

Abstract

Our project focuses on geo-location for a

subset of the 2015 MediaEval Placing dataset
and produces comparable performance to
existing submissions on the classification task
and superior performance on the regression
task. We restrict our training set to images only,
and attempt to extract sufficient information
using a Convolutional Neural Network (CNN).
We tackle two image location tasks – first a
classification task to predict the country, and
second a regression task to predict the exact
coordinates. For the classification task, we use
as our baseline simple feature extraction
followed by an SVM, and for our final runs
experiment with different sets of pre-trained
models and CNN architectures. These methods
yield results slightly above baseline. For the
regression task, we use pre-trained models to
predict latitude and longitude coordinates. This
approach shows great improvements on the
baseline.

1. Introduction
For our project, we focus on the locale-based

subtask of the 2015 MediaEval Placing task [8].
The dataset includes images, videos, and
textual metadata, as well as pre-extracted
features from each media source. We are
interested in the amount of geographic
information that can be regained from solely the
images. This challenge is especially interesting
because the images, stripped from social media
sites like Flickr, lack the iconic landmarks and
broad street view that are common in datasets
on which geo-location is performed. Yet
automatic geo-tagging of such images would be
useful for many services.

We will investigate the use of CNNs on the

classification task of country prediction and the
regression task of latitude and longitude
prediction. We will experiment with training a
CNN from scratch versus fine tuning on pre-
trained CNN models.

2. Related Work
 While geo-location has gotten a great deal of
attention lately, the research tends to focus on
specific types of data. For example, over the
past decade, several papers have been
published on landmark-based classification.
These papers focus on building a strong dataset
around each landmark and then employing
clustering techniques [1, 10, 13]. Another
common focus is classifying street view images
for select cities. These papers place a strong
emphasis on feature detection [2, 6] and use
methods like nearest neighbor matching [12].

 In contrast, the Flickr dataset provided by
MediaEval contains a general set of images that
include landmarks, objects, and people, creating
a significantly harder geo-location problem. The
previous participants of the MediaEval Placing
competition used approaches like clustering,
SVMs, and k-nearest-neighbor, and achieved
very good performance when utilizing the photo
textual metadata. In those cases, accuracy
within 100 km was as high as 54.33% [7], and
as high as 69.33% for 1000 km [5].

However, when the participants performed

runs on the visual data only, accuracies dropped
enormously. Results were as low as 5.47% of
correct location predictions within 1000 km [10].
The team that had the best results on visual
data, with 9.07% of results lying within 100 km
of the truth and 23.98% of results lying within
1000 km of the truth, was also the only team to

Geo-Locating Images: Where in the world was this picture taken?

Angela Sy

angelasy@stanford.edu

Cynthia Day
cyndia@stanford.edu

use CNNs in their approach [7]. This serves as
our inspiration to investigate the potential gains
of CNNs for this geo-location task.

Recently, Google released a paper

addressing a task very similar to ours, geo-
locating general images using a deep network
and an LSTM architecture. Because of their
superior dataset size and computing resources,
they are able to subdivide the earth into
thousands of regions and classify over these
regions. While it initially appears that the
increased number of classes makes this a
harder problem, it is also interesting to note that
with smaller regions, the variance within each
region decreases greatly. Thus, this approach
seems like a fruitful one for future work.

3. Methods

3.1 Baseline

As a simple baseline, we extracted HOG
(Histogram of Oriented Gradients) features for
each image, then used these features to train a
multi-class SVM. We chose this feature set
because it was the most effective out of the
ones that we investigated for Assignment 1.

3.2 Vanilla CNN

Our vanilla CNN takes as input 48x52 sized
images. Its architecture consists of three
double-convolution plus max pooling layers
followed by three fully connected layers with 256
hidden units each. The architecture can be seen
below.

INPUT à[[CONV -> RELU] *2 -> POOL]*3 à

[FC à RELU]*2 àFC à SOFTMAX

Initially we tried an architecture that performed

a max pooling step after each convolution layer.
This produced poor accuracy results on both
training and validation sets. This is probably due
to the already small size of input images. The
pooling step discards too much information early
on by removing a large percentage of the
image’s features before the next convolution
layer, preventing the CNN from learning deeply
about those features before they are discarded.
Because of this, we moved to the current

architecture which contains two convolution
layers before the max pooling step. This
preserved more information about the images
and produced better accuracy results on both
training and validation sets.

We used 32 filters of size 3x3. We chose this
smaller filter size in order to extract as many
features as possible from the small images
being fed to the CNN.

Each convolution and fully connected layer is

followed by a ReLu activation function to
accelerate convergence during training. The
final layer is capped with a softmax classifier to
predict the class label given the scores for each
class. We use categorical cross-entropy loss to
update the network’s weights after each training
batch.

Fig. 1: Equation for Cross-Entropy Loss

 The relative simplicity of this model allowed us
to implement in Lasagne [14] and train locally.

3.3 Pre-trained Models

We reduce computation time by applying two
common pre-trained models, GoogLeNet and
VGG 16 Net, to extract features from our
dataset. To be more specific, we initialize the
pre-trained model with its known weights, and
run each of our images through the model a
single time, pulling out the input to the model’s
final softmax layer as our feature vector for the
image. In this way we rely on the pre-trained
models to be able to pick out the most
interesting or characteristic features of the raw
images. This has the advantage of reducing the
dimensions of each input image to a 1 x 1000
vector, allowing us to process many more
images at full resolution.

