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Abstract 

 
The motive of this paper is to come up with a fully 

automatic tumor segmentation approach using 
convolutional neural networks. Tumors can appear 
anywhere in the brain and have almost any kind of shape, 
size, and contrast. These reasons motivate the use of a 
flexible, high capacity deep neural network. This is a 
summary of the work done in this regard with an effort to 
describe in as much detail the methodology used. The 
BraTS (Brain Tumor Segmentation challenge dataset) that 
contains brain MRI scans for more than 200 patients, is 
used in this study. A patch wise segmentation approach is 
used and we see 93% accuracy on the test set of patches. 
A variety of experiments are done around the depth of the 
neural network used, the different architectures etc to 
train the best architecture for this task. 
 

1. Introduction 

The proposed networks are tailored to gliomas 
glioblastomas (both low and high grade) pictured in MR 
images. While gliomas are the most common brain 
tumors, they can be less aggressive (i.e. low grade) in a 
patient with a life expectancy of several years, or more 
aggressive (i.e. high grade) in a patient with a life 
expectancy of at most 2 years.  

Although surgery is the most common treatment for brain 
tumors, radiation and chemotherapy may be used to slow 
the growth of tumors that cannot be physically removed. 
Magnetic resonance imaging (MRI) provides detailed 
images of the brain, and is one of the most common tests 
used to diagnose brain tumors. All the more, brain tumor 
segmentation from MR images can have great impact for 
improved diagnostics, growth rate prediction and 
treatment planning.  

While some tumors such as meningiomas can be easily 
segmented, others like gliomas and glioblastomas are 
much more difficult to localize. These tumors (together 

with their surrounding edema) are often diffused, poorly 
contrasted, and extend tentacle-like structures that make 
them difficult to segment. Another fundamental difficulty 
with segmenting brain tumors is that they can appear 
anywhere in the brain, in almost any shape and size. This 
makes this problem a typical neural network problem.  
Since glioblastomas are infiltrative tumors, their borders 
are often fuzzy and hard to distinguish from healthy 
tissues. As a solution, more than one MRI modality is 
often needed, e.g. T1 (spin- lattice relaxation), T1-
contrasted (T1C), T2 (spin-spin relaxation), proton density 
(PD) contrast imaging, diffusion MRI (dMRI), and fluid 
attenuation inversion recovery (FLAIR) pulse sequences. 
The BraTS dataset provides four modalities for each 
patient: T1, T2, T1c and FLAIR. The contrast between 
these modalities gives almost a unique signature to each 
tissue type.  We follow a patch based segmentation 
approach where we extract patches from the 3D image of 
the brain (30X30 patch size), with the label of the patch 
being the label of the center pixel of the patch. The idea is 
to use the modalities as the channels for patches of an 
image instead of the traditional rgb channel.  
 
The task is not only to segment the whole glioma, but also 
different substructures of it. Each pixel in a volume should 
be classified with one label that is arranged on a scale of 
how “serious” the label is. The labels (shown with 
appropriate labels used) are, ordered after increasing 
seriousness:  
 
• normal tissue (0) 
• edema (1) 
• non-enhancing core (2) 
• necrotic core (3) 
• enhancing core (4) 
 
Hence the input to the CNN is a (4X30X30) matrix, with 
the goal of predicting the label of the center of the given 
patch. Hence, if you were to use the given architecture to 
segment tumors from an MRI scan, you would go from 
voxel to voxel, extracting a patch and predicting the label. 
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2. Related Work 
 
Before the dawn of the popularity of CNNs for this task, 
other methods were used. Some of these methods are 
segmentation by thresholding[1], region based methods[2] 
etc. There are two kinds of general methods- generative 
v/s discriminative methods. The generative methods 
assume some prior knowledge, where methods like neural 
networks make no such assumption. Other neural network 
based approaches[3] for example predict the middle (d x d) 
labels in a (d’ x d’) [d’ >d] patch. The size of d and d’ has 
been optimized to get the best results. Other groups that 
have used the patch based segmentation approach use a 
two-pathway architecture[4], in which each pathway is 
responsible for learning about either the local details or the 
larger context of tissue appearances (e.g. whether or not it 
is close to the skull). The pathways are joined by 
concatenating their feature maps immediately before the 
output layer. In another method, instead of outputting 
labels from the CNN, probability distributions for a region 
are outputted which are all merged at the end to give the 
final segmentation. The work by Pinheiro and Collobert[6] 
uses a basic CNN to make predictions for each pixel and 
further improves the predictions by using them as extra 
information in the input of a second CNN model. Other 
work[7] involves several distinct CNNs processing the 
image at different resolutions. The final per-pixel class 
prediction is made by integrating information learned from 
all CNNs.  
 
