Quantifying Mammalian Learning: Large-Scale Detection of Dendritic Spines

Ivaylo Bahtchevanov
Stanford University
450 Serra Mall, Stanford, CA

ivaylogb@stanford.edu

Abstract

We demonstrate that by training a CNN on a sliding
window and by altering the distribution of classes we can
predict the location of dendritic spines in microscopies
of stained mouse neurons. We show that, for our spe-
cific task of detecting the location of spines on a dendrite,
transfer learning is not well-suited to the task, despite the
success achieved by the YOLO[4] and Faster-RCNN[15]
algorithms on the PASCAL VOC 2007, MS COCO, and
ILSVRC datasets. Our task is complicated by incomplete
gold standard labellings; to make progress without edit-
ing the ground truth labeled by neroscientists in [1] we
simplified our problem into a sliding window classifica-
tion on down-sampled data. Our simple three-layer CNN
shows strides towards replacing laborious hand-annotation
of dendritic spine structures with automatic detection by
a computer. This classifier achieves the best results, and
even succeeds in finding spines not originally labelled by
humans. Our goal is to build out a model that can be highly
scalable and useful for researchers in the future.

1. Introduction
1.1. Receivers for Synaptic Connections

In mammals, most excitatory synapses are indicated by
structures extending from dendritic shafts called dendritic
spines. As a brain develops, variations in the density of den-
dritic spines and their morphology indicate the creation, al-
teration and destruction of neuron-to-neuron synapses. This
plasiticy of dendritic spines allows connectivity within neu-
ronal circuits to evolve as an animal learns. [13] “Den-
dritic spines may be tiny in volume, but are of major im-
portance for neuroscience.” Present in mammals ranging
from mice to humans, “they are the main receivers for ex-
citatory synaptic connections, and their constant changes in
number and in shape reflect the dynamic connectivity of the
brain.” [2] Not only are the density of these structures pos-
itively correlated with neural plasticity[5], they are nega-

Seth Hildick-Smith
Stanford University
450 Serra Mall, Stanford, CA

sethjhs@cs.stanford.edu

John Lambert
Stanford University
450 Serra Mall, Stanford, CA

johnwl@stanford.edu

tively correlated with the incidence of neuropsychiatric dis-
orders, including autism spectrum disorders, schizophrenia
and Alzheimers disease [13][9].

1.2. A Shift from Hand-Annotation to Scalable
CNN-Annotation

In close collaboration with Stanford’s BIO-X Research
Program, our work aims to advance the use of computer
vision into dendritic spine research. Dr. Maja Djurisic, a
neuroscientist affiliated with the program, and our primary
contact, has made substantial progress using the density of
dendritic spines on mouse neurons to understand the cog-
nitive development of mammals. Her current research, an
on-going work of 6 years, seeks to better understand the
role of dendritic spine density in cognitive ability/learning.
We were inspired by an opportunity to apply computer vi-
sion to aid her research’s potential to contribute to the field
of neuroscience, especially in a subject linked to the under-
standing of neuro-degenerative diseases in humans. Cur-
rently, her work has been hampered by the slow process of
hand annotating the microscopies. Further difficulties arise
in actually determining the location of the spines, as the hu-
man eye is not well-equipped to detect these inconspicuous
structures within the images. We aim to use Dr. Djurisic’s
dataset to give her work the last push she needs to complete
her research: we have developed a model for detecting and
labelling dendritic spines, which can further be used to an-
alyze the density.

1.3. Problem Structure

The input to our algorithm is a Z slice from a confocal
microscopy in the form of a 1024x1024 RGB image. For
different approaches, we used different data pre-processing.
We then use a CNN to output the four coordinates of a
bounding box circumscribing each dendritic spine.

We utilize two evaluation techniques. First, we test our
mAP as a quantitative result. However, fundamentally our
work aims to augment the work of Dr. Djurisic. Her ap-
proval of our work as useful for her research will be the
final evaluator of our work.

Given sufficient time, this model could be extended to
provide dendritic spine density, the crucial metric in Dr.
Dijurisic’s work.

