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Abstract

Our project predicts volume of heart by 2D MRI mea-
surement. Combining pre-trained VGG [13] and self-
trained networks, we build our Convolutional Neural Net-
works (CNNs) for prediction. Specific preprocessing meth-
ods are designed for our messy data. CNNs in various
depths and regularization strength are tried for best vali-
dation result. In this Kaggle Challenge contest, our model
beats the baseline CNN structure written by Marko Jocic
[6].

1. Introduction
Using MRI data to measure cardiac end-systolic (VS)

and end-diastolic (VD) volumes (i.e., the size of one cham-
ber of the heart at the beginning and middle of each heart-
beat) (fig[1]) and then deriving the ejection fraction (EF)
of heart is a standard process to assess the heart’s squeez-
ing ability. Declining EF is a key indicator of heart disease.
However, the current process is manual and slow. The cardi-
ologist could spend up to 20 minutes with one patient. Con-
sidering the huge amount of patients with potential heart
failure, quick automatic measurement will help doctors to
diagnose heart conditions more efficiently. 1

EF = 100 · VD − VS
VD

Convolutional Neural Networks (CNNs) have been
proved remarkably effective on neuroimaging data. As a
powerful visual model, CNNs can yield many interesting
hierarchies of features, which can be used to classifica-
tion and segmentation. Contemporary CNN models like
AlexNet[8], VGG-Net [13], GoogLeNet[14], ResNet[5]
have been used and transferred to learn representations by
fine-tunning weights in many different tasks.

In our project, we are going to apply deep Convolutional
Neural Networks to predict the end-systolic volume VS and

1This project is the Second Annual Data Science Bowl Challenge prob-
lem: https://www.kaggle.com/c/second-annual-data-science-bowl

end-diastolic volume VD from MRI time series data in dif-
ferent axis views (the planes of slice).

(a) end-systolic volume (b) end-distolic volume

Figure 1: Plots of of end-systolic, end-distolic volumes in
one cardiac circle, circled in red curve

1.1. Problem Statement

Given one patient’s several (10 axes in average) MRI
measurements in different axes (sax 5,, 2ch 12, 4ch 32,
etc), we are going to predict his or her left ventricle’s end-
distole volume and end-systole volume in one cardiac cycle.
Each measurement contains 30 times series images in one
cardiac cycle.

We aim to build two deep CNN regression models to
predict these two volumes separately. The overview of our
problem is shown in fig [2].

Figure 2: Using 30 MRIs during one cardiac cycle from
different axis views to predict VS and VD
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1.2. Challenges

In this problem, variation in heart shape and image quan-
tity of patients makes automated quantification of volume
challenging. In the training dataset, we have a diverse repre-
sentation of cases. Patients form different hospitals may be
measured by MRI in various axes. Besides, normal and ab-
normal images of hearts are mixed together. In an extreme
case, we have different poses and directions even in one car-
diac cycle. Thus these images are highly distinct from each
other. We need a robust model to validate and automate the
cardiologists’ manual measurement of ejection fraction.

2. Related Work

Deep learning, especially Convolutional Neural Net-
works have been applied to medical imaging recognition in
recent years. Sergey Plis, et al. [12] applied deep neural net-
works to learn structural and functional brain imaging data
and showed that deep learning methods are able to learn
physiologically important representations and detect latent
relations in neuroimaging data. Payan et al. [11] used 3D
convolutional neural network to predict Alzheimer’s disease
based on brain MRI images. They first initialized the fil-
ters for CNN by sparse auto-encoder and then built a CNN
whose first layer using the filters learned with auto-encoder.
Their model proved to be a success in discriminating be-
tween healthy and diseased brains. However, their neu-
ral network model was too simple and they didn’t go on
to try more sophisticated neural network models. Liu and
Shen [9] also applied deep CNN models on raw MRI im-
ages. They found the regions of interest (ROI) that may
be correlated with Alzheimer’s disease, which spares the
effort of manual ROI annotation process. Brebisson et al.
[4] constructed a deep convolutional neural network called
SegNet for anatomical brain segmentation.

