Image Classification using Transfer Learning from Siamese Networks based on
Text Metadata Similarity

Dan Iter
Stanford University

daniter@stanford.edu

Abstract

Convolutional neural networks learn about underlying
image representations just by optimizing to a supervised
classification. This project attempts to learn better features
from images by training a network based on the similarity
of pairs of images. Similarity of images will be computed
based on the similarity of the text associated with the images
as metadata, specifically captions for MSCOCO but the text
used is extendable for other datasets such as Flickr 100M
tags and descriptions. While these similarity measures will
not be as precise as manual classification, thus being noisy
labels, it will allow for training on much larger datasets
since many such image/ text pairs are readily available on
the internet. To learn similarity between images, we will im-
plement a Siamese network architecture where two separate
towers share weights and combine the features representa-
tion for a pair of images only at the final fully connected
layers. We will evaluate the quality of the features learned
by using them as the initial weights for the image classifi-
cation task and then finetuning to learn the final layer that
translates from the 4096 element vector representation to a
classification.

1. Introduction

Two major challenges facing the computer vision com-
munity are (1) building large corpora of annotated images
that can be used for training models and (2) integrating
non-image data into visual models to allow for more so-
phisticated application. Building large corpora such as Im-
ageNet are prohibitively expensive because they require hu-
man workers to classify images. This task can even grow to
be challenging for humans because of the large number of
classes and complexity of the images. Furthermore, while
images still have much data that we are not able to extract
effectively, most of the internet is a combination of images
and text which are related. There are also many industry
applications that collect both image and text data together,

such as medical records and insurance claims. This project
attempts to make progress on both of these fronts. Specif-
ically, this experiment will use text metadata as the noisy
classifications for images. The MSCOCO dataset provides
5 captions for each image that will be used as the metadata.
Rather than trying to classify images, images that have sim-
ilar metadata are assumed to have similar feature represen-
tations and vis versa. This lifts the requirement of annotated
corpora because images with some kind of user metadata is
readily found on the internet. The main tradeoff is handling
noisy labels in exchange for significantly expanding the set
of available training data.

Similarity of the metadata is measured with cosine sim-
ilarity. However there is a clear tradeoff between the com-
plexity of the similarity function and the quality of the fea-
ture representations learned by the system. A major chal-
lenge with this approach is that there is significant noise in
the metadata because the data was not created for the pur-
pose of image classification but rather for general sharing
on the internet. They may be simply names of people, loca-
tion or short comments that need not mention all the items
in the image. However, there is still a shared context which
this project tries to exploit in order to reach a better repre-
sentation of the data in the image. While out of the scope of
this project, there are many applications that contain related
images to large amounts of text, such as medical records
with x-rays and insurance claims with images of car acci-
dents, that may be able to leverage models that include both
images and text data.

While a goal of this work is to provide an opportunity
to scale training data, building such large networks and
datasets is very expensive in resources and training time.
Furthermore, the noisier the labels, the larger the training
dataset must be to compensate. Therefore, in an attempt
to prove some value in this approach before significant in-
vestment, the experiments are run using the MSCOCO 2014
dataset [3] because it is much smaller and has high quality
text data associated with each image. It should be clear that
the MSCOCO captions can be replaced by Flickr 100M [4]
tags and descriptions to scale the training set up at the cost

of a noisier signal.

This work assumes that transfer learning can be lever-
aged to save time and resources training networks from
scratch. Specifically, all the networks are initialized with
some weights that have been learned from previous larger
scale training, specifically by CaffeNet [5]. The high ac-
curacy of the baseline classification task of MSCOCO im-
ages indicates that CaffeNet weights provide a quality fea-
ture representation even when run on a different dataset of
images.