2. Related Work
2.1. Dendritic Spine Detection
2.1.1 Hand Annotation

All the dendritic spine labelings used in work by the lab
we have partnered with have been made by hand. Some
attempts have been made by the Shatz Lab to experiment
with automated detection algorithms but none have been
successful enough to be applied.

2.1.2 Previous Automated Neuron Mircoscopy Analy-
sis

In 2007, researchers from Harvard and Tsinghua Univer-
sity published a paper aptly named, “Automatic Dendritic
Spine Analysis in Two-Photon Laser Scanning Microscopy
Images.”[1] They used an unsharp mask filter to regular-
ize image intensity. The spines are detected based on their
“skeleton image” and segmented by type of spine according
to width-based criteria. The width criteria are derived from
a common morphological feature of the spine. They use
blind de-convolution to correct for heavy blurred images.
Their research achieves recall of 88.06% and precision of
86.47%. Although highly successful, we believe that further
application of deep learning will be enable higher levels of
both precision and recall at the optimal threshold.

2.1.3 “Deep Neural Networks Segment Neuronal
Membranes in Electron Microscopy Images”

In [3], the authors create a model to drive automatic seg-
mentation of neuronal structures depicted in stacks of elec-
tron microscopy images. Their work is part of a larger pro-
cess of efficiently mapping 3D brain structure and connec-
tivity necessary for understanding how these images trans-
late to biological processes. The network effectively com-
putes the probability of a pixel being a membrane, using as
input the image intensities in a square window centered on
the pixel itself. Each image is then segmented by classi-
fying all of its pixels as a deep neural network trains on a
different stack with similar characteristics (the membranes
here were manually annotated).

Their DNN performed 4 stages of convolutional and
max-pooling layers of several fully connected. The output
layer is always a fully connected layer with one neuron per
class. The last layer uses a softmax activation to guarantee
each neuron outputs a probability of a particular image be-
longing to a class. Because each class is equally represented
in the training set but not in the testing data, the network

outputs cannot be directly interpreted as probability values;
instead, they tend to severely overestimate the membrane
probability. To fix this issue, they apply a polynomial func-
tion post-processor to the network outputs.

2.2. Detection Algorithms

2.2.1 “Object Detection and Localization Using Local
and Global Features”

In [12], Kevin Murphy and Antonio Torralba propose a
methodology for localization and object detection by ex-
amining both local and global features, demonstrating how
this combination can lead to substantially improved detec-
tion rates. The most common tool for localization is to slide
a window across the image (possibly at multiple scales), and
to classify each such local window as containing the target
or background. While this strategy is proved to be relatively
successful, problems arise when the target is very small or
highly occluded. In these circumstances, the model can gain
substantial information by examining the context around the
image (gist-based priming) and use object detection (deter-
mining the number of instances of an object in an image).

They apply a adaptive boost (“Adaboost”) algorithm[6]
for boosting as follows: The training data is computed by
creating a set of features for each labeled image and sam-
pling the resulting filters at different locations (Once the
filter is near the center of the object and 20 random lo-
cations to create one positive and 20 negative examples).
These feature vectors are then passed to the classifier, and
they perform approximately 50 rounds of boosting. Here,
the majority of the computation time is spent creating the
feature vectors and normalizing through cross correlation.
Each classifier is trained independently, and it is applied to
a new image at various scales to find the location of the
strongest response. The output of the boosted classifier is a
score for each patch.

2.2.2 “You Only Look Once””: YOLO Detection

The “You Only Look Once” model [!4] considers bound-
ing boxes and can achieve a mean average precision (mAP)
of 63.4% on the PASCAL VOC 2007 dataset. The model
frames object detection as a regression problem to spatially
separated bounding boxes and associated class probabili-
ties. A single network predicts bounding boxes and class
probabilities directly from full images in one evaluation.
Since YOLO'’s entire detection pipeline operates as a sin-
gle network, it can be optimized end-to-end directly on de-
tection performance. The framework was attractive for our
problem because it uses a global approach (rather than slid-
ing window and regional analysis) to encode contextual in-
formation about classes when making predictions.

