
DeepMD: Transforming How We Diagnose Heart Disease Using Convolutional
Neural Networks

Viswajith Venugopal
Stanford University
viswa@stanford.edu

Swaroop Ramaswamy
Stanford University

swaroopr@stanford.edu

Abstract

Cardiovascular disease is an frighteningly common af-
fliction in today’s world, and heart failure can strike at any
time, often with lethal consequences. This calls for effective
methods to diagnose heart disease early, to enable those at
high-risk to take steps to protect themselves. A feasible way
to do this is using Magnetic Resonance Imaging (MRI) to
take pictures of the heart, and measure the volume of the
heart at different stages of a heart-beat, based on which the
patient’s risk for heart disease can be assessed. Measuring
this volume is a difficult and time-consuming task, even for
experienced cardiologists; with modern advanced image-
processing tools like Convolutional Neural Networks, how-
ever, it is not overly optimistic to expect us to build machine
learning models that can automate this task. We seek to
build such a model.

We explore various preprocessing techniques and con-
volutional neural network architectures to solve this prob-
lem, and present their results. We find that our best model
achieves a Continuous Ranked Probability Score of 0.0322
on the test set – which puts us in the top 20% in the Kaggle
contest – and performs well for healthy hearts (those with a
high ejection fraction).

1. Introduction

The problem we tackle is that of taking in MRI images of
human hearts, and automatically measuring the end-systolic
and end-diastolic volumes – that is, the volume of the heart
when it is contracted, and after it is filled with blood. This
is a regression problem with two outputs: the input to our
algorithm is a time series of 30 images, which correspond to
one entire cycle of a heart beat, and we are asked to output
the end-systolic and end-diastolic volumes in millilitres.

There are strong reasons to pursue this problem. Cardio-
vascular illness is one of the biggest killers in today’s soci-
ety. In the United States alone, 1500 people are diagnosed
with heart failure every day. Key to tackling this devastat-

ing malady is early diagnosis: declining heart function can
be measured, and is a strong indicator of heart disease.

Currently, a method used by doctors to determine cardiac
function is that of measuring the size of a chamber of a heart
at the beginning and end of each heartbeat, and computing
an associated metric called the ejection fraction. Both the
volumes and the ejection fraction are predictive of heart dis-
ease. The gold standard test to accurately measure these
volumes is Magnetic Resonance Imaging (MRI). However,
currently, using MRI to measure cardiac volumes is man-
ual and slow – it takes a skilled cardiologist up to 20 min-
utes, time which she could be spending with her patients.
Thus, making this measurement process more efficient will
enhance our ability to diagnose heart conditions early, and
will lead to huge advances in heart disease treatment.

We work on a dataset released as part of the 2015 Kag-
gle Data Science Bowl [1], which consists of MRI images
from more than 1,000 patients. This data set was compiled
by the National Institutes of Health and Children’s National
Medical Center and is an order of magnitude larger than any
cardiac MRI data set released previously. We have trained
several models on this data, quantified how well we have
done, and understood what works well and what doesn’t.
Our best model puts us in the top 20% of the Kaggle leader-
boad for this contest.

The rest of this report is organized as follows. Section 2
discusses relevant work from existing literature on this sub-
ject. Section 3 explains the problem in more detail, in order
to shed more light on what is involved in solving it. Sec-
tion 4 presents a mathematical discussion of our methods.
Section 5 talks about the key characteristics of this dataset.
Section 6 details the experiments we performed, and the re-
sults obtained. Section 7 summarizes our conclusions and
section 8 discusses future steps.

2. Related Work

There hasn’t been much work per se on using Convolu-
tional Neural Networks (CNNs) [16][15] to analyze MRI
scans of the heart; presumably, this contest represents one

1

of the first attempts at this. However, there is a significant
amount of literature on applying machine learning models
on radiology problems. [26] serves as a good overview of
these approaches, bringing up domain-specific issues that
frequently come up. It talks about machine learning algo-
rithms useful for medical image segmentation, brain func-
tion or activity analysis, and content-based image retrieval
systems for CT or MRI images. [24] is also a less recent,
but useful reading for this purpose.