Other state of the art segmentation approaches, outside of 
the brain imaging domain as the fully convolutional 
approach for semantic segmentation[5]. This is a more 
computationally efficient way of performing segmentation 
and does not assume an input size. 3-D convolutions have 
also been tried for other datasets and may prove to be 
useful for this task.  
 
Other segmentation tasks in the healthcare domain use the 
features extracted after passing through a CNN with a 
random forest at the end.  
 
 
3. Methodology 
 
Like mentioned earlier in the report, we use a patch based 
segmentation approach. The convolutional network 
architecture and implementation are carried out using 
CAFFE.  
 
CNNs are the continuation of the multi-layer perceptron. 
In the MLP, a unit performs a simple computation by 
taking the weighted sum of all other units that serve as 
input to it. The network is organized into layers of units, 

where each unit in one layer is connected to all the other 
units in the previous layer.  
 
The essence of CNNs is the convolutions. The main trick 
with convolutional networks that avoids the problem of 
too many parameters is sparse connections. Every unit is 
not connected to every other unit in the previous layer, 
like in traditional neural networks. Instead, every unit has 
its own receptive field, a grid of units in the previous layer 
which it receives input from. The receptive fields of units 
typically overlap. This way, the network can also take 
advantage of the fact that images most often have high 
spatially local correlations. Additionally, each unit in a 
layer share their weights. If a receptive field consists of k 
units, then all units in the receiving layer use the same set 
of k weights. However by sharing weights, only one 
specific feature of an image can be detected by all units in 
a layer. Therefore, each layer has multiple filters, where 
each filter has its own set of weights and allows for 
multiple features to be detected in a layer. The non-
linearity generally used with CNNs is ReLU (rectified 
linear unit), which has the form: 
f (x) = max(0, x) 
 

 
Figure 1- Figure showing a convolution layer and the workings of 
getting an output by convolving on the inputs. 
  
It is generally found that increasing the number of 
convolutional layers (i.e. making the network deeper) 
results in better results by increasing the number of 
parameters. To prevent the model from overfitting, it is 
suggested to use regularization techniques like L1 or L2 
regularization and dropout.  
 
Another important concept used while designing a CNN 
model is pooling. It is used to decrease the input 
dimensionality of the next layer. The idea is to summarize 
information in a filter over a small rectangular patch of 
neighboring units instead of using unit output individually 
as input to the next layer. This method can be used 
between all, some or none of the convolutional layers. The 
main objective of performing this summary of information 
is to discard irrelevant details and keep the features as 
information-rich as possible. Examples of effects are 
invariance to changes in position and lighting conditions, 
robustness to clutter and compact representation. By 
reducing the input dimensionality, it also reduces the 
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computational costs of the network, which is necessary to 
implement really deep architectures. There can be multiple 
kinds of pooling functions possible over the neighborhood 
of the surrounding pixels like maximum, average of the 
pixels.  
 

 
Figure 2- Figure showing an example of pooling (max pooling in this 
case) over a 4 x 4 neighborhood window 
 
A typical CNN consists of convolutional layers in the 
beginning followed by fully-connected layers towards the 
end. This fully connected layer can be thought of as 
learning the abstract details of the image while the 
convolutional layers learn the local details.  
 
The most basic piece of operation in neural networks is the 
wTx + b computation at each step, where w is the weight 
matrix and x is the input data and b is the bias. At the final 
layers, the same computation is used to calculate the class 
scores and using that the loss function is calculated. The 
loss function is a measure of the unhappiness of the 
classification. In classification, the output layer typically 
has a unit for each class it is supposed to classify. A 
simple softmax function is commonly used to make sure 
the output y for each position j is in the range [0,1] and 
sum to 1:  

 
The loss in case of softmax is the negative log of the 
probability of the correct class, shown as follows: 

 
The more examples that the model classifies correctly, the 
lower the loss goes. Monitoring the loss is an excellent 
way of judging the efficacy of the learning system. 
Ideally, we want the loss to go down as much as possible.  
 
It important to note here that the network needed to be 
initialized from scratch and fine-tuning of a pretrained 
network was not possible. This is because most pre-trained 
networks contain three channels, instead of the 4 in our 
case. 
 

It is important to mention here that the network needs 
hyper-parameter tuning i.e. the model parameters like 
learning rate, batch size, weight decay need to be tuned. 
 