The YOLO detection network has 24 convolutional lay-
ers followed by 2 fully connected layers. Alternating 1 x 1

convolutional layers reduce the features space from preced-
ing layers

It divides the image into an even grid and simultaneously
predicts bounding boxes, confidence in those boxes, and
class probabilities. At test time, the conditional class prob-
abilities and the individual box confidence predictions are
multiplied together as follows:

Pr(Spine|Object) x Pr(Object) x IOUy4; =
Pr(Dendrite) x IOUy

Equation 1

Notably, YOLO, like work done in [18], has real time frame
rate at test time.

2.2.3 “Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks”

As noted in [10], the current state-of-the-art detection al-
gorithm is the Faster RCNN method, submitted 4 Jun 2015.
The Faster R-CNN VGG-16 Network, developed by [15],
can achieve a mAP of 73.2%. In []5], the authors build
upon and accelerate the learning pipeline of their previous
Fast-RCNN model. Their goal is detection: propose a re-
gion of interest, and then classify that region according to
the classes enumerated in the PASCAL VOC 2007, 2012,
and MS COCO datasets. To cite the authors, their “Region
Proposal Network,” “shares full-image convolutional fea-
tures with the detection network, thus enabling nearly cost-
free region proposals.” This enables the acceleration of the
learning of the ConvNet. The previous Fast-RCNN model
is used for detection of these region proposals. The au-
thors rely upon so-called “anchors” and “Intersection-over-
Union” to facilitate and evaluate their region proposals.

3. Methods
3.1. Application of Faster-RCNN

We applied Ross Girshick’s implementation of Faster-
RCNN in Python, with hopes of achieving a similar State-
of-the-Art mAP (72% on VOC PASCAL 2007) on our task.
Faster RCNN presented a number of challenges: notably,
the necessity of creating an XML file for each annotated
image in our dataset, and the lack of a suitable GPU for
training Girshick’s best model, the VGG-16Net. Amazon’s
AWS instances offer up to a maximum of 4 GB per graphics
processing unit (the NVIDIA GRID K520 GPU), and Gir-
shick’s standard mini-batches require up to 8 GB of GPU
memory. Instead of using the customary 20 classes from
the PASCAL VOC dataset, we chose two classes — dendritic
spine, and background.

We began with transfer learning, since our dataset is lim-
ited in size. We hoped to use the lowest layers of a Zeiler-
Fergus Net [17] (ZFNet, trained at MSRA) to accurately de-
tect edges and blobs, cut out the last convolutional, pooling
and fully-connected and layers. We planned to load pre-
trained weights from open-source .caffemodel files for our
weight blobs. [7]

As a point of reference and a baseline, we first trained a
model from scratch and tested on 160 of our images.

In order to encode a preference for some weights W over
all other possible weights, and in order to discourage large
weights, we extend the cross-entropy data loss to include an
L2 regularization penalty:

1

L=—=> L+ ARW)
Yk amn)
“——— regularization loss
data loss

The data loss is the average loss L; over all examples.
R(W) is defined as the sum of the squared elements of W:

RW) =YY W,
k l

Note that in the expression above, the regularization
function is not a function of the data, it is only based on
the weights [11].

The cross-entropy loss per training example n can be
written as:

or, equivalently, as:
Li=—fy,, + logz efi
J

We use the notation f; to mean the j-th element of the
vector of class scores f [11].

(ConvFilterSize — 1)
2

Convolutional Padding =

3.2. Application of YOLO

We applied the work of [14] to our problem. Dendritic
spines are incredibly difficult to notice on their own, and
an understanding of the surrounding stack is crucial to their
detection. We assumed that YOLO would be an effective
algorithm for our detection problem.

However, once we applied and implemented their frame-
work, we understood this was not a great approach to the
problem.

Figure 1. The YOLO algorithm failed to accurately place bound-
ing boxes around dendritic spine structures

3.3. Our Custom ConvNet Architecture

Our two most promising results came from smaller net-
works. We built two conv-nets with the architecture shown
below:

Custom Architecture

31024 x 1024

1024 x5 x 6 feature map. Fe

\ Conv Relu ool .
\ ~_
\ -
\
2classes
/ A
/ /
S
L

Figure 2. DOWNSAMPLE-CONV-RELU-POOL-FC-SCORES-
SOFTMAX.