Classically, most of the problems that computer visions
have been used for have involved segmentation. [4] rep-
resents an early attempt, using a clever level-set formalism
and robust evaluation models. [3] uses techniques involving
probabilistic graphical models [14], using the EM algorithm
[7] over a Markov-Gibbs random field (similar approaches
have been used in image modelling before; for an exam-
ple, see [19]). Segmentation is a good preprocessing step
even for cardiac MRIs, so these papers are helpful for un-
derstanding the domain better.

There have been other instances of models involving
specifically neural network being used for biological prob-
lems. A fairly old example is [28], which uses older tech-
niques for extracting a 2D histogram from CT scans, and
then using neural networks to find patterns in the histogram.
Obviously, this is an old approach, and it is almost certain
that their results can be improved using CNNs – this hy-
pothesis is validated, for example, by [10], which uses sim-
ple CNNs to diagnose traumatic brain injuries, with results
that significantly outperform other models.

One particular medical imaging problem deep learning
has proven to be particularly effective at is that of diagnos-
ing Alzheimer’s disease. [21], which uses CNNs with fairly
standard architectures, along with sparse autoencoders [20],
and predicts Alzheimer’s from MRI scans with amazing ac-
curacy. [17] is yet another example of using deep learning to
diagnose Alzheimer’s. [13] speaks of using similar models
on the more ambitious problem of ‘brain extraction’, with
methods that outperform the state-of-the-art.

Although there are few instances of neural networks be-
ing used on heart MRI scans themselves, there has been
some work on using other computational techniques on
these MRI scans. [18] talks about left ventricle segmen-
tation, which is directly tied to our problem of estimating
the left ventricle’s volume. It does this segmentation from
first principles, which makes the approach interesting and
interpretable (and hence, we explore it further below). In
a similar vein, [8] does surprisingly well using manually
extracted features and a KNN classifier – but it is almost
certain that deep learning techniques will do better auto-
matically. There are also several common semi-automatic
segmentation techniques: [22] compares several such tech-
niques, and their effectiveness on determining cardiac func-
tion in rats.

3. Diagnosing Heart Disease with MRI Images
In this section, we take a closer look at the problem, in

order to shed more light on the prediction problem, and the
steps involved in solving it.

3.1. Ejection Fraction

Cardiac function is diagnosed from MRI scans by mea-
suring the volume of the left ventricle (lower left chamber
of the heart) at two points in time: after systole, when the
heart is contracted and the ventricles are at their minimum
volume, and after diastole, when the heart is at its largest
volume. The volume at systole, VS , and the volume at dias-
tole, VD, are by themselves good predictors of heart disease.
An even better predictor is the ejection fraction [2] which is
computed as:

EF = 100 ∗ VD − VS
VD

(1)

This quantity represents the fraction of outbound blood
pumped from the heart with each heartbeat. A low ejection
fraction is a strong predictor for a wide range of cardiac
problems.

3.2. MRI Images

Figure 1. A sample MRI image of the heart.

The primary tool for measuring these volumes is MRI
scans. The dataset comprises of hundreds of images in DI-
COM1 format. An example image is shown in Figure 1.

Variations in anatomy, function, image quality, and ac-
quisition make this a challenging problem. The competition
dataset provides a diverse representation of cases, contain-
ing patients from young to old, images from numerous hos-
pitals, and hearts with normal to abnormal levels of cardiac
function, which makes our problem even more challenging.

To understand what is involved in this analysis, it is
helpful to understand how cardiologists tackle this problem.
Figure 2, which is taken from the discussion in [18], gives a
useful overview of one particular approach to this process.
Boxes A-D show the process of localizing the left ventricle.

