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Abstract

An ensemble of three convolutional network architec-
tures was used to classify 10,000 images from the Tiny Im-
ageNet challenge into 200 distinct classes. A test error rate
of 0.506 was achieved. The top single model in the ensem-
ble achieves an error rate of 0.524. The top-performing
architecture was a keras implementation of the VGG-16 ar-
chitecture. To avoid overfitting to the training data, the data
was augmented through image rotation, cropping, and color
jitter. Additionally, dropout and regularization (L1 and L2)
were utilized. Network performance was further analyzed
by visualization of the filters, computation of saliency maps,
and determining the per-class distribution of the model val-
idation accuracy.

1. Introduction
Image classification is a fundamental problem in com-

puter vision. The ImageNet Challenge[14] tasks par-
ticipants with classifying 100,000 test images into 1000
classes, giving a training set of 1.2 million images. Top-
1 and top-5 accuracy on the test dataset is used to rank
performance. The Tiny ImageNet Challenge follows the
same principle, though on a smaller scale – the images are
smaller in dimension (64x64 pixels, as opposed to 256x256
pixels in standard ImageNet) and the dataset sizes are less
overwhelming (100,000 training images across 200 classes;
10,000 test images).

Since the ImageNet Challenge was first held in 2010, a
deep learning revolution has occurred in computer vision.
Initial winners of the challenge relied on standard tech-
niques in computer vision. In this approach feature such
as SIFT [12], histogram of gradients [6], and local binary
patterns [13] must be extracted from the training data and
pooled for a global image representation using techniques
such as spatial pyramid matching[11] and Fisher vector rep-
resentation [7]. The pooled features are then input to a clas-
sifier such as a support vector machine to perform the image
classification. These approaches work well on the scale of
thousands or tens of thousands of images but do not scale

efficiently for the 1.2 million images in ImageNet.
Convolutional neural networks help to overcome the lim-

itations of traditional classification techniques. They do not
require pre-defined input features, but rather learn them as
part of the training process. Furthermore, the convolution
and dot product operations of ConvNets can be highly vec-
torized, which allows for highly parallel and fast GPU im-
plementation. The high suitability of convolutional neural
networks for image classification is illustrated by the suc-
cess of Krizhevsky et al [9], Szegedy et al [18] in applying
these techniques to win the ImageNet Challenge.

In this project, I experiment with four convolutional neu-
ral network architectures to classify the images in the Tiny
ImageNet Challenge. Pretrained weights are used when
available; otherwise networks are trained from scratch. I fo-
cus on adding dropout, regularization, and data augmenta-
tion to prevent models from overfitting on the training data.
Several approaches are implemented to visualize model per-
formance and to identify classes where the model achieves
high accuracy, as well as classes where the model performs
poorly.

2. Methods
All models for this project were implemented in Python

using the Keras library (v1.3)[5] running on top of Theano
(v.0.7)[4]. All code and network weights for the project can
be downloaded from Github: https://github.com/
annashcherbina/cs231n_project.git.

The image data was pre-processed by calculating the per-
channel mean of the training data and subtracting this value
from each image in the training, validation, and test data.
The dataset pixel values were subsequently normalized via
division by the per-channel standard deviation of the train-
ing dataset. The skimage Python library was used for data
loading and pre-processing[19].

2.1. Data augmentation

The training dataset provides 50 images for each of 200
classes, for a total of 100,000 images. Data augmentation
was used to increase the amount of available training data.
Five augmentation steps were performed (Figure 1). Images
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Figure 1. Data augmentation approaches that were applied to the
training data.Images were flipped horizontally, flipped vertically,
cropped, color-contrasted, and tinted.

were flipped about the vertical axis or about the horizontal
axis. Random crops of 55x55 pixels were extracted from
images, and the resulting smaller image was then scaled
(via spline interpolation) to the original size of 64x64 pix-
els. The scaling was done with the resize function in the
skimage library. Image contrast was adjusted randomly. For
each input image in the training data, a number from the
range [0.8,1.2] was selected at random, and each pixel of the
image was multiplied by that number. Images were tinted
at random. For each input image, a random color was gen-
erated whose red, green, and blue components were drawn
uniformly at random from the range (-5,5). This color was
added to each pixel of the image. Augmenting each image
with all five techniques would have increased the training
data size by 500%, which is too large to fit in memory for
my available system. Consequently, 30% of the training
data was selected at random for each of the augmentations,
yielding a total training set size of 265,000 images.