3.3.1 Sliding Window with 3-Layer and 7-Layer CNN

To solve the problem of arbitrary detection of dendritic
spines we developed a sliding window detector. We first
reduced the size of our images to 512x512 and splintered
the microscopies into 256 16x16 sub-images. We labeled
those images as either containing the center point of a den-
deritic spine or not and then trained two models on this
classification problem. Our first architecture was a three
layer shown in Figure 2. In hopes of improving results, we
also applied this classification task to a 7 layer architecture:
(conv - batch_norm - relu - pool)x 3 - (affine - batch_norm -
relu) x4 - softmax.

At test time we apply the best model to a sliding window
test across the tested image and placed bounding box around
all sub-images which were predicted to contain dendritic
spines, see Fig. 14.

3.3.2 Classification as Localization

The large majority of slices of the microscopies were la-
beled with a single dendritic spine (see Fig. 8). As such the

majority of our detection problem can be simplified to a re-
gression problem: locating the dendritic spine in the image.
We therefore removed the softmax classification loss from
the head of the 3-layer architecture (Fig. 2) and replace it
with a euclidean loss layer. We feed in the class scores into
the L2 Norm as follows:

1 N
E=_— An_n2
e 3 i~

We compute the derivative with respect to scores and
backpropagate through the network.

4. Dataset and Features
4.1. Available Dendrite Microscopy Images

117 images from June 2 2011, 566 images from June 3
2010, 103 images from June 3 2011, 80 images from June 9
2011, 471 images from June 10 2010, 368 images from June
11 2010. Altogether, we have 1705 microscopy images in
tif format. These images represent slices along the z-axis
(which we will refer to as the “z-stack™).

Figure 3. Using Girshick’s alternating optimization algorithm
alternates the training of the Region Proposal Network and Fast
RCNN. Attempt to overfit 20 images was unsuccessful, although
loss dropped to 0.3-0.4 from an original value of 1.5. Note that all
boxes have same predicted confidence, and that boxes are far too
large for the task of predicting small dendritic spines

Figure 4. Use of Girshick’s end-to-end training optimization algo-
rithm was unsuccessful. Only improvement is that bounding boxes
now have different predicted confidences

Figure 5. Attempt to fine-tune ZF Net [| 7] by decreasing learning
rate to 10% of original. Note that a smaller learning rate generated
smaller, more refined boxes at some points. Attempt to overfit 20
images was not successful

Figure 6. Use of a training set of 171 images, as opposed to 20
images, did not improve accuracy on the training set

Figure 7. Microscopy of Unlabeled Mouse Dendrites [4]

4.2. Hand-Annotation

The amount of fully-annotated (i.e. labelled) images is a
small fraction of the total images. In September 2015, Dr.
Djurisic, along with her colleagues, annotated the locations
of all of the dendrites in several of the microscopy images.

4.3. Ground Truth

Our ground truths represent x-y coordinates for the cen-
ter of mass of the spines. Images range from having zero
spines to 18 within one frame. We have labels for the loca-
tions of the indicator structures. Note that the labeled image
is a amalgamation of an entire z-stack.

4.4. Preprocessing

The preprocessing of Dr. Djurisic’s data was a signifi-
cant task. We were given a Dropbox directory containing

dozens of subdirectories. We chose the directories that con-
tained .xls-format spreadsheets, where each row contained
the XY-Coordinates of one dendritic spine in one particular
image. We parsed the subdirectories in Python, choose the
csv files that contained files pertaining to dendritic spines,
mapped each row to its corresponding image, and inserted
these labeling structures for our various algorithms. The la-
bels had to be parsed into an XML-annotation-tree format
that was compatible with the Faster RCNN framework as
well as a .txt file annotation unique to the YOLO code base.
The Faster RCNN source code relies on a dataset structured
according to the PASCAL VOC 2007 dataset. Furthermore,
we converted our image files from .TIF format to .JPG for-
mat. Originally, we believed that we had 879 labelled im-
ages (94 of which were annotated by Dr. Djurisic herself).
These corresponded with about 20 full Z-Stacks of 50 im-
ages each. However, the number of annotated images was
far fewer. For the Faster RCNN training set, we discovered
171 unique, annotated images, containing from 1 to 18 den-
dritic spines each. See Figure 8.