1https://en.wikipedia.org/wiki/DICOM

2

Figure 2. An MRI segmentation workflow.

Once it is localized, its contours need to be detected. This is
called the endocardial contour, and this process is shown in
boxes E-H. Boxes I-L are not directly relevant to our prob-
lem (for the interested reader, they show the identification
and segmentation of the basal slice to find the outflow tract
of the left ventricle).

Given the significant noise inherent in the production of
these MRI images, the large patient-to-patient variance, and
the fact that the end goal is a regression problem (that is, the
estimation of the exact volume of a heart), it is not surpris-
ing that each individual step in this process is difficult. It
takes experienced cardiologists 20 minutes to come up with
measurements that are accurate to within 10 mL.

3.3. Evaluation Metric

This is a regression problem, and the evaluation met-
ric that was used for the Kaggle contest is the Continu-
ous Ranked Probability Score (CRPS). In order to explic-
itly model the uncertainty in all these predictions, for each
MRI, we must predict a cumulative probability distribution
for both the systolic and diastolic volumes, and the CRPS is
computed as:

C =
1

600N

n∑
m=1

599∑
n=0

(P (y ≤ n)− I [(n− Vm) ≥ 0])
2

(2)

where P is the predicted distribution, which is the predicted
cdf of the volume, and I is the indicator function, which is
1 when its argument is true and 0 otherwise. We only need
to provide the cdf value at integral values of the volume (in
millilitres). The support of the distribution is taken to be
from 0 to 600 mL – this range is wide enough to handle
all the cases. Note that, although it is called a score, the
smaller the CRPS, the better.

While direct visualization of this metric is difficult, an
interpretation of this metric can be gleaned from the visu-

alization in Figure 3. Basically, the smaller the highlighted
area, the closer we are to the ground truth (which is a step
function), and hence, the better. However, it should be noted
that the shaded area is not exactly the CRPS. It is in fact, the
non-squared version:

C =
1

600N

n∑
m=1

599∑
n=0

|P (y ≤ n)− I [(n− Vm) ≥ 0]| (3)

Figure 3. A visualization of the CRPS score.

4. Methods
As we have noted in the Related Work section, several

methods have been proposed to perform left ventricle seg-
mentation of the heart. Both due to the nature of the class
we are doing this project for, and our belief that CNNs
will outperform them, they form the core of our work. We
assume a basic familiarity with CNNs in this section; the
uninitiated reader is referred to a resource such as [11].

4.1. Augmentations

In this section, we describe some layers and techniques
we used to enhance the performance of our networks.

4.1.1 Batch Normalization

Batch Normalization [9] is a technique to accelerate deep
network training by explicitly normalizing the activations
throughout a neural network to take on a unit Gaussian dis-
tribution. This reduces the internal covariate shift, the phe-
nomenon where the input distribution to each layer changes
as the parameters of its previous layers are updated. Thus,
batch normalization layers are inserted between other lay-
ers in the network; to avoid becoming overly restrictive, the
batch normalization layers have a scale and shift parameter
(which default at 1 and 0, corresponding to a unit Gaussian)
to make sure that the networks still have the power to learn
any function. The key here is that this is a completely dif-
ferentiable operation, and can be backpropagated through.

The normalization is done with respect to a minibatch
of data. That is, if the input to a batchnorm layer is

3

the d-dimensional vector (x1, . . . xd), the output is the d-
dimensional vector (y1, . . . yd) given by:

x̂k =
xk − E[xk]√

Var[xk]
(4)

yk = γkx̂k + βk (5)

where the mean and variance are taken for each dimension
across the minibatch, and γk and βk represent the scale and
shift parameters respecitvely for dimension k.

