

1

1

Abstract

The motive of this paper is to come up with a fully

automatic tumor segmentation approach using
convolutional neural networks. Tumors can appear
anywhere in the brain and have almost any kind of shape,
size, and contrast. These reasons motivate the use of a
flexible, high capacity deep neural network. This is a
summary of the work done in this regard with an effort to
describe in as much detail the methodology used. The
BraTS (Brain Tumor Segmentation challenge dataset) that
contains brain MRI scans for more than 200 patients, is
used in this study. A patch wise segmentation approach is
used and we see 93% accuracy on the test set of patches.
A variety of experiments are done around the depth of the
neural network used, the different architectures etc to
train the best architecture for this task.

1. Introduction

The proposed networks are tailored to gliomas
glioblastomas (both low and high grade) pictured in MR
images. While gliomas are the most common brain
tumors, they can be less aggressive (i.e. low grade) in a
patient with a life expectancy of several years, or more
aggressive (i.e. high grade) in a patient with a life
expectancy of at most 2 years.

Although surgery is the most common treatment for brain
tumors, radiation and chemotherapy may be used to slow
the growth of tumors that cannot be physically removed.
Magnetic resonance imaging (MRI) provides detailed
images of the brain, and is one of the most common tests
used to diagnose brain tumors. All the more, brain tumor
segmentation from MR images can have great impact for
improved diagnostics, growth rate prediction and
treatment planning.

While some tumors such as meningiomas can be easily
segmented, others like gliomas and glioblastomas are
much more difficult to localize. These tumors (together

with their surrounding edema) are often diffused, poorly
contrasted, and extend tentacle-like structures that make
them difficult to segment. Another fundamental difficulty
with segmenting brain tumors is that they can appear
anywhere in the brain, in almost any shape and size. This
makes this problem a typical neural network problem.
Since glioblastomas are infiltrative tumors, their borders
are often fuzzy and hard to distinguish from healthy
tissues. As a solution, more than one MRI modality is
often needed, e.g. T1 (spin- lattice relaxation), T1-
contrasted (T1C), T2 (spin-spin relaxation), proton density
(PD) contrast imaging, diffusion MRI (dMRI), and fluid
attenuation inversion recovery (FLAIR) pulse sequences.
The BraTS dataset provides four modalities for each
patient: T1, T2, T1c and FLAIR. The contrast between
these modalities gives almost a unique signature to each
tissue type. We follow a patch based segmentation
approach where we extract patches from the 3D image of
the brain (30X30 patch size), with the label of the patch
being the label of the center pixel of the patch. The idea is
to use the modalities as the channels for patches of an
image instead of the traditional rgb channel.

The task is not only to segment the whole glioma, but also
different substructures of it. Each pixel in a volume should
be classified with one label that is arranged on a scale of
how “serious” the label is. The labels (shown with
appropriate labels used) are, ordered after increasing
seriousness:

• normal tissue (0)
• edema (1)
• non-enhancing core (2)
• necrotic core (3)
• enhancing core (4)

Hence the input to the CNN is a (4X30X30) matrix, with
the goal of predicting the label of the center of the given
patch. Hence, if you were to use the given architecture to
segment tumors from an MRI scan, you would go from
voxel to voxel, extracting a patch and predicting the label.

Automatic Tumor Segmentation from MRI scans

Raunaq Rewari

Stanford University
raunaq@stanford.edu

2

2

2. Related Work

Before the dawn of the popularity of CNNs for this task,
other methods were used. Some of these methods are
segmentation by thresholding[1], region based methods[2]
etc. There are two kinds of general methods- generative
v/s discriminative methods. The generative methods
assume some prior knowledge, where methods like neural
networks make no such assumption. Other neural network
based approaches[3] for example predict the middle (d x d)
labels in a (d’ x d’) [d’ >d] patch. The size of d and d’ has
been optimized to get the best results. Other groups that
have used the patch based segmentation approach use a
two-pathway architecture[4], in which each pathway is
responsible for learning about either the local details or the
larger context of tissue appearances (e.g. whether or not it
is close to the skull). The pathways are joined by
concatenating their feature maps immediately before the
output layer. In another method, instead of outputting
labels from the CNN, probability distributions for a region
are outputted which are all merged at the end to give the
final segmentation. The work by Pinheiro and Collobert[6]
uses a basic CNN to make predictions for each pixel and
further improves the predictions by using them as extra
information in the input of a second CNN model. Other
work[7] involves several distinct CNNs processing the
image at different resolutions. The final per-pixel class
prediction is made by integrating information learned from
all CNNs.