In cardiac study area, N Kannathal, et al. [7] have imple-
mented neural networks for classification of cardiac patient
states using electrocardiogram (ECG) signal. Yaniv Bar et
al. [3] used a CNN trained by ImageNet and obtained area
under curve (AUC) of 0.93 for Right Pleural Effusion de-
tection, 0.89 for Enlarged heart detection, 0.79 for classi-
fication between healthy and abnormal chest x-ray, which
shows that deep learning with large scale non-medical im-
age database may be sufficient for general medical image
recognition tasks.

In terms of our specific problem, there is a baseline CNN
structure written by Marko Jocic [6]. He simply treated all
images equally and trained a ConvNet with 6 CONV-layers
and 2 FC-layers. Each group of 30 images is an input and
the corresponding volume is output. This model is easy to
compute but not precise. We will show how we beat the
baseline model by treating images differently and more ac-
curate models.

3. Data [1] and Preprocess
We will examine hundreds of cardiac MRI images in DI-

COM format for each patient. This dataset was compiled
by the National Institutes of Health and Children’s National
Medical Center. It is an order of magnitude larger than any
cardiac MRI data set released previously. We only utilize
pixel information of DICOM file.

3.1. Details of Data

In the training dataset, we have 500 patients undergoing
about 10 experiments (measurements) from different axes
planes. Each experiment observes one slice of heart, which
leads to 30 images across the cardiac cycle. Different exper-
iments are acquired from separate breath holds. This is im-
portant since the registration from slice to slice is expected
to be imperfect. Besides, there are another 200 patients in
the validation dataset. In short, We have about 500×10×30
raw training images and 200 × 10 × 30 raw validation im-
ages.

3.2. Axis-based Preprocessing

Notice that the amount of measurements of cardiac MRI
varies from patient to patient (not necessarily 10). These
images are taken from different views, or axis planes in
medical imaging terminology, like 2ch 16, 4ch 17,
sax 5, sax 6, sax 7, sax 8,etc. Each patient has
different planes for his or her heart. According to [10], ch
represents left ventricular long axis acquisition planes. The
2 ch (fig [3b]) and 4 ch (fig[3c]) views are used to visual-
ize different regions of the left atrium, mitral valve appara-
tus. sax represents short axis acquisition planes(fig [3a]).
These stacks are oriented parallel to the mitral valve ring,
and are acquired regularly spaced from the cardiac base to
the apex of the heart.

(a) short axis stack (b) 2-chamber view (c) 4-chamber view

Figure 3: Views of sax, 2 ch, 4 ch.

Since sax views are excellent in volumetric measure-
ments, as fig[4] shows, we divide these planes into four re-
gions, with three regions for continuous sax stacks, called
sax-1, sax-2, sax-3 correspondingly and another region for
ch views called ch. The sax-1 corresponds to the first third
of sax views of that patient, sax-2 corresponds to the sec-
ond third of the sax views and sax-3 corresponds to the last
third of the sax views. Region ch represents for 2-ch and
4-ch views, which are additional views and less important
than sax views.
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Figure 4: Example of patient 2 and patient 5 with their axis
based regions.

After partitioning the MRIs into 4 regions for each pa-
tient, we first preprocess the images by resizing or zero-
padding to (224,224) dimensions and replicate the gray
MRI image to 3 channels to fit VGG-net. We also aug-
ment the data set by randomly rotate and shift slightly be-
fore putting to CNN.

We extract features of MRI images via pre-trained CNN
(we use VGG-19 [13] in our model) in 4 regions by ran-
domly sampling one slice in every region. Then we use
these 4 region features as input for our own self-trained net-
works. In this way, not only do we keep the input dimension
constant for every patient, but also we enlarge our data by
random combination of slices in different regions.