4.5. Distribution
Our dataset contains just two classes: background and

dendritic spine.

& Histogram of Microscopies With n Dendritic Spines

Number of Microscopies

0 5 10 15 20
n

Figure 8. The distribution of dendritic spines per image in our
dataset has a heavy left skew.

We had to wrestle with the problem of sparse labeling.
Some of the images, which appear to contain up to a dozen
dendritic spines, have a gold standard annotation with only
one dendritic spine. For instance, the microscopy predicted
on in Figure 14. Although it would help, we specifically
chose not to alter the data set by adding many additional XY
coordinate-labels per image. We felt that such an approach
does not reflect integrity to the labels Dr. Djurisic’s team
generated.

4.6. Conversion of Units on Labels to Pixels

Microscopies performed on equipment on Leica Mi-
crosystems are measured in microns. Thus, we converted

microns to pixels according to the equation:

pizels Imeter 1024pizels

Imicron 1.00 x 108microns 2.976 x 10~%meters

pizels pizels

= 34.4086

Imicron micron
We assume that each dendritic spine is roughly equiva-
lent in shape and size. Assuming that our input image has
been downsampled from 1024x1024x3 to 128x128x3, we
demonstrate that a window size of 8x8 pixels can capture
the shape and intensity of a dendritic spine.

5. Experiments, Results, and Discussion

Analysis of Faster-RCNN Results The Faster-RCNN
model was ill-suited to our task. The model was able to
identify objects and people extremely well in images that
we fed in to its demo model. These preliminary images
were pictures of our family, friends, and automobiles —
very similar to the contents and classes of the 2007 VOC
PASCAL dataset. The train.prototxt of the Faster RCNN
pipeline contains 28 Caffe layers — excessively complex for
our purpose. Yet when the task of over-fitting even one im-
age with randomly initialized weights, the model delivered
inaccurate results. See Figures 3, 4, 5 and 6 for images of
Transfer Learning.

The decreasing loss shows that the model learned to re-
duce it’s loss function, but the resultant predictions show
that it’s learning did not aid our predictions. (see Figure 9).

End-To-End Training: Multi-Optimization Losses

— bbox_loss

— ds_loss

— rpn_cls_loss
rpn_loss_bbox

dlidaiyien ol iy m
0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

0.0

Figure 9. Faster RCNN Losses Produced While Training via End-
To-End Optimization.

5.1. Training the ConvNet With a Euclidean Loss
Layer

We implemented a model with a regression head to local-
ize a single spine in the microscopy (see Figure 10). After
30,000 iterations the regression model was able to achieve
a RMSE of 9.623552. After 10200 iterations, the sliding
window classifier achieved 99.96% accuracy by always pre-
dicting the “background” class.

400

600

800

1000

0 200 200 600 800 1000

Figure 10. Spine predictions with Regression model

5.2. Training the Sliding Window CNN

We used the Adam [&] update for our gradient descent
algorithm (Adam and RMSProp seemed to work best with
sliding window). Only when we lowered the learning rate
to about 1.0x10~6 were we able to stabilize the loss and
not see divergence to infinity immediately. We trained for
100 epochs; however, the learning occurred in the first 5
epochs on average. We set batch size equal to 10. Be-
cause we used Cython im2col-optimized layers for convo-
lutions, we down-sampled our images from dimensions of
1024x1024x3 to 1/8th of the resolution: 128x128x3. Com-
putation with full-resolution pictures on our CPUs was in-
feasible.

We used a three layer ConvNet, initializing the weights
with a weight scale of 1.0x10~3. Our hidden dimension in
the fully-connected layer was 100 neurons wide. We used
a regularization constant of 1.0x1073 in order to prevent
over-fitting.

Our images, cut down to the size of the sliding window,
were (3 x 8 x 8) in dimension. We used 32 filters in the
convolutional layer, with a filter size of 5 x 5. Furthermore,
we used a stride of 1 and a padding of 2.

(ConvFilterSize — 1)

Convolutional Padding = 5

Input and Output Dimensions are preserved during the
convolutional transformation when the padding is computed
above.