2.2. Network architectures

Four ConvNet architectures were trained on the Tiny Im-
ageNet dataset. These are illustrated in Figure 2.

2.2.1 Nine-layer network from CS231n assignment 3

The nine-layer network from assignment three was selected
due to the availability of pretrained weights (Figure 2a).
All convolution layer parameters were identical to val-
ues used in assignment 3. For the spatial batch normal-
ization, the default Keras parameters were utilized (ε=1e-
6,momentum=0.9). To reduce overfitting, the network was
modified by adding 0.25 dropout after the third convolution
layer, 0.25 dropout after the sixth convolution layer, and
0.5 dropout after each of the fully-connected layers[17]. L1

and L2 regularization was also added as a further step to re-
duce overfitting. The first convolutional layer was weakly
regularized (L1 λ=1e-7, L2 λ= 1e-7). Stronger regulariza-
tion was applied to each of the dense layers: L1 λ=1e-5, L2
λ=1e-5.

The network was trained via stochastic gradient descent
for a total of 17 epochs. It was found that training for more
than 17 epochs caused the validation accuracy to decrease
(Figure 4), potentially a consequence of the network over-
shooting the global minimum. Learning rates of 1e-7, 1e-5,
1e-3, 1e-1, 5e-1 were utilized, and it was found that the net-
work converged to the highest final accuracy with a learn-
ing rate of 1e-1. The default SGD parameters in Keras were
tried (decay=1e-6, Nesterov momentum=0.9), but the net-
work did not converge when these were applied. Removing
decay and Nesterov momentum led to the highest validation
accuracy and the fastest convergence time.

2.2.2 VGG-like network

The network illustrated in Figure 2b was provided as an ex-
ample in the Keras documentation, and I used it for two pur-
poses: to ensure that my Keras setup was working properly,
and to learn the quality of results that could be obtained
by training a network from scratch, as opposed to begin-
ning with pre-trained weights. This was done because no
pretrained weights were available for this network, which
is a simplification of the VGG-16 network. In contrast to
VGG-16, the VGG-like network utilizes only 4 convolua-
tion layers. I modified the original network in [5] by adding
0.25 dropout after the second and fourth convolution layers,
as well as 0.5 dropout after the first dense layer. To further
reduce dropout, L1 and L2 regularization was added to the
dense layers (L1 and L2 λ=1e-6 for the first dense layer; L1
and L2 λ=1e-5 for the second dense layer). The network
was trained via stochastic gradient descent with learning
rate 1e-1 for a total of 30 epochs (until validation accuracy
plateaued).

2.2.3 VGG-16

The VGG-16 architecture described in [16] was imple-
mented in Keras (Figure 2c.) Pre-trained weights for the
architecture were downloaded from [1]. Because the orig-
inal architecture was trained on the ImageNet dataset with
1000 output classes, the pre-trained weights for the Dense
layers could not be used due to dimension mismatch. Con-
sequently, the weights for the dense layers were initialized
using the Glorot initialization [8]. The original VGG-16 ar-
chitecture was modified by increasing dropout to 0.75 after
the first and second fully-connected layers (as compared to
0.5 in the original architecture). This was done to mitigate
the overfitting problem. L1 and L2 regularization was also
added to the original VGG16 architecture to further reduce



Figure 2. Four network architectures were trained as part of this project. a. Nine-layer ConvNet from Assignment 3. b. Simplified
VGG-like network. c. VGG-16. d. AlexNet.

overfitting. Both weight regularization and activity regular-
ization were added, and regularization parameters increased
deeper into the network, however experiments showed that
increased the regularization λ beyond 1e-4 prevented the
network from learning, while using λ lower than 1e-7 was

insufficient to have any meaningful effect on overfitting,
leading to the following final set of regularization param-
eters:

• Conv Layer 11: L1 λ=1e-7, L2 λ=1e-7



• Conv Layer 12: L1 λ=1e-6, L2 λ=1e-6

• Conv Layer 13: L1 λ=1e-5, L2 λ=1e-5

• Dense Layer 1: L1 λ=1e-4, L2 λ=1e-5

• Dense Layer 2: L1 λ=1e-4, L2 λ=1e-4

The network was trained via stochastic gradient descent for
6 epochs, since the validation accuracy plateaued at this
time, and training for additional epochs had no effect. Ex-
perimentation with learning rates of (1e-7, 1e-5, 1e-3, 1e-
1) indicated optimal validation accuracy and faster conver-
gence for a learning rate of 1e-3. For the VGG-16 model,
the default Keras SGD parameters (decaye=1e-6, Nesterov
momentum=0.9) did work better than SGD without these
optimizations (in contrast to the 9-layer ConvNet described
above).

2.2.4 AlexNet

I attempted to implement the AlexNet architecture[9] in
Keras. The implementation is illustrated in Figure 2d. How-
ever, I was not able to evaluate this architecture because the
memory required to run it was greater than that available on
my computer system. This is due to the fact that AlexNet is
a much wider architecture than VGG and the 9-layer Con-
vNet,though it is not as deep and utilizes only 4 convolu-
tional layers. Experiments to replace the first convolutional
layer of size (64x11x11) with smaller layers (64x9x9) or
(64x7x7) continued to yield memory errors, preventing me
from being able to evaluate the performance of this archi-
tecture.

2.2.5 Ensemble of architecture results

A majority vote of the three trained models was taken. If
all three models disagreed, the VGG-16 class label was as-
signed, since that is the model with the highest validation
accuracy. Pearson correlation was calculated to determine
the degree of correlation in validation error rates across the
models.

2.3. Optimization and Experimentation

2.3.1 Individual pre-training of layers

As an attempt to improve accuracy, layers in the 9-layer
ConvNet were pretrained individually. Initially, the learn-
ing rate for all layers except the first convolutional layer
was set to 0. Once that layer had been trained, the learning
rate for the second convolutional layer was set to the de-
fault value (1e-1). The learning rate for the first layer was
kept at 1e-1 to allow this layer to continue learning in the
context of the full network as additional layers were added.

Figure 3. Accuracy and loss for the 9-layer ConvNet architecture
with convolutional layers pre-trained individually.

In this manner, all remaining convolutional and dense lay-
ers were pre-trained and stacked on top of the previous lay-
ers. This approach follows one of the methods described by
Larochelle et al [10]. The training accuracy and loss for this
approach are illustrated in Figure 3. An accuracy of 98% is
achieved on the training data, but the approach also suffers
from sever overfitting, as illustrated by the 7.6% accuracy
on the test dataset and 3.80% accuracy on the validation
dataset (Table 1). Although these metrics were calculated
prior to the addition of dropout and regularization, the per-
formance was poor enough such that this approach was not
utilized in the final set of models.

Loss Accuracy
Training 0.135 0.983
Validation 7.629 0.038
Test 0.0760

Table 1. Training, validation, and test accuracy of the 9-layer Con-
vNet architecture with convolutional layers pre-trained individu-
ally.

3. Results

3.1. Tiny ImageNet Classification Error

An error rate of 0.506 was attained on the Tiny ImageNet
test dataset. The individual performance of the three net-
work architectures illustrated in Figure2 is summarized in
Table 2. The VGG-16 architecture achieved a test accu-
racy of 0.494, while the Assignment 3 ConvNet achieved
an accuracy of 0.423, and the simpler VGG-like network
achieved an accuracy of 0.237. Interestingly, a majority
vote of the architectures achieved an accuracy of 0.492 per-
cent, slightly lower than that of the VGG-16 architecture.
This is due to the fact that the errors across the three archi-



tectures are highly correlated (Pearson correlation = 0.732),
so we do not get the expected 2% accuracy boost from an
ensemble classifier.

Architecture Training
Accuracy

Validation
Accu-
racy

Test Ac-
curacy

9-Layer ConvNet 0.988 0.455 0.423
VGG-like ConvNet 0.488 0.288 0.237
VGG-16 0.760 0.535 0.494
Ensemble 0.492

Table 2. Accuracy of the three network architectures on Tiny Ima-
geNet training, validation, and test datasets.