3.3. Minimum and Maximum Image Selection

Since we only need to predict end-systolic volume VS
and end-diastolic volume VD for each patient, and these two
volumes are corresponding to the minimum and maximum
volume of heart. From 30 images in a cardiac cycle, there
is one image records the maximum volume and another im-
age records the minimum volume, so the other 28 out of 30
images are noises to our regression models. Since the heart
region in MRI has brighter pixels, which means the values
in those pixels are larger than other pixels, so end-diastole
status corresponds to more bright pixels in MRI and end-
systole status corresponds to less bright pixels in MRI, see
fig[1]. In practice, based on these two criteria: sum of pixels
of image and the number of pixels with value above some
threshold or below some threshold, we pick out 2 images
in one time series indicating end-systolic and end-diastolic
status. This automatic selection method is verified by hand.
simple to implement and effective in our experiments.

4. Methods

We treat our problem as supervised regression and tackle
this problem by convolutional neural network models. In
this section, we discussed our models in details and also
talked about evaluation criteria.

Figure 5: CNN Structure

According to study of [3], the pretrained CNNs on other
image dataset like ImageNet are still powerful to extract
useful hierarchical information for medical images, we
choose VGG-19 [2] as pretrained CNN layers to extract fea-
tures, which are built in our whole model, see fig[5].

4.1. CNN Structure

As mentioned in section 3, the current input for each pa-
tient are 2 groups of 4 images sizing in (3,224,224) dimen-
sions. One is for end-systolic model and the other is for end-
diastolic model. Taking one group of 4 images for exam-
ple, we extract features of them separately using pre-trained
VGG-19 [10] network, their outputs are concatenated and
reshaped into 3 dimensions before being imported to our
self-trained networks. The output of these two modes is one
number, which is the predicted volume. Then we transform
this predicted volume to CDF using Gaussian distribution
with mean as the predicted value and standard deviation as
squared root error. Our general CNN structure is shown in
fig [5].

In experiments, we built 8 models for systolic voluem
VS and diastolic volume VD respectively. Their pre-trained
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VGG and self-trained network are different from each other.
We optimize our model according to the evaluation result.
Details of models are introduced in Section 4.3. The reason
for building such models are explained in Section 5.

4.2. Evaluation

Since our outputs are 2 volumes, VS and VD, we use
Root Mean Squared Error (RMSE) as our loss function. We
implement CNNs in Keras with Adam optimizer.

Based on our volume prediction µ and loss σ2, we first
calculate CDF (cumulative probability distribution) for VS
and VD by fitting normal distribution with mean as pre-
dicted class value and variance as lossN(µ, σ2). Intuitively
the predicted distribution curve will be sharper when we
have lower loss, since we are more confident about our pre-
diction. Then our model is evaluated on the Continuous
Ranked Probability Score (CRPS) as mentioned in Kaggle,
see fig[6]:

C =
1

600N

N∑
m=1

599∑
n=0

(P (y ≤ n)−H(n− Vm))2

where H(x) is the Heaviside step function (H(x) = 1 for
x ≥ 0 and 0 otherwise).

Figure 6: plot of predicted distribution, with error measured
as the area of green region.

4.3. Models

Our model is divided into 2 parts. As for the pre-
trained VGG part, we compare results of 3 models (Model-
1, Model-2, Model-3), the depths of which increase as more
CONV-layers are added. As for the self-trained network
part after VGG, we explored optimal parameters of 1 conv-
layer and 2 fully-connected (FC) layers (Model-4 to Model-
8). See the table [1] for more details.