4.1.2 Dropout

Dropout [23] is an innovative technique to deal with over-
fitting in neural networks. Here, at training time, some
neurons are randomly dropped, along with their connec-
tions, during every forward pass. This prevents units from
co-adapting too much, and forms an effective and simple
method of regularization and model combination. That is,
given a d-dimensional input vector (x1, . . . xd), the out-
put from the dropout layer is the d-dimensional vector
(y1, . . . yd) given by:

yk = Bern(p)xk (6)

where p ∈ [0, 1] is the dropout parameter, interpreted as the
probability of the unit participating in the forward pass, and
Bern(p) is 1 with probability p and 0 with probability 1−p.

4.1.3 Optimization with Adam

Adam [12] is a stochastic gradient descent optimization al-
gorithm which works very well in practice, and which we
used as a default for our experiments. Concretely, the up-
date from xt to xt+1 is done using the gradient dx and the
learning rate γ as follows:2

mt+1 = β1mt + (1− β1)dx (7)

vt+1 = β2vt + (1− β2)dx2 (8)

xt+1 = xt − γ
mt+1√
vt+1 + ε

(9)

Here, β1 and β2 are decay parameters, m is a momentum
vector (which can be interpreted as the “smoothened” gra-
dient, and v is a vector that enables our updates to be per-
parameter adaptive. (A more detailed explanation can be
found at [25]).

4.1.4 Rotational and Shifting Augmentation

There is significant variance in not only the size, but also
the shape and exact location of a patient’s left ventricle in

2Note: this is the update done in the middle of optimization, but during
the beginning of optimization, the update is modified slightly to allow the
vectors m and v to “warm up”. For full details, refer to [12].

an MRI scan. To help our network combat this, we perform
rotational and shifting augmentation: for each point in our
training set, we create copies which are rotated and shifting
by random amounts, and add it to our network with the same
train labels. The idea is that this helps make our model more
invariant to these transformations.

4.2. Loss Function Formulations

Since we are tackling a regression problem, the question
of how to formulate the loss function becomes tricky. We
tried several approaches.

4.2.1 Mean Squared Error

One approach is to make our network predict one real-
valued output, and compute the loss (excluding regulariza-
tion) as simply the mean of the sum of the squared devia-
tions on all the data points in the mini-batch. That is:

L =
1

N

n∑
i=1

(yi − ŷi)2 (10)

We then compute a Gaussian CDF from using the pre-
diction as the mean and the loss as the variance.

4.2.2 Cross-Entropy Loss

Another approach is to discretize our output into d-bins, and
make our networks predict d-values, interpreting each out-
put as the probability that the true value lies in the d-th bin.
We compare this with the true probability distribution, and
measure the deviation as:

L =
1

N

n∑
i=1

− d∑
j=1

yd log(ŷd)

 (11)

We then construct a CDF from this PDF output.

4.2.3 Cosine similarity

This is similar to the approach using cross entropy loss, ex-
cept instead of using the cross entropy loss, we use the co-
sine similarity measure.

L = − A.B

||A||||B||
(12)

Here A is the predicted probability vector and B is the
true probability vector. Note that for both these approaches,
we manually generate the true probability distribution by
taking the true volume as a mean and choosing a small stan-
dard deviation.

4

4.2.4 Continuous Ranked Probability Score

Continuous Ranked Probability Score (CRPS) is the main
evaluation metric for the Kaggle competition we partici-
pated in. It is described in detail in Section 3.3.

To directly minimize the CRPS, we treat the output of
the neural network to be a CDF. We impose non-negativity
and monotonicity by modifying the output when computing
the loss. For instance, all negative values are set to 0 and if
any value v[i + 1] < v[i] we set v[i + 1] = v[i]. The hope
is that the network will learn to predict values such that this
loss is correctly minimized.

4.3. Preprocessing

In this section, we detail the preprocessing steps we un-
dertook.

4.3.1 Resizing, Normalizing and Centering

For simplicity, we resized all images in our dataset to square
64x64 images. Note that they are greyscale, so they don’t
have three colour channels. We then normalize our inputs
and center them, so that their magnitudes don’t exceed 1,
and they are centered at their mean.