The baseline for this experiment is to build an image
classifier for MSCOCO by fine tuning weights from Caf-
feNet to save on compute time of training the network from
scratch. The Siamese network which learns similarity be-
tween images will be run on a large sampling of pairs of
images and will also fine tune over the CaffeNet weights
to provide a slightly different feature representation but not
pay the price of training from scratch. The middle layers of
the Siamese network are the same as the baseline architec-
ture so this work hopes to show that retraining the baseline
using the weights from the Siamese network rather than the
CaffeNet weights will improve the image classification ac-
curacy.

2. Related Work

This works expands on the work done by Han et al. [1]
and Doersch et al. [2]. MatchNet describes a two-tower
architecture that is similar to the architecture used in this
study. The main idea is that the two towers share weights
but then concatenate the resulting feature representations of
pairs of patches that are then fed into a fully connected met-
ric network and softmax loss function. The metric network
measures the similarity of two feature representations and
calculates the loss to the ground truth similarity between
the pair of patches. This is congruent to this projects cal-
culation of the similarity of two feature representations, but
our ground truth is based on the text metadata that accom-
panies the the images rather than a computed function over
the two images.

Doersch et al. [2] focuses on learning features on an un-
supervised dataset by splitting a single image into 9 patches
and training a network than can guess the correct orienta-
tion between patches. The intuition is that if the network
can learn the orientation of patches, it must have learned
some underlying features of the objects in the images. Us-
ing these learned representations, Doersch et al. show that
the features learned from this network can then be used for
unsupervised object discovery. This project hopes to find
similar results of being able to find underlying object fea-
tures from “similar” images.

3. Dataset

This experiment was conducted using the MSCOCO
2014 dataset [3]. The training set has 82081 images. Each
image has 5 captions which are full sentences that were
written by humans for the purpose of building this dataset.
These captions are used as the text metadata in computing
the similarity between images. There are also 90 categories,
with each image being labeled by a single category. These
categories are used as the image classes for the baseline and
evaluation networks that are described in the experiments
section of this paper.

The long term goal is to exploit the large amount of avail-
able images with text metadata to see if growing the size of
the dataset continues to improve the model as more “nois-
ily” labeled images are added. A potential dataset for this
task would be the Flickr100M [4]. This dataset has 100
million images along with titles, tags and descriptions set
by the uploader. However, this dataset presents two major
challenges. The text is very noisy. Titles are often default
names such as “IMG_XXX”, tags often describe the cam-
era used, such as “Nikon”, rather than the content of the
image and the descriptions occasionally contain advertise-
ments and copyright statements. This could potentially be
handled by either naively feeding the data into the network
and hoping it learns what is and isn’t relevant or by doing
some kind of data cleaning during sampling such as strip-
ping out certain titles and tags that are known to not add
information. This task can quickly grow in scope however
and measuring its effectiveness can be challenging. Sec-
ondly, the dataset is extremely large providing a challenge
for even storing the data on disks or loading data efficiently.
A working neural network over Flickr 100M would require
significant engineering and resource investment to make the
data manageable.

For these reasons, this project focuses on the smaller and
less noisy MSCOCO dataset to try to show some indica-
tion of value before trying to scale up to large and noisier
data. Two sample images that were used as a similar pair
are shown in Figure 1, including their labels and captions.

4. Computing Similarity

The similarity measure takes the text metadata associ-
ated with a pair of images and returns a score between 0
and 1 of how similar the images are expected to be based
on the text. Obviously similar words should indicate simi-
larity but many repeated words such as “a” or “the” should
not indicate similarity. Different sizes of text data should
be comparable, so the function must be robust to comparing
between small and large instances. Finally, since there is
a large number of pairs that can be generated even from a
small dataset, the operation should not be prohibitively ex-
pensive as it is run many times, depending on the sampling

(a) Label: Person
Captions:
A man riding a wave on top of a surfboard.
A man on a surfboard riding an ocean wave.
A man in a black wetsuit riding a wave on a white surfboard.
a man surfing in the water with a body suit
The man in the black wet suit is surfing on a board.

(b) Label: Surfboard
Captions:
A man riding a wave on top of a surfboard.