The change in loss and accuracy over epochs of training
is illustrated in Figure4.

3.2. Model Visualization

3.2.1 Saliency Maps

A function was implemented to compute saliency maps
in accordance with Simonyan et al[15] and Zeiler [21].
Saliency maps for each of the 3 models on a test image from
class n07768694 (”pomegranite”) are illustrated in Figure5.
All three classifiers classified this image correctly. The ab-
solute value of the saliency score is illustrated in gray scale,
while areas of positive and negative saliency are shaded in
color. The saliency maps for the three maps are different,
but they are not readily interpretable.

3.2.2 Convolutional Filter Visualization

Convolutional filters for the first and last convolutional layer
in each of the three architectures are illustrated in Figure
6. As expected, the filters in the first convoluational layer
largely capture simple patterns, such as checkedred squares
and circles or stripes of a particular color. The filters in the
final convoluation layer (Figure 6 d,e,f) are more intricate
and capture more complex patterns. All filters are some-
what noisy, which is indicative of overfitting and is in line
with the disparity between the training and validation accu-
racies. In lecture, we learned that noisy filters might be an
indicator that regularization is too low, which suggests that
increasing regularization further might help to reduce filter
noise and improve validation/testing accuracy.

4. Discussion
The difference in performance across the three models

illlustrates the power of transfer learning. The VGG-16
architecture and the 9-layer ConvNet were both initialized
with pre-trained weights for the convolutional layers. The
simpler VGG-like model in Figure 2c was trained from
scratch, as pretrained weights for this architecture were not
available. The two models that used pre-trained weights

achieved accuracies of 45%- 49.4% on the test data, after 5-
10 epochs of training, while the model trained from scratch
achieved an accuracy of only 24% on the test data, even af-
ter 20 epochs of training. This difference in performance
illustrates the power of transfer learning and the great util-
ity of ”model zoos”, such as the one being developed for the
Caffe platform[2].

Conversely, however, the VGG-like model is the only
one of the three that did not suffer from the overfitting prob-
lem – validation accuracy followed training accuracy very
closely (Figure 4). This might be due to one of two fac-
tors. It is possible that the pre-trained weights used to ini-
tialize the other two models are contributing to the overfit-
ting problem. A lot more likely, however, is the fact that the
VGG-like model is a much less complex model,involving
only four convolution layers with a relatively low number
of filters for each layer (Figure 2b). Consequently, due to
the lower number of parameters in the model, overfitting is
less severe, but accuracy is also lower.

In [16], Simonyan and Zisserman implemented a VGG-
16 net that achieved a top-1 accuracy of 24.4% and a
top-5 accuracy of 7.5% on the ImageNet validation set.
My Keras implementation of the VGG-16 network used
the weights published in [16], but performed considerably
worse, achieving a top-1 accuracy of 49.4%. The differ-
ence in performance can be accounted for by the fact that
the Tiny ImageNet dataset differs from the full ImageNet
dataset that the VGG-16 network was trained on. The Tiny
ImageNet dataset is smaller – there are 100,000 available
images for training and 200 object classes (50 images per
class), as opposed to 1.2 million training images for 1000
object classes (over 1000 images per class) in the full Ima-
geNet challenge [14].

Due to the lower amount of training data per class, over-
fitting on training data proved to be the most significant
challenge in this project. My initial implementation of the
9-layer ConvNet in 2 achieved a training accuracy of 98%,
but a validation accuracy of only 13.1% and and a test accu-
racy of 10.5%. The addition of dropout, regularization, and
data augmentation helped to reduce the overfitting problem,
and allowed the model to attain the higher accuracies illus-
trated in Table 2. However, as shown in Figure 4, all three
models continue to suffer from overfitting on the training
data. The validation accuracy plateaus after 5-10 epochs of
training, depending on the model.

Though dropout and regularization helped, data augmen-
tation was by far the most impactful step in helping to com-
bat overfitting. Due to limitations on time and resources,
random subsets of the training data were selected for each
augmentation step (see ”Data augmentation” subsection in
”Methods”). However, in a future iteration of the project,
a smarter approach to data augmentation would likely yield
improved overall accuracy.