4.3.2 Total Variational Denoising

We also apply Total Variational Denoising using the Cham-
bolle algorithm [5]. This smoothens the image, removing
small dark or bright spots that arise frequently in MRI im-
ages. An example is shown in Figure 4; this is the denoised
version of the image in Figure 1.

Figure 4. A denoised DICOM image.

4.4. Incorporation of Metadata

The DICOM images have a number of metadata tags that
incorporate some important data. Some of the the meta-

data tags include – gender, age, slice location, pixel spac-
ing, manufacturer, UNIX time etc. Obviously many of these
tags are unimportant and can be safely ignored. However,
some like age, gender etc. are fairly important and it is pos-
sible to construct reasonable models for predicting the heart
volumes using just the metadata.

We incorporate the metadata into our model by creating
a 3-layer hidden neural net with 100 hidden neurons. The
output layer of this neural net contains 10 neurons and it
is concatenated with the output the the convolutional neu-
ral network, also containing 10 neurons. Finally, we place
another hidden layer on top of this and predict the volume.

We believe this to be more robust that using the neural
network output as a feature along with the metadata tags to
predict the volume. The reason is, building such a model
will assign a larger-than-optimal weight for the neural net-
work predictions since predictions of the neural network on
the training set will be better than the predictions of the neu-
ral network on the validation and test sets.

4.5. Ensembling Techniques

It is well-known that ensembling boosts the performance
of neural networks. [27] We explored various techniques of
ensembling, combining our models with different weights.
In order to predict a probability distribution from a regres-
sion network, a good way of estimating the variance of our
prediction while simultaneously reducing the error by en-
sembling is to train three networks, all with the same data,
but one with the labels y + offset, another with the labels
y− offset, and one with the label y, and combining the pre-
dictions of these on test data.

5. Dataset Information and Statistics
As we mentioned earlier, we work on a dataset released

as part of the 2015 Kaggle Data Science Bowl [1]. An ex-
ample can be found in Figure 1. The training set consists
of 500 patient cases, with many slices of images available
for each case. Each slice is a time series of 30 DICOM im-
ages. Most relevant to us are the short axis views, which cut
through the heart in a way that makes the left ventricle most
visible. We are also given the ground truth values of the
systolic and diastolic volume of each case. The validation
set consists of 200 such cases; very recently, as the contest
came to a close, we were also provided with labels on the
validation data. On disk, the training data is 25 GB, and the
validation data is 10 GB.

In addition, as we discussed in Section 4.4, the images
have a number of metadata tags which could potentially be
useful. We carried out all the preprocessing steps we de-
tailed in Section 4.3 on these images.

Just to get a sense of the numbers, the mean systolic vol-
ume in our dataset was 71.96 mL, with a standard deviation
of 43.2 mL; the mean diastolic volume was 165.86 mL, with

5

a standard deviation of 59.3 mL. Histograms presenting the
distributions of this volume in the training data are shown
in Figures 5 and 6.

Figure 5. Histogram of systole volumes in our dataset.

Figure 6. Histogram of diastole volumes in our dataset.

6. Experiments and Results
In this section, we present different experiments we ran,

and the results obtained.

6.1. Overview of Workflow

After preprocessing our images as described in section
4.3, we feed the time series into our convolutional network
as a volume of 30× 64× 64. We tried several targets, with
different loss formulations, as described in section 4.2. We
used the Adam update, with a learning rate of 10−4. We did
all this with a mini-batch size of 32.

To implement this, we used the Keras [6] framework on
an Nvidia Tesla K40 GPU.

6.2. Single Images

We attemped to feed in single 64×64 images and predict
volumes from the single images. However, we found this to
be highly infeasible owing to the large computational time

required per epoch. This takes 30 times longer per epoch to
run. Moreover, we did not see any performance improve-
ments after running 5 epochs.