A surfer is in the middle of an ocean wave.
Surfer emerging from water tunnel in the ocean.
A person is riding a wave on a surfboard.

a person on a surf board riding through the waves

Figure 1: Two images from the MSCOCO [3] dataset.
Cosine Similarity: 0.861295

approach.

Algorithm 1 Cosine Similarity

1: procedure GETSIMILARITYOFPAIR

2 capsl < Counter(split (image 1 captions))
3: caps2 <— Counter(split (image 2 captions))
4
5

intersection <— keys(capsl) N keys(caps2)

numerator < Y, capsl[x] * caps2[x]
for x € intersection

suml < " capsl [x]*for x € keys(capsl)

sum2 < caps2[x]*for x € keys(caps2)

denominator < /suml * sum2

return numerator / denominator

b

As the initial approach, this paper uses the cosine simi-
larity between two bags of words, created by taking the set
of words associated with a given image and the counts for
each word. Cosine similarity provides a reasonable similar-
ity measure and allows for comparing different sized sets.
Furthermore, it is a fast operation that can be easily com-
puted during sampling as described later in this paper. Al-
gorithm 1 outline the pseudo-code for the similarity mea-
sure. Counter refers to the python class that returns a dic-
tionary of words as the keys and their respective counts as
their values.

There may be better measures for similarity of text meta-
data and this work does not attempt to measure the quality
of this measure or compare it to other measures. There is
also a likely trade off between the computational complex-

ity of the similarity measure and the noisiness of the results.
However, this simple measure was used for this work leav-
ing further exploration in this space out of the scope of this

paper.

5. Sampling

As Doersch et al. [2] reports, using a naive sampling
of images, the model will be biased toward dissimilar im-
ages because dissimilarity is much more common in prac-
tice. This project will include building a preprocessing en-
gine that computes similarities of images, creates balanced
pairs of similar and dissimilar images and loads them into
an LMDB database for easy loading during CaffeConTroll
run time. As mentioned above, this component will also en-
capsulate the definition of similarity between text and can
be arbitrarily expanded. If this project finds positive results
with a simple similarity function, a future study could in-
clude the tradeoffs between more complex similarity mod-
els vs the runtime and effectiveness of the end to end sys-
tem.

Since the MSCOCO 2014 dataset has only 82,081 im-
ages, all 3.3 billion pairs were explored but only pairs that
had a similarity of greater than 0.85 or less than 0.05 were
considered. The purpose of this purging was to provide the
network with only examples of similar and non-similar im-
ages rather than also complicating the network with differ-
ent grades of similarity. The thresholds were tuned to return
roughly 2 million examples each. The final set of pairs were
randomly sampled 1.1 million pairs of each similar and non-

similar.

Note that while all combinations of 80K images is possi-
ble, this is no longer possible as the number of base images
increases. Therefore a more scalable approach would be to
do random sampling. This raises issues of what factors to
balance in the sampling. While this was out of the scope of
this work, some of these issues are mentioned here for fu-
ture work. There is an open question of the value of choos-
ing pairs with and without replacement. It is unclear how
having the same images in multiple pairs may influence the
network. Furthermore, it may be desirable to balance the
number of pairs for each categories. For example, if there
are an equal number of similar and non-similar pairs, but all
the similar pairs are of a single type, such as cat, then this
will likely produce biases in the network. Clearly there is
not an even distribution of each category of images gener-
ally found on the internet so it may be necessary to artifi-
cially balance training sets.

As an implementation detail, the sampling was part of
the preprocessing stage that prepared all the data for train-
ing a neural network. Since the Siamese network draws a
pair of images at a time, the pairs were stored contiguously.
Specifically, as described in the implementation, the pairs
get split and then their feature vectors are concatenated. To
support this structure, the pairs of images were stored in
LMDB as a single image with the original height and width,
but with a depth of 6 channels instead of 3, basically stack-
ing the two images on top of each other. Note that if any im-
age occurs in multiple pairs, it will be stored in the LMDB
multiple times. This redundancy is very costly, increasing
the dataset size from 16GB to 800GB for this experiment.
This was done because the size was still manageable and
it provided for faster performance since there was no delay
in retrieving the images. However, for larger dataset, there
should be a more clever sparse representation of the data.