8 models are experimented for VS and VD respectively.
Since Model-3 performs better than Model-1 and Model-
2 in either cases, Model-4 to Model-8 are built based on
Model-3. In the end, we choose the best model for predict-
ing VS and VD independently according to CRPS on valida-
tion data. Model-1 to Model-3 utilize same self-trained FC-
layers while adding more pretrained Conv-layers. Based on

Model Structure

1
.
Conv-vgg:8 Conv-Layers(fixed)
+ FC(128, 256, 600, 1)(to be trained)

2
.
Conv-vgg:12 Conv-Layers(fixed)
+ FC(128, 256, 600, 1)(to be trained)

3
.
Conv-vgg: 16 Conv-Layers(fixed)
+ FC(128, 256, 600, 1)(to be trained)

4

.
Conv-vgg: 15 Conv-Layers(fixed)
+ 1 Conv-Layer(64, 3, 3)(to be trained)
+ FC(128, 256, 600, 1) (to be trained)

5

.
Conv-vgg: 15 Conv-Layers(fixed)
+ 1 Conv-Layer(64, 3, 3)(to be trained)
+ FC(128, 256, 600, 1)
(to be trained + reg(l-2:1e-3))

6

.
Conv-vgg: 15 Conv-Layers(fixed)
+ 1 Conv-Layer(64, 3, 3)(to be trained)
+ dropout(0.5)
+ FC(128, 256, 600, 1)
(to be trained + reg(l-2:1e-3))

7

.
Conv-vgg: 15 Conv-Layers(fixed)
+ 1 Conv-Layer(64, 3, 3)(to be trained)
+ FC(128, 256, 600, 1)
(to be trained + reg(l-2:1e-1))

8

.
Conv-vgg: 15 Conv-Layers(fixed)
+ 1 Conv-Layer(64, 3, 3)(to be trained)
+ dropout(0.5)
+ FC(128, 256, 600, 1)
(to be trained + reg(l-2:1e-1))

Table 1: The structures of 8 models in our experiments

Model-3, Model-4 removes the last Conv-layer in VGG and
adds one Conv-layer to the pre-trained network. Model-5
to Model-8 keep the same structure of pre-trained VGG as
in Model-4, and the only difference between them is the
strength of regularization. The schematic diagrams of all
models are showed in the table above[1].

5. Results and Discussion
We run our models on Stanford Rye01 with configura-

tion as 8 core (2x E5620) cpu, 48GB ram, 250GB local disk,
6x C2070, Ubuntu 13.10 and CUDA 6.0.

In each model, we use mini batch gradient descent to
train the weights and the batch size is 100. We train the
models over 400 iterations and get the CRPS for 8 models
in the table [7].

We choose the optimal systolic model and diastolic
model by CRPS on validation dataset. According to the
table[7], Model-3 does perform the best in first 3 models
in either cases, which implies that deeper pre-trained lay-
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Figure 7: CRPS for 8 models

ers are better for our transferable learning. This indicates
some similarities between our dataset and ILSVRC dataset,
where the VGG is trained.

At present, only 2 FC-layers are trained in our models.
We then take a further step to add a trainable CONV-layers
on top of our self-trained network at the same time we re-
move the last CONV-layer in pretrained VGG just to be fair.
That is how Model-4 is built. We notice overfitting prob-
lem in the first 4 models. By adding dropout and choosing
different l-2 regularization strength, we experiment 4 more
models to fight against overfitting. Since Model-4 performs
best in the first 4 models, we set Model-5 to Model-8 inherit
identical structure from Model-4.

According to the final results, We choose Model-6 to pre-
dict systolic volume VS and Model-7 to predict diastolic
volume VD. Notice that for every model, we trained end-
systolic and end-diastolic model separately. In other words,
they share the same structure but are different in weights.

In experiment, the appropriate learning rates differ from
model to model. We tune all 16 models manually. End-
systolic models are trained at learning rate = 1e−5 approx-

imately. End-diastolic models’ learning rates are usually
two magnitudes higher. We present these two best models’
learning process in the first 100 iterations in fig[8].

Figure 8: RMSE of systole and diastole models in 100 iter-
ations.
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As shown in fig[8], end-systolic model has lower loss
than end-diastolic. This is reasonable since the variation
of VS is less than that of VD, making VS easier to predict.
CRPS drops extremely slowly after the first few hundreds
iterations, we finally reach our best result after over 1500
iterations.