6.3. Number of layers

We tried 3 architectures – a 6 layer net, a 7 layer net
and a 10 layer net. We found that the 7 layer net achieved
better results that both the 6 layer and 10 layer nets. It is
possible that if we played with the learning rate, we would
have achieved good results with the 10 layer net as well. To
enable ourselves to perform more experiments and iterate
quickly, we chose to go ahead with the 7 layer net.

Table 1. Results with different number of layers after 100 epochs
Train CRPS Val CRPS

6 layers 0.0344 0.0378
7 layers 0.0258 0.0297
10 layers 0.0306 0.0367

6.4. Batch Normalization

Batch normalization had little impact on the speed at
which our model trained and but it doubled the amount of
time needed per epoch. Therefore, we decided to enable
batch normalization only for the last FC layer.

6.5. Dropout

As expected, adding dropout to our model helped us re-
duce overfitting. Therefore for all further experiments, we
enabled dropout.

Table 2. Results with and without dropout after 100 epochs
Train CRPS Val CRPS

With Dropout 0.0258 0.0297
Without Dropout 0.0244 0.0312

6.6. Predicting PDF

Predicting the CDF from the PDF as in 4.2.2 and 4.2.3
did not work well at all. The CRPS did not decrease in any
significant way. We did not run many iterations as it was
not producing results in the right direction.

6.7. Predicting CDF

Predicting the CDF directly as in 4.2.4 produces results
that are a little worse than predicting volumes and construct-
ing a CDF from the volumes.

6.8. Including metadata

We include the metadata as in 4.4 and quite surprisingly
our results did not show any improvement.

6

Table 3. Results with direct CDF prediction and CDF construction
after 300 epochs

Train CRPS Val CRPS Test CRPS
Direct CDF 0.03975 0.03715 0.0410

Volume to CDF 0.0197 0.0212 0.0326

Table 4. Results with and without metadata after 300 epochs
Train CRPS Val CRPS Test CRPS

With metadata 0.0240 0.0305 0.0332
Without metadata 0.0197 0.0212 0.0326

6.9. Error Analysis

To perform error analysis, we take predictions of sys-
tolic and diastolic volumes, identify cases in which the pre-
dictions are good/poor and attempt to analyze the reason
behind good predictions and poor predictions.

In our analysis, we identified 3 broad cases in which the
predictions are poor.

6.9.1 Low Ejection Fraction

In the training set, only 6% of the patients have an ejection
fraction that is lower than 40. The percentage of patients
that have a low ejection fraction is similar in the validation
set. However, because the number of patients with a low
ejection fraction is so low, the model does a poor job of
predicting volumes for such patients.

Correlation between Systolic MSE and EF = -0.435.
Correlation between Diastolic MSE and EF = -0.26

This negative correlation is actually quite undesirable.
A positive correlation is desirable because a positive
correlation implies a high false positive rate and a low
true negative rate. That is, if the ejection fraction is low,
then the model should definitely catch it but if the ejection
fraction is normal, then it is okay to report that as low. A
low ejection fraction will likely lead to further investigation
by the cardiologist. .

6.9.2 Bright patches

We found that the model does quite poorly only images that
have bright patches in them. These bright patches are ar-
tifacts caused by the MRI machine operator. Better pre-
processing should get rid of these artifacts and improve our
results on such images. We attempted to solve this issue
restricting the pixel values to the middle 90 percentile and
rescaling the images. However, this did not give us a sig-
nificant improvement. Any gains we made on the images
with bright patches were offset by the losses we made on
the other images.

Figure 7. Error in Systolic Volume vs Ejection Fraction

Figure 8. Example of an image with a bright patch

6.9.3 Shaky Images

Sometimes, the images are distorted due to movements of
the patient during the MRI Scan. This jittering in the image
causes our model to output poor results.

We do not expect our model to do very well for such im-
ages, but it would be useful to discard these images in or
assign a lower weight to these images when making pre-
dictions. A clever way of identifying and discarding shaky
images will help mitigate this issue.