Other state of the art segmentation approaches, outside of
the brain imaging domain as the fully convolutional
approach for semantic segmentation[5]. This is a more
computationally efficient way of performing segmentation
and does not assume an input size. 3-D convolutions have
also been tried for other datasets and may prove to be
useful for this task.

Other segmentation tasks in the healthcare domain use the
features extracted after passing through a CNN with a
random forest at the end.

3. Methodology

Like mentioned earlier in the report, we use a patch based
segmentation approach. The convolutional network
architecture and implementation are carried out using
CAFFE.

CNNs are the continuation of the multi-layer perceptron.
In the MLP, a unit performs a simple computation by
taking the weighted sum of all other units that serve as
input to it. The network is organized into layers of units,

where each unit in one layer is connected to all the other
units in the previous layer.

The essence of CNNs is the convolutions. The main trick
with convolutional networks that avoids the problem of
too many parameters is sparse connections. Every unit is
not connected to every other unit in the previous layer,
like in traditional neural networks. Instead, every unit has
its own receptive field, a grid of units in the previous layer
which it receives input from. The receptive fields of units
typically overlap. This way, the network can also take
advantage of the fact that images most often have high
spatially local correlations. Additionally, each unit in a
layer share their weights. If a receptive field consists of k
units, then all units in the receiving layer use the same set
of k weights. However by sharing weights, only one
specific feature of an image can be detected by all units in
a layer. Therefore, each layer has multiple filters, where
each filter has its own set of weights and allows for
multiple features to be detected in a layer. The non-
linearity generally used with CNNs is ReLU (rectified
linear unit), which has the form:
f (x) = max(0, x)

Figure 1- Figure showing a convolution layer and the workings of
getting an output by convolving on the inputs.

It is generally found that increasing the number of
convolutional layers (i.e. making the network deeper)
results in better results by increasing the number of
parameters. To prevent the model from overfitting, it is
suggested to use regularization techniques like L1 or L2
regularization and dropout.

Another important concept used while designing a CNN
model is pooling. It is used to decrease the input
dimensionality of the next layer. The idea is to summarize
information in a filter over a small rectangular patch of
neighboring units instead of using unit output individually
as input to the next layer. This method can be used
between all, some or none of the convolutional layers. The
main objective of performing this summary of information
is to discard irrelevant details and keep the features as
information-rich as possible. Examples of effects are
invariance to changes in position and lighting conditions,
robustness to clutter and compact representation. By
reducing the input dimensionality, it also reduces the

3

3

computational costs of the network, which is necessary to
implement really deep architectures. There can be multiple
kinds of pooling functions possible over the neighborhood
of the surrounding pixels like maximum, average of the
pixels.

Figure 2- Figure showing an example of pooling (max pooling in this
case) over a 4 x 4 neighborhood window

A typical CNN consists of convolutional layers in the
beginning followed by fully-connected layers towards the
end. This fully connected layer can be thought of as
learning the abstract details of the image while the
convolutional layers learn the local details.

The most basic piece of operation in neural networks is the
wTx + b computation at each step, where w is the weight
matrix and x is the input data and b is the bias. At the final
layers, the same computation is used to calculate the class
scores and using that the loss function is calculated. The
loss function is a measure of the unhappiness of the
classification. In classification, the output layer typically
has a unit for each class it is supposed to classify. A
simple softmax function is commonly used to make sure
the output y for each position j is in the range [0,1] and
sum to 1:

The loss in case of softmax is the negative log of the
probability of the correct class, shown as follows:

The more examples that the model classifies correctly, the
lower the loss goes. Monitoring the loss is an excellent
way of judging the efficacy of the learning system.
Ideally, we want the loss to go down as much as possible.

It important to note here that the network needed to be
initialized from scratch and fine-tuning of a pretrained
network was not possible. This is because most pre-trained
networks contain three channels, instead of the 4 in our
case.

It is important to mention here that the network needs
hyper-parameter tuning i.e. the model parameters like
learning rate, batch size, weight decay need to be tuned.

4. Dataset

The data comes from the BRATS (multimodal Brain
Tumor Segmentation) challenge. It consists of four MRI
modalities – T1, T1-c, T2 and FLAIR. There were a total
of 230 brains in the data set, out of which we only used
30.

Each entry in the dataset looks as follows:

Figure 3- The first four images from left to right show the MRI
modalities used as input channels to various CNN models and the
fifth image shows the ground truth labels where (GREEN) edema,
(YELLOW) enhanced tumor, (RED) necrosis, (BLUE) non-enhanced
tumor.