The training takes about 70 hours and reaches optimal
CRPS at 0.0235, which is an average of these 2 models. We
beat the baseline model[6], whose CRPS is 0.0359.

We also plot the best models fitting results on 200 patient
test dataset, shown in fig[9]. The true volumes are aligned
in a line with increasing order to make observe convenient,
and the dots are predicted volumes for that patient. The
vertical distance between the dot and the line represents the
prediction error for that patient.

Figure 9: Systole and diastole model fitting on test data

6. Conclusion and Future Work
In our project, CNNs are used to extracted features from

2D images and combine information from different axes
views to predict volume. These two roles of CNNs some-
how corresponds to our pre-trained VGG and self-trained
network.

Preprocessing images and optimizing models are two
keys to the final result. Preprocessing is extremely impor-
tant bacause of messy data. The dimension of input images
from each patient should be constant. The importance of
different axis views are different. The time when heart’s
volume reaches maximum or minimum varies even in one
patient’s records. All these facts lead to our axis-based pre-
processing and selection of minimum/maximum image. We
manage to keep the dimension of input constant and elimi-
nate noises. Model optimization is essential in transferable
learning. It is hard to quantify the resemblance between
our data and the data where VGG is trained.Thus different
numbers of CONV-layers have to be tested. There is also

the tradeoff between minimizing training loss and fighting
against overfitting. The strength of regularization depends
on the data. Even though end-systolic and end-diastolic
model have same amount of data, the choices of regular-
ization strength are different.

In fact, we have only tried very few models due to our
limited computation resource. We expect to implement
cross validation for potwntial result. Aside from choosing
images with minimum and maximum volumes by program,
we can also select them by hand for higher accuracy. Be-
sides VGG-Net, we shall try other pre-trained CNN models
like AlexNet, GoogLeNet, etc. What is more, if we take
other information in the DICOM file into consideration, like
gender and age, we might get a more precise model.

Acknowledgment
We would like to thank the CS231N instructors, Andrej

Karparthy and Justin Johnson and staff for their help and
guidance for our project. We also want to thank Marko Jocic
[6] for his baseline model structure posted in Kaggle forum.

References
[1] Data science bowl cardiac challenge data.
[2] Vgg-19 pretrained weights.
[3] Y. Bar, I. Diamant, L. Wolf, and H. Greenspan. Deep learn-

ing with non-medical training used for chest pathology iden-
tification. In SPIE Medical Imaging, pages 94140V–94140V.
International Society for Optics and Photonics, 2015.

[4] A. Brebisson and G. Montana. Deep neural networks for
anatomical brain segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pages 20–28, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[6] M. Jocic, 2016. https://github.com/jocicmarko/kaggle-dsb2-
keras/.

[7] N. Kannathal, U. R. Acharya, C. M. Lim, P. Sadasivan, and
S. Krishnan. Classification of cardiac patient states using
artificial neural networks. Experimental & Clinical Cardiol-
ogy, 8(4):206, 2003.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[9] F. Liu and C. Shen. Learning deep convolutional features for
mri based alzheimer’s disease classification. arXiv preprint
arXiv:1404.3366, 2014.

[10] J. Margeta, A. Criminisi, D. C. Lee, and N. Ayache. Rec-
ognizing cardiac magnetic resonance acquisition planes.
In MIUA-Medical Image Understanding and Analysis
Conference-2014, 2014.

[11] A. Payan and G. Montana. Predicting alzheimer’s disease: a
neuroimaging study with 3d convolutional neural networks.
arXiv preprint arXiv:1502.02506, 2015.

6



[12] S. M. Plis, D. R. Hjelm, R. Salakhutdinov, and V. D. Cal-
houn. Deep learning for neuroimaging: a validation study.
arXiv preprint arXiv:1312.5847, 2013.

[13] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

7