In our pooling layer, we use a pooling filter size of 2x2
and a stride of 2 in order to down-sample the width and
height of the input by half. Our Softmax classifier performs
Maximum-Likelihood-Estimation (MLE) over two classes.

5.3. Rebalancing Class Distribution

We found it necessary to alter the class distribution. Af-
ter 10,200 iterations of stochastic descent, our sliding win-

Dendritic Spine | Background
Without Sampling 256 1
With Sampling 2 1

Table 1. Class Distribution: Number of Labels Per Class, Per
Image

dow classifier achieved 99.96% accuracy by learning to al-
ways predict the “background” class. Since we break each
image (of dimension 1024x1024x3) into a 16x16 grid of
smaller images, we end up with 256 window patches per
original image. On average, Dr. Djurisic’s team annotated
1-3 dendritic spines per image, leaving us with a skew of
up to 1 dendritic spine. By sampling uniformly from the
background class with probability ﬁ and by keeping all
dendritic spine-labeled images, we dramatically improved
our CNN model and reduced the class bias skew.

5.4. 3-Layer CNN Result

Learning occurs within 5 epochs, or about 200 iterations
(almost instantaneously), after which the training set accu-
racy plateaus indefinitely.Down-sampled, then only use 20
images. We used this training set of 20 images for our vali-
dation set and test set.

6.935 Sliding-Window CNN Loss vs. Number of Iterations

6.930

6.925

Loss

6.920

6.915

0 50 100 150 200 250
Iteration

Figure 11. Loss Decreases As a Function of Iterations While
Training 3-Layer Conv-Net

0.9 Sliding-Window Training Set Accuracy vs. Epochs

Training Set Accuracy
=]
&

o
w

e
N

0'10 1 2 3 4 5

Epoch

Figure 12. Training Set Accuracy Increases At Inflection Point,
Then Plateaus

This CNN model is the first one to detect spines at a

elementary level of proficiency.

Figure 13. The sliding window predicts with 100% recall for this
image and reasonable accuracy when accounting for missing la-
bels. Only one of dendritic spine is labeled in the ground truth for
this image

Figure 14. Ground Truth Label for Image, Assuming Constant 8x8
pixel Window Size centered around Dr. Djurisic’s XY-Coordinate
Labels

Interestingly enough, adding in a stride and requiring the
XY coordinate to sit in the middle 1/2 of the image in the
x and in the y dimensions did not improve the model. In
general, we found a larger stride to be more beneficial for
speed but will hurt accuracy.

At test time, our sliding window achieved a 15.73%
mAP. The relatively low precision was counter balanced by
nearly perfect recall. We settled on these results as success-
ful due to the fact that our labeling (as we have previously
discussed) was very sparse and we attempted to capture
spines that were not necessarily labeled in the gold standard
labels.

At test time, our classification as regression problem
achieves a rMSE of 9.62. This indicates that on average
we are within about 10 pixels of the correct XY coordinate
of the center of mass of the spine.

For both classification and regression tasks, the 7-layer
conv-net that we applied to the same tasks achieved poorer
results than the 3-layer conv-net. We believe this was a

function of the very primitive nature of our images. Fur-
ther complexities in our model did not better fit a “simple”
problem.

5.5. CONY and FC Weight Visualizations

Figure 15. Visualization of the Learned Weights of the Sliding-
Window Convolutional Layer

6. Conclusions and Future Work
6.1. Analysis of Learning Capability

It is worth noting that the Sliding-Window not only
learns the annotations but also understands when the spines
are not present at all. On the training set, it will learn the
existing labels and find additional labels that humans were
not able to label (or even, in some cases, perceive). This
aspect makes the approach highly scalable and effective as
a tool for neuroscientists. In Figure 14, the CNN is trained
on 1 label for this image, but predicts a total of 7 correct
dendritic spines, out of 14 predicted bounding boxes, thus
having 50% accuracy.

6.2. Further Work: Expansion of Training Data
Set

We used a fraction of the annotated images we had ex-
tracted, for our model. Given more time, we would have
trained our model on all images, which we anticipate would
improve our model’s ability to generalize on novel data.
Another approach would have been to fully annotate a seg-
ment of the data-set in order to increase the number of fully
labeled images as well as produce more generalizable rep-
resentations for spines.