Figure 4. Accuracy and loss for the three network architectures that were trained in this project. The red line indicates training accuracy
and loss; the blue line indicates validation accuracy and loss.

Specifically, examination of error by object class illus-
trates that the model is much better at identifying some ob-
ject classes than others. For example, as shown in Table 3,
the model does exceptionally well at identifying goldfish,
school buses, trains, monarch butterflies and ladybugs. This
finding is un-surprising – these image classes are all quite
distinct from other image classes, and quite homogeneous
within themselves. For example, Figure 7a illustrates that
the goldfish images used in the validation dataset are fairly
standard – the fish is center stage and the shape/coloration
of the object remains consistent. The model had more
trouble with objects of class umbrella, punch bag, wooden
spoon, syringe, and plunger. As illustrated in Figure 7b,
many of the problem images have multiple objects other
than the object of interest. The object of interest is small,
off -center, or portrayed from an unusual angle. These fail
cases are in line with those described by Karpathy in [3] (i.e.
small, thin objects such as the syringe or wooden spoon).

Class Label Words Number
Misclas-
sified

n01443537 goldfish 4
n04146614 school bus 6
n02917067 bullet train 7
n02279972 monarch butterfly 8
n02165456 ladybug 8
n04507155 umbrella 39
n04023962 punch bag 39
n04597913 wooden spoon 39
n04376876 syringe 41
n03970156 plunger 42

Table 3. Number of images that were misclassified in the valida-
tion dataset by VGG-16. The top portion of the table illustrates
the 5 classes with the highest overall accuracy; the bottom portion
illustrates the 5 classes with the lowest overall accuracy.



Figure 5. Saliency maps for test image ẗest 8715.JPEG.̈ a) Original
image. b) Preprocessed image. Mean has been subtracted and
image has been normalized by standard deviation of training data.
c) Saliency maps from the 9-layer ConvNet model; absolute value
in grayscale, followed by positive saliency and negative saliency.
d) Saliency maps from the VGG-16 model. e) Saliency maps from
the VGG-like model.

5. Future Work
The biggest obstacle to high classification accuracy for

the Tiny ImageNet challenge is overfitting – accuracy of
98% can be achieved on the training data with the pre-
trained VGG16 and 9-layer ConvNet models, but validation
accuracy plateaus at approximately 50%. Consequently, fu-
ture work will focus on reducing the overfitting problem.
Some techniques that may be of use include:

• I attempted to implement DropConnect[20] for the
project, but unfortunately ran out of time. Whereas
dropout sets a random subsets of activations in each
layer to zero, DropConnect sets a random subset of
weights to zero. This causes each unit to receive inputs
from a random subset of units in the preceding layer,
further increasing noise in the system, and helping to
reduce overfitting.

• Smart data augmentation could also mitigate the over-

Figure 6. Convolutional filter visualization. a) 9-layer ConvNet,
first convolutional layer. b) VGG-16, first convolutional layer. c)
VGG-like ConvNet, first convolutional layer. d) 9-layer ConvNet,
ninth convolutional layer. e) VGG-16, 13th convolutional layer. f)
VGG-like ConvNet, fourth convolutional layer.

Figure 7. Representative images from the image classes in the val-
idation dataset with best and worst accuracy. a) The ”goldfish”
class had the highest accuracy. b) The ”plunger” class had the
lowest accuracy.

fitting problem. Currently, 30% of training images are
selected at random to undergo each of the augmenta-
tions. However, as described in the Discussion sec-
tion, some object classes are a lot easier to identify
than others. Based on the initial results from the VGG-
16 model, I would like to further augment the image
classes where the model had the lowest accuracy (Ta-
ble 3).

• I found that the time it takes to train the networks posed
a bottleneck to development and iteration. To reduce
the training time, I would like to prune redundant con-
nections in the network, as described by Song Han et



al in [15]. In a first pass on the training data the im-
portant connections will be learned. Low-weight con-
nections will then be pruned. Finally, the network will
be retrained to learn the weights for the surviving con-
nections.
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