Since majority of the data of the brain consists of healthy
tissue (label 0), there is a need to balance the number of
examples of each class. The total number of tumorous
voxels is slightly more than the total number of healthy
tissue voxels.

The first part of generating the data to work with is to
extract 30 x 30 patches from the 3-D images by going
slice by slice and extracting a 30 x 30 patch around every
second voxel for the tumorous voxels and every fourth
voxel from the healthy voxels. The labels of the voxel is
stored separately. Both the patch and the labels are used in
making lmdbs which are used to input data into CAFFE.

Each patch goes through a few pre-processing steps. The
first is N4ITK bias field correction. Magnetic resonance
images often exhibit image intensity non-uniformities that
are the result of magnetic field variations rather than
anatomical differences. These artifacts, often described as
shading or bias, can be produced by imperfections in the
field coils used in the systems or by magnetic
susceptibility changes at the boundaries between
anatomical tissue and air. To account for this variation,
bias field correction is applied. Nyul’s intensity
normalization is applied next. Intensity normalization is an
important pre-processing step in the study and analysis of
Magnetic Resonance Images (MRI) of human brains. As
most parametric supervised automatic image segmentation
and classification methods base their assumptions
regarding the intensity distributions on a standardized

4

4

intensity range, intensity normalization takes on a very
significant role. One of the fast and accurate approaches
proposed for intensity normalization is that of Nyul and
colleagues.

The data obtained after the pre-processing is shuffled and
75% of the data is used for training, 15% for validation
and the rest for training.

The expected output of the model would be as follows:

Figure 4- Region T1 is the true lesion area (outline blue), T0 is the
remaining normal area. P1 is the area that is predicted to be lesion
by—for example—an algorithm (outlined red), and P0 is predicted to
be normal. T1 has some overlap with P1 in the right lateral part of the
lesion, corresponding to the area referred to as T1 ^ P1 in the
definition of the Dice score

The model will classify each voxel into one of the 5
categories and the output will be used to calculate the Dice
score. For each class, we can think of outputting a binary
map with algorithmic predictions P = {0,1} and the
experts' consensus truth T= {0,1}, and we calculated the
Dice score as:

where ^ is the logical AND operator, | . | is the size of the
set (i.e., the number of voxels belonging to it). These dice
scores can be compared with Dice scores obtained for
doctors who have also tried to segment brain tumors from
MRIs.

Figure 5- Figure showing the patches used as training data in the
four modalities (from left to right: FLAIR, T1c, T2, T1)

5. Results and Discussion

Now that the input format of the data along with the
objective is clear, it is imperative to talk about results.
This part will be divided into different sections that focus
on different aspects of training the best CNN. The final
model that was used for training is shown below. It gives
an accuracy of 93% on the test data.

Figure 6- Final architecture used for training the model

Depth of the network
We started with a 4 layer network with 3 convolutional
layers and a fully connected layer that gave an accuracy of

5

5

86% on the validation set. Increasing the number of
convolutional layers till 5 increased the validation set
accuracy, but an increase after that led to no change in
accuracy. Even though a deeper network is generally
preferred, it is always better to use one that has lower
number of parameters. We also experimented with the
number of fully connected layers at the end and realized
that having just one was sufficient.

The size of the blobs in CAFFE that contain the data is
shown below:

The weights used with this architecture have also been
outlined below:

Number of neurons

This section involves discussion on the number of
activation maps to use for the convolutional layers and the
number of neurons used in the fully connected layer. The
model with all activation maps as 25 gave a validation set
accuracy of 75%, which prompted the increase in the
number of activation maps to 50. Remember that these
intermediate results being discussed here are without
hyper-parameter tuning. Increasing activation maps for all
layers to be 50, increased the validation set accuracy to
80%. Further increasing the activation maps lead to no
substantial increase in accuracy and keeping
computational costs in mind, the activation maps for all
layers were fixed to 50.

Pooling layers

Like mentioned earlier, pooling is used to summarize
information from the previous layer and pass it on to the
next. It is used after a convolutional – ReLU layer

combination. The number of pooling layers in the model
were also optimized, and it was found that only one
pooling layer is sufficient and the best results were seen if
the pooling layer was placed immediately after the first
convolutional layer. The reason behind this might be that
there is too much overlap between one patch to the other
and it would suit the model more if only the essential
details get passed on forward.