6. Implementation

The experiments for this project were run on Caffe and
used two network architectures. The basic classification
task was run on CaffeNet [5] and a Siamese network was
used for the pairs of similar images based on MatchNet. All
the data was stored in LMDB and used Softmax for the loss
layer.

The Siamese network is based on He et al. [1] and shown
in Figure 2. The split section of the network which ap-
pears as two separate towers are themselves CaffeNet tow-
ers. There are two critical requirements for these towers.
First, they must share weights. The way that the network
learns about pairs of images at the same time is by actually
running the pairs of images over the same set of weights at
each layer. Second, each tower is itself exactly a CaffeNet.
This allows using the weights learned from the Siamese net-
work on the basic CaffeNet. The experiments cover in more

‘ FC3 (Output : 2) + Softmax

‘ FC2 / ReLUConcat

‘ Concat

‘ FC1/RelLU |
FC6 / ReLU |

‘ FC6 / ReLU ‘ ‘

‘ Conv5 / ReLU / Pool ‘ ‘ Conv5 / ReLU / Pool |

‘ Conv4 / ReLU ‘ ‘ Conv4 / ReLU |

‘ Conv3/RelLU ‘ ‘ Conv3/RelLU |

‘ Conv2 / ReLU / Pool / Norm ‘ ‘ Conv2 / ReLU / Pool / Norm |

‘ Conv1/ReLU /Pool / Norm ‘ ‘ Conv1 /ReLU / Pool / Norm |

‘ Slice |

‘ Data (LMDB) |

Figure 2: Architecture of the Siamese network inspired by
MatchNet [1]. The split layer splits two images stacked on
top of each other in the depth dimention and passes them
into the two separate towers. The resulting vectors are con-
catenated.

detail how shared weights are used but the implementation
required that the towers in the Siamese network and the Caf-
feNet had the same architecture and parameter names so
that weights could be transferred between the two differ-
ent architectures. Caffe provides a simple method of doing
this. During training weights can be initialized with a *.caf-
femodel file and when training is complete the model can be
saved to a *.caffemodel file that can be loaded into another
instance of training or testing using the “weights” parame-
ter.

The Siamese network is composed of a standard set of
convolution, pool, ReLU and normalization layers. The
unique aspect of the Siamese network is that when it loads
an image, (which is actually 2 images stacked along the
depth dimension as mentioned above), it must split the im-
age and then recombine the features before the fully con-
nected layers. Since the images are stored contiguously,
the split layer simply splits the 6 channel image into two
3 channel images (which are in fact the original images).
Each image is fed into one of the towers. The output of
each tower is a 4,096 element vector representation of the

image. These two vectors are simply concatenated and fed
into a set of fully connected layers that are trained to con-
vert the vector to scores for similarity and non-similarity.
The final layer computes a Softmax loss over the predicted
similarity versus the expected similarity as computed by the
Cosine similarity over the text of the image.

7. Experiments Evaluation and Results

The goal of this project is to be able to learn visual fea-
tures in an unsupervised system with noisy labels. This pro-
vides a challenge is evaluating the results because there isn’t
a clear ground truth to compare against. There are several
tasks that can be evaluated using these features to compare
to state of the art systems. [2] uses its learned representation
in unsupervised object discovery and compares its results to
Pascal VOC 2011 detection dataset. While there are many
such tasks in the unsupervised learning space, to bound the
difficulty of evaluating the results of this work, the first set
of experiments will simply attempt to test if the weights
learned in the Siamese network are a better initialization for
fine-tuning an image classification task than the provided
CaffeNet weights which were learned on ImageNet. The
rest of this section will outline in detail how these experi-
ments were built and how weights were transferred.

