that another underlying
problem exists. We believe that RecogNet holds better po-
tential for improving accuracy than DeepCell, but a larger
rewrite of the CellTrack framework may be required.

RecogNet also has the potential to solve the problem of
identifying cell division, so that tracking can retarget to fol-
low daughter cells, as well as prediction of other metadata
states: cell death, overlaps, etc. Providing this data would
allow downstream analysis to take the states into account,
such as ignoring signal fluorescence channels after a cell
dies or where there is interference. The accuracy reached
by the classification net, which included identifying divid-
ing cells, indicates that the network possesses the represen-
tational power match these states. At each step of cell track-
ing, the “cell metadata” classification could be computed
alongside the feature maps used for the tracking itself.

There are other trade-offs to the choice between Deep-
Cell and RecogNet. DeepCell’s stored feature maps save
the computational effort of recalculating features at each
(and, during tracking, often arbitrary) positions, but require
a large amount of disk: on the order of 1 GB per frame for
the full stack of layers. For our reference time series of 120
frames, storage and the overhead of loading approximately
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100GB of data is challenging. This overhead makes Deep-
Cell slower than RecogNet when tracking small numbers
of cells, but when tracking large numbers DeepCell has the
advantage as RecogNet computes features for every cell at
every frame. Room for efficiency improvements does exist,
particularly bunding all search windows for a given frame
so that they can be processed on the GPU at once.

Another possibility for improving tracking accuracy
would be to combine hierarchical tracking approach with
other methods. For instance, the weighted correlation fil-
ter at each search window could provide a cost to a linear-
assignment problem, augmenting its ability to accurately
track cells.

8. Conclusion
While the hierarchical tracking approach shows promise,

this implementation has further to come in terms of per-
formance and robustness. Accurate hands-off cell track-
ing remains a challenge, but modern machine-learning ap-
proaches will certainly have something to offer as technol-
ogy improves. One limitation is the lack of high-quality
annotated data to use for training and validation, but rea-
sonable alternatives can be found using a combination of
automation and manual data cleanup. Overall, we hope to
continue this work, improving both accuracy and classifica-
tion speed.
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