 
4. Dataset  
 
The data comes from the BRATS (multimodal Brain 
Tumor Segmentation) challenge. It consists of four MRI 
modalities – T1, T1-c, T2 and FLAIR. There were a total 
of 230 brains in the data set, out of which we only used 
30.  
 
Each entry in the dataset looks as follows: 
 

 
 
Figure 3- The first four images from left to right show the MRI 
modalities used as input channels to various CNN models and the 
fifth image shows the ground truth labels where (GREEN) edema, 
(YELLOW) enhanced tumor, (RED) necrosis, (BLUE) non-enhanced 
tumor.  
 
Since majority of the data of the brain consists of healthy 
tissue (label 0), there is a need to balance the number of 
examples of each class. The total number of tumorous 
voxels is slightly more than the total number of healthy 
tissue voxels.  
 
The first part of generating the data to work with is to 
extract 30 x 30 patches from the 3-D images by going 
slice by slice and extracting a 30 x 30 patch around every 
second voxel for the tumorous voxels and every fourth 
voxel from the healthy voxels. The labels of the voxel is 
stored separately. Both the patch and the labels are used in 
making lmdbs which are used to input data into CAFFE. 
 
Each patch goes through a few pre-processing steps. The 
first is N4ITK bias field correction. Magnetic resonance 
images often exhibit image intensity non-uniformities that 
are the result of magnetic field variations rather than 
anatomical differences. These artifacts, often described as 
shading or bias, can be produced by imperfections in the 
field coils used in the systems or by magnetic 
susceptibility changes at the boundaries between 
anatomical tissue and air. To account for this variation, 
bias field correction is applied. Nyul’s intensity 
normalization is applied next. Intensity normalization is an 
important pre-processing step in the study and analysis of 
Magnetic Resonance Images (MRI) of human brains. As 
most parametric supervised automatic image segmentation 
and classification methods base their assumptions 
regarding the intensity distributions on a standardized 
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intensity range, intensity normalization takes on a very 
significant role. One of the fast and accurate approaches 
proposed for intensity normalization is that of Nyul and 
colleagues.  
 
The data obtained after the pre-processing is shuffled and 
75% of the data is used for training, 15% for validation 
and the rest for training. 
 
The expected output of the model would be as follows: 
 

 

Figure 4- Region T1 is the true lesion area (outline blue), T0 is the 
remaining normal area. P1 is the area that is predicted to be lesion 
by—for example—an algorithm (outlined red), and P0 is predicted to 
be normal. T1 has some overlap with P1 in the right lateral part of the 
lesion, corresponding to the area referred to as T1 ^ P1 in the 
definition of the Dice score  

The model will classify each voxel into one of the 5 
categories and the output will be used to calculate the Dice 
score. For each class, we can think of outputting a binary 
map with algorithmic predictions P = {0,1}  and the 
experts' consensus truth T= {0,1}, and we calculated the 
Dice score as: 

  

where ^ is the logical AND operator,  | . | is the size of the 
set (i.e., the number of voxels belonging to it). These dice 
scores can be compared with Dice scores obtained for 
doctors who have also tried to segment brain tumors from 
MRIs.  
 

 
Figure 5- Figure showing the patches used as training data in the 
four modalities (from left to right: FLAIR, T1c, T2, T1) 
 
 
5. Results and Discussion 
 
Now that the input format of the data along with the 
objective is clear, it is imperative to talk about results. 
This part will be divided into different sections that focus 
on different aspects of training the best CNN. The final 
model that was used for training is shown below. It gives 
an accuracy of 93% on the test data. 

 
Figure 6- Final architecture used for training the model 
 
 
Depth of the network 
We started with a 4 layer network with 3 convolutional 
layers and a fully connected layer that gave an accuracy of 
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86% on the validation set. Increasing the number of 
convolutional layers till 5 increased the validation set 
accuracy, but an increase after that led to no change in 
accuracy. Even though a deeper network is generally 
preferred, it is always better to use one that has lower 
number of parameters. We also experimented with the 
number of fully connected layers at the end and realized 
that having just one was sufficient.  
 
The size of the blobs in CAFFE that contain the data is 
shown below: 

 
The weights used with this architecture have also been 
outlined below: 

 
 
 
Number of neurons 
 
This section involves discussion on the number of 
activation maps to use for the convolutional layers and the 
number of neurons used in the fully connected layer. The 
model with all activation maps as 25 gave a validation set 
accuracy of 75%, which prompted the increase in the 
number of activation maps to 50. Remember that these 
intermediate results being discussed here are without 
hyper-parameter tuning. Increasing activation maps for all 
layers to be 50, increased the validation set accuracy to 
80%. Further increasing the activation maps lead to no 
substantial increase in accuracy and keeping 
computational costs in mind, the activation maps for all 
layers were fixed to 50. 
 