6.3. Further work: Combining Outputs of Re-
gression and Classification Channels, as per
OverFeat

We believe we could improve our sliding window algo-
rithm by implementing the OverFeat CNN architecture in
16 [16]

Class scores:
4006 x 1x 1 1024 x 1x1 1000 x 1 x 1

Convolution (J—> j—> J

- - 1x1 conv 1x 1 conv
mmmmm" X
conv

Feature map:
Image: 1024x5x5
3x221x221

1x 1 conv 1x1 conv
L Jj—>) —> J

4096 x 1x 1 1024x1x1 Box coordinates:
(4x1000) x 1x1

Figure 16. OverFeat [10] converts all fully-connected layers into
convolutions

Since the sliding-window approach computes an entire
pipeline for each window of the input one at a time, Con-
vNets become very efficient when applied in a sliding fash-
ion since they inherently share computations common to
overlapping regions. Ideally, we want to extend the output
of each layer to produce a map of output class predictions,
with one spatial location for each window of input. In the
interest of time, we did not merge our two approaches into
one predictor. We would perform the following: 1) Assign
the set of classes (2 in our case) 2) Assign set of bounding
boxes predicted by the regressor network for the spine class
across all spacial locations 3) Merge the bounding boxes
4) Compute the match score using the sum of the distances
between centers of the two bounding boxes and the inter-
section of the boxes. This box merge would compute the
average of the bounding boxes coordinates. 5) The final pre-
diction results from taking the merged bounding boxes with
maximum class scores. This result is calculated by cumu-
latively adding the detection class outputs associated with
the input windows that corresponds to the specific bound-
ing box prediction.

References

[1] W. Bai, Z. Zhou, L. Ji, J. Cheng, and S. T. Wong. Auto-

matic dendritic spine analysis in two-photon laser scanning

microscopy images. Journal of the International Society for

Advancement of Cytometry, 2007. 2

C. Blumer, C. Vivien, C. Genoud, A. Perez-Alvarez, J. S.

Wiegert, T. Vetter, and T. G. Oertner. Automated analysis of

spine dynamics on live cal pyramidal cells. Medical Image

Analysis, 19(1):87-97, 2015. 1

D. Ciresan, A. Giusti, and L. Gambardella. Deep neural net-

works segment neuronal membranes in electron microscopy

images. 2013. 2

[4] M. Djurisic. Manual annotations of dendritic spines, 2016.
1,5

[5S] M. Djurisic, G. S. Vidal, M. Mann, A. Aharon, T. Kim, A. F.
Santos, Y. Zuo, M. Hbener, and C. J. Shatz. Pirb regulates
a structural substrate for cortical plasticitys. In Proceedings
of the National Academy of Sciences of the United States of
America: vol. 110 no. 51, page 2077120776. 1

2

—

3

—

(6]

(71

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

Y. Freund and R. E. Schapire. = A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(55971504):119-139, 1996. 2

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093,2014. 3

D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014. 6

M. Knobloch and I. M. Mansuy. Dendritic spine loss and
synaptic alterations in alzheimers disease. Molecular Neuro-
biology, 37(1):73-82, 2008. 1

E-F. Li, A. Karpathy, and J. Johnson. Lecture 8: Spatial
localization and detection, 2016. 3, 8

F.-F. Li, A. Karpathy, and J. Johnson. Linear classification:
Support vector machine, softmax, 2016. 3

K. Murphy and A. Torralba. Object detection and localiza-
tion using local and global features. 2015. 2

P. Penzes, M. E. Cahill, K. A. Jones, J.-E. VanLeeuwen, and
K. M. Woolfrey. Dendritic spine pathology in neuropsychi-
atric disorders. Nature Neuroscience, 14(3):285-293, 2011.
1

J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detection.
CoRR, abs/1506.02640, 2015. 1,2, 3

S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal net-
works. CoRR, abs/1506.01497, 2015. 1,3

P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,
and Y. LeCun. Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. CoRR,
abs/1312.6229, 2013. 8

M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013. 3,5
S. Zickler and M. Veloso. Detection and localization of mul-
tiple objects. 2015. 3