6.10. Best Model

Our best model was a 7-layer convolutional network,
which takes a 30 × 64 × 64 volume as input, and has
the following architecture: Conv64,3x3 - ReLu -
Conv64,3x3 - MaxPool2x2 - Dropout0.25
- Conv96,3x3 - ReLu - Conv96,3x3 -
ReLu - MaxPool2x2 - Dropout0.25 -
Conv128,2x2 - ReLu - Conv128,2x2 - ReLu
- MaxPool2x2 - Dropout0.25 - FC1024 -
BatchNorm - ReLu - Dropout0.5 - Out.

7

Figure 9. Example of a shaky image

Figure 10. History of Training Loss Versus Epoch.

Figure 11. History of Training Loss Versus Epoch.

This model, augmented with the ensembling described in
Section 4.5, gave us our best performance, reaching the top
20% of the Kaggle contest. It achieved a CRPS of 0.0322
on the test set. The history of CRPS and training loss
respectively versus epoch are shown in Figures 11 and 10.

7. Conclusions
After running several experiments, we have a model

which is reasonably successful in predicting the systolic and
diastolic volume of a heart from MRI images. We found,

however, that the problem is even harder for patients with a
low ejection fraction, which is unfortunate. The best model
we obtained was on running a 7-layer convolutional net-
work on denoised images; this put us in the top 20% of the
Kaggle competition.

How good is our model? What do these CRPS numbers
mean? The average cardiologist is usually off by around 10
mL in computing systolic and diastolic volumes. The me-
dian error of our model is 17 mL for the systolic volume and
30 mL for the diastolic volume. While this is not something
we would trust our lives with, we believe this shows that
with some tuning and more data, it is possible to achieve
expert-like performance.

8. Future Work

This section details how we plan to take things forward
from here.

8.1. Changes to the input layer

Currently, we predict the volume based on 30 images
from a single slice. Clearly, it is not a great idea to attempt
to predict the volume based on the output of a single slice.
It would be much better to construct a 3-D image by con-
catenating these images and attempt to predict the volume
using that. The biggest hurdle in this regard is that the posi-
tion of the slices is fairly arbitrary and the number of slices
per person is variable.

8.2. Better incorporation of metadata

As highlighted earlier, incorporation of metadata, sur-
prisingly, did not give us any performance improvements.
This may partly be due to the way in which we incorporate
the metadata. We could look at either using the metadata
along with the FC-7 features, or using the metadata to pre-
process the inputs fed into the neural network.

8.3. Different Approaches for predicting CDF

Is there a natural way of predicting a CDF from a neu-
ral network by restricting the outputs to be in [0, 1] and
non-decreasing? The approaches which we took incorpo-
rate these in the loss function, but this is not very effective
and our predictions are worse than if we directly predict a
volume and construct a CDF.

Similarly, is there a simple way of minimizing the CRPS
score directly by allowing the neural network to output a
PDF? When predicting PDFs and constructing a CDF from
it, we used a cross-entropy or cosine similarity loss but these
do not directly translate to minimizing CRPS, which is the
evaluation metric we care about. Is there is a better proxy
for CRPS than cosine similarity or cross entropy error?

8

References
[1] Data science bowl cardiac challenge data.
[2] Ejection fraction heart failure measurement. http:

//www.heart.org/HEARTORG/Conditions/
HeartFailure/DiagnosingHeartFailure/
Ejection-Fraction-Heart-Failure-Measurement_
UCM_306339_Article.jsp.

[3] A. M. Ali and A. A. Farag. Advances in Visual Comput-
ing: 4th International Symposium, ISVC 2008, Las Vegas,
NV, USA, December 1-3, 2008. Proceedings, Part I, chapter
Automatic Lung Segmentation of Volumetric Low-Dose CT
Scans Using Graph Cuts, pages 258–267. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[4] C. Baillard, P. Hellier, and C. Barillot. Segmentation of brain
3d mr images using level sets and dense registration. Medical
image analysis, 5(3):185–194, 2001.