As a baseline, the stock CaffeNet model, using weights
from Model Zoo that were learned on ImageNet, was fine
tuned to classify images in MSCOCO based on 90 cate-
gories. After 50,000 iterations with a batch size of 50, the
baseline network was able to reach 84% validation accu-
racy.

Next, the Siamese network was trained to classify pairs
of images as similar or not similar. The towers of the net-
work were initialized to the same CaffeNet weights as those
used above in the baseline but the final fully connected lay-
ers were initialized randomly. The Siamese network was
trained for 100,000 iteration with a batch size of 128 and
reached 99.97% validation accuracy in classifying a pair of
images as similar or not similar. The new weights learned
during this training were stored for reuse in the evaluation
experiment.

As the evaluation experiment, the weights from the
Siamese network were used to initialize the same network
as the baseline (in place of the CaffeNet weights), and the
same baseline image classification task was evaluated. Note
that the Siamese network weights are able to be loaded into
the CaffeNet because each tower in the Siamese network is
actually itself a CaffeNet.

These experiments operate on the assumption that trans-
fer learning will adequately transfer useful image feature
representations from one task to another. This is a signif-
icant assumption for two reasons. First, the larger scope
goal is to show that using noisy labels on a large dataset can
be used to learn a useful feature representation for arbitrary

Dataset Weights Validation Accuracy
MSCOCO CaffeNet 84%
MSCOCO Siamese Learned | 77%
ImageNet subset | CaffeNet 96%
ImageNet subset | Siamese Learned | 93%

Figure 3: Validation accuracies using baseline and learned
weights

tasks and images. Second, this significantly decreases the
resources and time required to train these networks. Rather
than learning something like ImageNet which might take a
week on great hardware, this project attempts to use those
weights as the initialization and slightly tweak them using a
novel training approach allowing the training dataset to be
much smaller and the resources required to be much more
limited.

The hypothesis was that using newly learned weights
from the Siamese netwokr would perform better at image
classification than using the CaffeNet weights on the base
MSCOCO dataset. The experimental results returned 77%
validation accuracy after 50,000 iterations with a batch size
of 50. With an identical setup and the same number of iter-
ations, the resulting accuracy decreased by 7% suggesting
that the hypothesis was false. The same experiment was
run but using a subset of ImageNet as the baseline. The
results were similar with validation accuracies of 96% for
the baseline and 93% using the new weights. Note that the
accuracies are higher for ImageNet than for MSCOCO be-
cause the networks were initialized with weights learned on
ImageNet so they would clearly be more effective on that
dataset. The discussion offers some intuitions as to why
this may be the case and expands on some of the factors
that contribute to the results that may offer some motivation
for further experimentation.

8. Discussion

As shown in the results, the validation accuracy of the
baselines were higher than the accuracies using the weights
learned in the Siamese network. One intuition of why this
may be the case can be found by taking a closer look at the
example of the two surfing images in Figure 1. Notice that
the images are both of a person surfing on a wave and the
captions are very similar in describing this. In fact, there is
a caption that is identical for both images. However, the la-
bels for the two images are actually different, one being la-
beled as a “Person” and the other as a “Surfboard”. It may
be the case that the weights actually did learn similarities
between images but these similarities were not reflected in
the labels. Reviewing the input data showed a large number
of images classified as similar actually had different cate-

gory labels in MSCOCO.

Another potential factor in the negative results was the
scale of the data. While the Siamese network was trained
on over 2 million image pairs and ran for over 16 hours on
a GPU, current state of the art models are trained on much
more hardware resources and are run for a week or longer.
It may be the case that to have a significant impact on the
image representation, the training time must be scaled up or
perhaps done from scratch.