 
Pooling layers 
 
Like mentioned earlier, pooling is used to summarize 
information from the previous layer and pass it on to the 
next. It is used after a convolutional – ReLU layer 

combination. The number of pooling layers in the model 
were also optimized, and it was found that only one 
pooling layer is sufficient and the best results were seen if 
the pooling layer was placed immediately after the first 
convolutional layer. The reason behind this might be that 
there is too much overlap between one patch to the other 
and it would suit the model more if only the essential 
details get passed on forward. 
 
 
Learning rate and solver 
 
Various solvers for model optimization were tried in order 
to get the best results, like stochastic gradient descent 
(SGD), Adam, AdaGrad, AdaDelta and RMSProp. It was 
found that the Adam solver with hyper-parameter tuning 
gave the best results and was chose as the solver. 
After some hyper-parameter tuning, the model gave the 
best results for a base learning rate (base_lr) of 0.001, 
using an “inverse” decay learning policy with gamma = 
0.0001 and power = 0.75. The learning rate at the current 
iteration (iter) is as follows: 
 
base_lr * (1 + gamma * iter) ^ (- power) 
 
 
Batch size and epochs 
 
The batch size refers to the number of training examples 
considered for one update of the optimization solver. 
While choosing the batch size, a couple of things are kept 
in mind- the computational cost and the uncertainty of 
update from a small batch v/s a larger batch.  
The smaller batch size may give higher noise than a larger 
batch size. However, if the error function has a lot of local 
minimas, our model would get stuck in the first minima it 
fell into. Here, using small batches is helpful as it will get 
more noise in our estimate of the gradient. This noise 
might be enough to push us out of some of the shallow 
valleys in the error function. After running through a few 
different batch sizes (from 64 to 512), a model with batch 
size equal to 128 worked the best. 
Also, the number of training epochs used was 2 as 
increasing the number of epochs after that showed no 
change in the accuracy. 
 
 
Kernel size for convolution 
 
Experiments with kernel size 3, 5, 7 were tried, and a 
decrease in accuracy was observed with increase in kernel 
size. This coupled with the fact that a small kernel size has 
lesser number of parameters presents a win - win situation 
and kernel size of 3 was set. 
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After iterating through the experiments described 
previously on the validation set, the final test accuracy was 
seen to be 93% as can be seen in figure 7.  
 

 
Figure 7- Figure showing the accuracy on the test set. 

 
The confusion matrix, staple for classification problems, 
can also be calculated and is shown in Table 1.  
 

Table 1- Confusion Matrix 

 
 
Precision and recall can be calculated from the confusion 
matrix. Precision is the fraction of events where we 
correctly declared i out of all instances where the 
algorithm declared i. Conversely, recall is the fraction of 
events where we correctly declared i out of all of the cases 
where the true of state of the world is i. The precision for 
label 0 i.e. for the healthy tissue is 98.3%, which is a good 
sign as the model is incorrectly calling a patch as 
tumorous if its actually not.  
 
Label wise accuracy can also be seen in Table 2. 

 
 
 
Other architectures used 
 
To help take into account the local and global features in 
the input patch, two different kernel sizes were used to 
train two different pathways. One method involved using a 
9 x 9 kernel with pooling and convolutional layers to 
match the size of the data after the convolutional and 

pooling layers from the first path (axial size of 15 x 15). 
Concatenating the two paths before feeding to the fully 
connected layer decreased the accuracy slightly. In another 
architecture, a much larger 15 x 15 kernel was used with 
stride 15 to get a 4 x 4 output. This was combined with 15 
x 15 max and average pooling on the input data to give 
three new pathways, which were used with the main 
pathway that was also altered to match the 2 x 2 output. 
This method very slightly increased the accuracy of the 
model. 
 
 
6. Conclusions and future work 
 
We were able to successfully implement a Convolutional 
Neural Network based approach to segment tumors from 
MRI scans using a moderately deep network with not too 
many parameters. We were able to get a high classification 
accuracy. 
 
The next step on this track could be to try 3D 
convolutional networks on each patch and compare with 
the 2-D convolution method. Another possible approach 
could be to use a fully convolutional approach and be able 
to input the entire brain scan instead of patches. 
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