[5] A. Chambolle. An algorithm for total variation minimiza-
tion and applications. Journal of Mathematical imaging and
vision, 20(1-2):89–97, 2004.

[6] F. Chollet. keras. https://github.com/fchollet/
keras, 2015.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Jour-
nal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[8] M. M. Hadhoud, M. I. Eladawy, A. Farag, F. M. Montevec-
chi, and U. Morbiducci. Left ventricle segmentation in car-
diac mri images. American Journal of Biomedical Engineer-
ing, 2(3):131–135, 2012.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[10] K. Kamnitsas, C. Ledig, V. Newcombe, J. Simpson, A. Kane,
D. Menon, D. Rueckert, and B. Glocker. Segmentation of
traumatic brain injuries with convolutional neural networks,
2015.

[11] A. Karpathy. Cs231n convolutional networks
notes. http://cs231n.github.io/
convolutional-networks/, 2016.

[12] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[13] H. S. M.-H. B. B. Kleesiek, Urban. Deep mri brain extrac-
tion: A 3d convolutional neural network for skull stripping.

[14] D. Koller and N. Friedman. Probabilistic graphical models.
[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[16] Y. LeCun, K. Kavukcuoglu, C. Farabet, et al. Convolutional
networks and applications in vision.

[17] R. Li, W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji.
Deep learning based imaging data completion for improved
brain disease diagnosis. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2014, pages 305–
312. Springer, 2014.

[18] Y.-L. Lu, K. A. Connelly, A. J. Dick, G. A. Wright, and P. E.
Radau. Automatic functional analysis of left ventricle in car-
diac cine mri. Quantitative imaging in medicine and surgery,
3(4):200, 2013.

[19] R. M. Mohamed, A. El-Baz, and A. A. Farag. Image mod-
eling using gibbs-markov random field and support vector
machines algorithm. International Journal of Information
Technology, 1(4).

[20] A. Ng. Sparse autoencoder.
[21] A. Payan and G. Montana. Predicting alzheimer’s disease: a

neuroimaging study with 3d convolutional neural networks.
arXiv preprint arXiv:1502.02506, 2015.

[22] J. Riegler, K. K. Cheung, Y. F. Man, J. O. Cleary, A. N. Price,
and M. F. Lythgoe. Comparison of segmentation methods
for mri measurement of cardiac function in rats. Journal of
Magnetic Resonance Imaging, 32(4):869–877, 2010.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[24] K. Suzuki. Special issue on machine learning for medical
imaging. Algorithms, 2:3.

[25] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
2012.

[26] S. Wang and R. M. Summers. Machine learning and radiol-
ogy. Medical image analysis, 16(5):933–951, 2012.

[27] Z.-H. Zhou, J. Wu, and W. Tang. Ensembling neural net-
works: many could be better than all. Artificial intelligence,
137(1):239–263, 2002.

[28] D. Zukić, A. Elsner, Z. Avdagić, and G. Domik. Neural
networks in 3d medical scan visualization. arXiv preprint
arXiv:0806.2925, 2008.

9

http://www.heart.org/HEARTORG/Conditions/HeartFailure/DiagnosingHeartFailure/Ejection-Fraction-Heart-Failure-Measurement_UCM_306339_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HeartFailure/DiagnosingHeartFailure/Ejection-Fraction-Heart-Failure-Measurement_UCM_306339_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HeartFailure/DiagnosingHeartFailure/Ejection-Fraction-Heart-Failure-Measurement_UCM_306339_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HeartFailure/DiagnosingHeartFailure/Ejection-Fraction-Heart-Failure-Measurement_UCM_306339_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HeartFailure/DiagnosingHeartFailure/Ejection-Fraction-Heart-Failure-Measurement_UCM_306339_Article.jsp
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/