The motivation for this work’s setup was to attempt to
show a positive result on a small dataset with a short training
time in hopes to save effort on a larger experiment. Since
this work was not able to accomplish this, the measurement
of success for this task needs to be reevaluated. It is likely
still too large of an investment to build and run this ex-
periment with the full Flickr 100M dataset distributed on
many machines. An alternative approach would be to find
tasks that could measure incremental improvements in im-
age feature representation to show a trend of improving be-
fore scaling up, if possible.

9. Conclusion

This work attempted to enable training on larger and
noisier datasets for image classification. It explored the
space of using similar images based on text metadata with
Siamese networks to learn better image feature representa-
tions. Ultimately, using similar images to learn feature rep-
resentations did not improve image classification. While the
captions used in these experiments were not very noisy, per-
haps image classification was not the correct approach for
evaluating the quality of the results because there wasn’t
a strong enough correlation between similar images and
matching labels. Future work may include attempting other
tasks such as unsupervised object detection using the new
learned weights from these results.

Also this work took advantage of a small dataset to min-
imize system complexity. Nevertheless, even with a smaller
dataset, sampling good distributions of similar pairs of im-
ages, computing their scores and storing them for efficient
loading into Caffe provided to be challenging. This indi-
cates that any further scaling would require a more disci-
plined approach to sampling and storing data. In particular,
there is a necessity in removing redundant storage and bal-
ancing sampling across similarity and classes.

References

[1] X. Han, T. Leung, Y. Jia, R. Sukthankar and A. Berg.
MatchNet: Unifying Feature and Metric Learning for
Patch-Based Matching. Proceedings of Computer Vi-
sion and Pattern Recognition, 2015.

[2] C. Doersch, A. Gupta and A. Efros. Unsupervised Vi-
sual Representation Learning by Context Prediction. In
ICCV’15.

[3] T.Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, P. Dollr.
Microsoft COCO: Common Objects in Context. ECCV
(5) 2014

[4] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde,
K. Ni, D. Poland, D. Borth, L. Li. The New Data and
New Challenges in Multimedia Research. arXiv 2015

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, T. Darrell. Caffe: Convo-
lutional Architecture for Fast Feature Embedding arXiv
2014

A. solver.prototxt

net: ‘‘./train_val.prototxt"
test_iter: 100
test_interval: 1000
base_lr: 0.001

lr_policy: ‘‘step"

gamma: 0.1

stepsize: 20000

display: 100

max_iter: 100000

momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: ‘‘siamese"
solver_mode: GPU

B. train_val.prototxt

name: "SiameseNet"
layer {
name: "data"

type: "Data"
top: "pair_data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "mscoco-mean.binaryproto"
}
data_param {
source: "../mscoco_pairs_lmdb"
batch_size: 128
backend: LMDB

}
layer {
name: "data"
type: "Data"
top: "pair_data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "mscoco-mean.binaryproto”
}
data_param {

source: "../mscoco_val_pairs_lmdb"

batch_size: 64
backend: LMDB

}
layer {
name: "slice_pair"
type: "Slice"
bottom: "pair_data"
top: "data"
top: "data_p"
slice_param {
slice_dim: 1
slice_point: 3

#1st siamese tower

layer {

name: "convl"

type: "Convolution"

bottom: "data"

top: "convl"

param {

name: "convl_w"
lr_mult: 1

decay_mult: 1
}

param {
name: "convl_Db"
lr_mult: 2

decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0

}

layer {
name: "relul"
type: "ReLU"
bottom: "convl"
top: "convl"

}

layer {

}

name: "pooll"
type: "Pooling"
bottom: "convl"
top: "pooll"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2

layer {

name: "norml"
type: "LRN"
bottom: "pooll"
top: "norml"
lrn_param {
local_size: 5
alpha: 0.0001

beta: 0.75
}
}
layer {
name: "conv2"