Learning rate and solver

Various solvers for model optimization were tried in order
to get the best results, like stochastic gradient descent
(SGD), Adam, AdaGrad, AdaDelta and RMSProp. It was
found that the Adam solver with hyper-parameter tuning
gave the best results and was chose as the solver.
After some hyper-parameter tuning, the model gave the
best results for a base learning rate (base_lr) of 0.001,
using an “inverse” decay learning policy with gamma =
0.0001 and power = 0.75. The learning rate at the current
iteration (iter) is as follows:

base_lr * (1 + gamma * iter) ^ (- power)

Batch size and epochs

The batch size refers to the number of training examples
considered for one update of the optimization solver.
While choosing the batch size, a couple of things are kept
in mind- the computational cost and the uncertainty of
update from a small batch v/s a larger batch.
The smaller batch size may give higher noise than a larger
batch size. However, if the error function has a lot of local
minimas, our model would get stuck in the first minima it
fell into. Here, using small batches is helpful as it will get
more noise in our estimate of the gradient. This noise
might be enough to push us out of some of the shallow
valleys in the error function. After running through a few
different batch sizes (from 64 to 512), a model with batch
size equal to 128 worked the best.
Also, the number of training epochs used was 2 as
increasing the number of epochs after that showed no
change in the accuracy.

Kernel size for convolution

Experiments with kernel size 3, 5, 7 were tried, and a
decrease in accuracy was observed with increase in kernel
size. This coupled with the fact that a small kernel size has
lesser number of parameters presents a win - win situation
and kernel size of 3 was set.

6

6

After iterating through the experiments described
previously on the validation set, the final test accuracy was
seen to be 93% as can be seen in figure 7.

Figure 7- Figure showing the accuracy on the test set.

The confusion matrix, staple for classification problems,
can also be calculated and is shown in Table 1.

Table 1- Confusion Matrix

Precision and recall can be calculated from the confusion
matrix. Precision is the fraction of events where we
correctly declared i out of all instances where the
algorithm declared i. Conversely, recall is the fraction of
events where we correctly declared i out of all of the cases
where the true of state of the world is i. The precision for
label 0 i.e. for the healthy tissue is 98.3%, which is a good
sign as the model is incorrectly calling a patch as
tumorous if its actually not.

Label wise accuracy can also be seen in Table 2.

Other architectures used

To help take into account the local and global features in
the input patch, two different kernel sizes were used to
train two different pathways. One method involved using a
9 x 9 kernel with pooling and convolutional layers to
match the size of the data after the convolutional and

pooling layers from the first path (axial size of 15 x 15).
Concatenating the two paths before feeding to the fully
connected layer decreased the accuracy slightly. In another
architecture, a much larger 15 x 15 kernel was used with
stride 15 to get a 4 x 4 output. This was combined with 15
x 15 max and average pooling on the input data to give
three new pathways, which were used with the main
pathway that was also altered to match the 2 x 2 output.
This method very slightly increased the accuracy of the
model.

6. Conclusions and future work

We were able to successfully implement a Convolutional
Neural Network based approach to segment tumors from
MRI scans using a moderately deep network with not too
many parameters. We were able to get a high classification
accuracy.

The next step on this track could be to try 3D
convolutional networks on each patch and compare with
the 2-D convolution method. Another possible approach
could be to use a fully convolutional approach and be able
to input the entire brain scan instead of patches.

8. References

1. P Gibbs, D L Buckley, S J Blackband, and A Horsman.

Tumour volume determination from MR images by
morphological segmentation. Physics in medicine
and biology, 41:2437–2446, 1996.

2. YM. Salman. Modified technique for volumetric brain
tumor measurements. Journal of Biomedical Science
and Engineering, 02(February):16–19, 2009.

3. Pavel Dvorak, Bjoern Menze.
Structured Prediction with Convolutional Neural
Networks for Multimodal Brain Tumor
Segmentation. BRATS proceedings

4. Mohammad Havaei, Francis Dutil, Chris Pal, Hugo
Larochelle, and Pierre-Marc Jodoin
A Convolutional Neural Network Approach to Brain
Tumor Segmentation. BRATS proceedings

5. Jonathan Long, Evan Shelhamer, Trevor Darrell
Fully Convolutional Networks for Semantic
Segmentation

6. Pinheiro, P., Collobert, R., 2014.
Recurrent convolutional neural networks for scene
labeling, in: Proceedings of The 31st International
Conference on Machine Learning, pp. 82–90.

7. Farabet, C., Couprie, C., Najman, L., LeCun, Y., 2013.
Learning hierarchical features for scene labeling.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on 35, 1915–1929.