}

type: "Convolution"
bottom: "norml"
top: "conv2"

param {
name: "conv2_w"
lr_mult: 1

decay_mult: 1
}

param {
name: "conv2_Db"
lr_mult: 2

decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1

layer {

name: "relu2"

type: "ReLU"
bottom: "conv2"

top: "conv2"
layer {
name: "pool2"

type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2

layer {

name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001

beta: 0.75
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
param {
name: "conv3_w"
lr_mult: 1

decay_mult: 1
}

param {
name: "conv3_Db"
lr_mult: 2

decay_mult: O
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0

} }

} param {

layer { name: "conv5_Db"
name: "relu3" lr_mult: 2
type: "ReLU" decay_mult: 0O

bottom: "conv3"
top: "conv3"

convolution_param {
num_output: 384

}
convolution_param {
num_output: 256

layer { pad: 1
name: "conv4" kernel_size: 3
type: "Convolution" group: 2
bottom: "conv3" weight_filler {
top: "conv4" type: "gaussian"
param { std: 0.01
name: "conv4_w" }
lr mult: 1 bias_filler {
decay_mult: 1 type: "constant"
} value: 1
param { }
name: "conv4_Db" }
lr mult: 2 }
decay_mult: O layer {
} name: "relub5"

type: "ReLU"
bottom: "conv5"

pad: 1 top: "conv5"
kernel_size: 3 }
group: 2 layer {

weight_filler {
type: "gaussian"
std: 0.01

}

bias_filler {

name: "poolb5"
type: "Pooling"
bottom: "convb"
top: "poolb"
pooling_param {

type: "constant" pool: MAX
value: 1 kernel_size: 3
} stride: 2
} }
} }
layer { layer {
name: "relu4d" name: "tower_fco"
type: "ReLU" type: "InnerProduct"
bottom: "conv4" bottom: "poolb"
top: "conv4" top: "tower_fco"
} param {
layer { name: "fc_w"
name: "conv5" lr_mult: 1
type: "Convolution" decay_mult: 1
bottom: "conv4" }
top: "conv5" param {
param { name: "fc_b"
name: "conv5_w" lr_mult: 2
lr_mult: 1 decay_mult: 0O
decay_mult: 1 }

inner_product_param {
num_output: 4096
weight_filler {
type:
std:

"gaussian"

0.005

}

bias_filler {
type: "constant"
value: 1

}

layer {
name: "reluo"
type: "ReLU"
bottom: "tower_fco"
top: "tower_fco"

#can also try with the dropout layer

#layer {

name: "drop6"

type: "Dropout"

bottom: "tower_fc6"
top: "tower_fco"

dropout_param {

dropout_ratio: 0.5
0}

#}

#2nd siamese tower

layer {

name: "convl_p"
type: "Convolution"
bottom: "data_p"
top: "convl_p"
param {

name: "convl_w"

lr_mult: 1

decay_mult: 1
}

param {
name: "convl_Db"
lr_mult: 2

decay_mult: 0O

}

convolution_param {
num_output: 96
kernel_size: 11

stride: 4
weight_filler {
type: "gaussian"

10

std: 0.01

}

bias_filler {
type: "constant"
value: 0

}

layer {
name: "relul_p"
type: "ReLU"
bottom: "convl_p"
top: "convl_p"
}
layer {
name: "pooll_p"
type: "Pooling"
bottom: "convl_p"
top: "pooll_p"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norml_p"
type: "LRN"
bottom: "pooll_p"
top: "norml_p"

lrn_param {
local_size: 5

alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2_p"
type: "Convolution"
bottom: "norml_p"
top: "conv2_p"
param {
name: "conv2_w"
lr mult: 1

decay_mult: 1
}

param {
name: "conv2_b"
lr mult: 2

decay_mult: O

}

convolution_param {
num_output: 256

pad: 2
kernel_size: 5
group: 2
weight_filler {

type: "gaussian"

std: 0.01

}
bias_filler {

type: "constant"

value: 1

}
layer {
name: "relu2_p"
type: "RelLU"
bottom: "conv2_p"
top: "conv2_p"
}
layer {
name: "pool2_p"
type: "Pooling"
bottom: "conv2_p"
top: "pool2_p"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2

}
layer {
name: "norm2_p"
type: "LRN"
bottom: "pool2_p"
top: "norm2_p"
lrn_param {
local_size: 5
alpha: 0.0001

beta: 0.75
}
}
layer {
name: "conv3_p"
type: "Convolution"

bottom: "norm2_p"
top: "conv3_p"

param {
name: "conv3_w"
lr mult: 1

decay_mult: 1
}
param {

name: "conv3_b"

11

}

lr mult: 2
decay_mult: O
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0

layer {

}

name: "relu3_p"
type: "ReLU"
bottom: "conv3_p"
top: "conv3_p"

layer {

name: "conv4_p"
type: "Convolution"
bottom: "conv3_p"
top: "conv4_p"
param {

name: "conv4_w"

lr mult: 1

decay_mult: 1
}

param {
name: "conv4_b"
lr_mult: 2

decay_mult: 0O
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 1

layer { layer {

name: "relud_p" name: "tower_fc6_p"
type: "ReLU" type: "InnerProduct"
bottom: "conv4_p" bottom: "pool5_p"
top: "conv4_p" top: "tower_fc6_p"
} param {
layer { name: "fc_w"
name: "conv5_p" lr_mult: 1
type: "Convolution" decay_mult: 1
bottom: "conv4_p" }
top: "convb_p" param {
param { name: "fc_b"
name: "conv5_w" lr_mult: 2
lr_mult: 1 decay_mult: 0
decay_mult: 1 }

} inner_product_param {
param { num_output: 4096
name: "conv5_Db" weight_filler {

lr_mult: 2 type: "gaussian"
decay_mult: 0 std: 0.005
} }
convolution_param { bias_filler {
num_output: 256 type: "constant"
pad: 1 value: 1
kernel_size: 3 }
group: 2 }
weight_filler { }
type: "gaussian" layer {
std: 0.01 name: "relu6_p"
} type: "ReLU"
bias_filler { bottom: "tower_fc6_p"
type: "constant" top: "tower_fc6_p"
value: 1 }
}
} #can also try with the dropout layer
} #layer {
layer { # name: "drop6_p"
name: "relub_p" # type: "Dropout"
type: "ReLU" # Dbottom: "tower_fc6_p"
bottom: "conv5_p" # top: "tower_fc6_p"
top: "conv5_p" # dropout_param {
} # dropout_ratio: 0.5
layer { # 0}
name: "pool5_p" #1}

type: "Pooling"
bottom: "conv5_p"

top: "poolS_p" #feature vector classification network
pooling_param { layer {
pool: MAX name: "concat"
kernel_size: 3 bottom: "tower_ fco"
stride: 2 bottom: "tower_fc6_p"
} top: "concat"
} type: "Concat"

12

concat_param {
axis: 1

layer {
bottom: "concat"
top: "feature_fcl"
name: "feature_fcl"
type: "InnerProduct"
inner_product_param {
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
num_output: 4096

}
layer {
bottom: "feature_fcl"
top: "feature_fcl"
name: "feature_fcl_relu"
type: "ReLU"
}
layer {
bottom: "feature_fcl"
top: "feature_fc2"
name: "feature_fc2"
type: "InnerProduct"
inner_product_param {
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
num_output: 4096

}

layer {
bottom: "feature_fc2"
top: "feature_fc2"
name: "feature_fc2_relu"
type: "ReLU"

}

layer {
bottom: "feature_fc2"
top: "feature_fc3"
name: "feature_fc3"

13

type: "InnerProduct"
inner_product_param {
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}

num_output: 2

layer {

name: "accuracy"
type: "Accuracy"
bottom: "feature_fc3"
bottom: "label"

top: "accuracy"
include {

phase: TEST

}

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "feature_fc3"
bottom: "label"
top: "loss"