After retrieving features for each image, we

fine-tune these features through several dropout
and fully-connected layers to adjust their
performance for our classification problem. The
fine-tuning architecture is as follows:

INPUT à [DROPOUT à FC]*3

The first dropout layer is 20%, while the next
two are 50%. These dropout layers help prevent
our model from over-fitting. The intermediate
fully-connected layers each have 800 hidden
units, and allow us to fine-tune the extracted
features to suit our task. Although our
classification and regression tasks are different
from the original tasks on which the pre-trained
models are based, we make the assumption
that the features picked out by the models will
still be relevant to our task. If we suspected that
this were not the case, we could extract
activations higher up in the pre-trained model,
and add a few convolution layers to our fine-
tuning. For now, we leave this as an area of
future investigation.

 For the country classification task, we add a
final softmax layer and use categorical cross-
entropy to calculate loss. For the regression
latitude/longitude prediction task, we have the
final fully-connected layer output a coordinate
pair and use a squared-error loss.

 For this model, we used the GoogLeNet and
VGG 16 Net models provided by
Lasagne/Recipes [9]. We ran the models on
K520 GPU, via an Amazon g2 instance.

4. Dataset and Features
4.1 Dataset
 Our full dataset contains 4,672,382 images
from the MediaEval challenge. For this project,
we are using a subset of the data – specifically
163,486 images. The MediaEval images were
taken from Flickr and vary widely in appearance,
ranging from iconic buildings to pictures of
people and flowers. The images are all around
500x300 pixels.

We chose a smaller data set to make training
manageable as well as to test the efficacy of our
CNN methods. Future work would include
running the same methods on the full data set.
We split our data into 80% training, 10%
validation, and 10% test sets.

4.2 Data Pre-Processing
For the vanilla CNN, we compressed the

images to a size of 48x52. This seemed
reasonable given the accuracy of object
classification on the CIFAR10 dataset of 32x32
size images. Grey scale images which do not
have 3 color channels and provide inadequate
information about the image were discarded.

We also pre-processed the images by using

mean subtraction and normalization. We
subtracted the mean across every individual
feature in the image data, centering our data
around the origin. After zero-centering our data,
we also normalized the data dimensions by
dividing each dimension by its standard
deviation to produce features of the same scale.

Our pre-trained models expect input of
224x224, so we began by compressing the
smaller dimension of our image to 224. We then
took a centered 224x224 crop of this for our final
image. We subtracted the mean values
(104,117,123) of the images on which the
models were originally trained, so that our
images would undergo the same pre-processing
as the original images used on the pre-trained
models [9].

4.3 Evaluation
 Each image is labeled with a set of
geographic labels ranging from coarse (country)
to exact (latitude and longitude coordinates). We
began with trying to predict the country label for
each image. Additionally, because the dataset
has images from over 200 different countries,
and there is high variance in the number of
images between each country, we selected 5
countries with similar numbers of images to
avoid biased training of our CNN. The images
we chose for our dataset are roughly equally
distributed across Germany, Canada, Italy,
Spain, and France.

 After experimenting with a number of different
models on the classification problem, we will
use the best-performing models on the more
exact problem of latitude and longitude
coordinates prediction. We approximate the
distance in km between the predicted

coordinates (x1, y1) and the true coordinates
(x2, y2) using the equirectangular approximation
of

where R is the radius of the Earth (6371 km)
and the coordinates are given in radians [4].

4.4 Expected results

We expected this to be a hard problem. Upon
inspecting the dataset, we saw that many
images, being stripped from social media, lack
the context one would expect for successful
geo-location. Indeed, the best performance on
visual data is within 100 km (the radius of a
small country) only 9.07% of the time [1]. Thus,
even when using coarse country labels, we
should expect performance only slightly above
that of random guessing.

5. Experiments and Results

5.1 Baseline: Multi-Class SVM
 To get a simple baseline, we decided to make
use of an approach that mirrored the approach
of one of the teams that competed in the original
MediaEval 2015 challenge [3]. We extracted
HOG features from the images after
compressing the images to 150x90 due to
memory limitations. We than ran these features
through a multi-class SVM. We used a subset of
1880 images spread over five countries for our
training set, and set aside a test set of roughly
10% this size, with the same spread over the
countries.

 We achieved a validation accuracy of 20.99%.
This is very close to the figure that would result
from random guessing. This makes sense since
the teams that did not use convolutional neural
networks for the MediaEval challenge got very
poor results when restricting runs to visual data
only.

5.2 Vanilla CNN

5.2.1 Training
 In training our CNN, we maximized accuracy
by tuning hyper-parameters and settled on the
following values:

- learning rate of 0.045
- regularization strength of 0.01
- batch size of 500
- 20 epochs

We initially chose a lower learning rate but

found that a higher and more aggressive
learning rate was necessary for the CNN to
process enough features from the small images.
We chose to train with a batch size of 500
images. After trying different batch sizes, we
chose this as the appropriate batch size since it
balanced the amount of “wiggle” or variation in
the calculated loss. After about 15 epochs, we
see the loss and the training accuracy
converging and so we stop training at 20
epochs.

Fig. 2: Vanilla CNN – Loss, Training and Val Accuracy

Using Nesterov Momentum update for 20 epochs

In Figure 2, we see a steady increase in
training accuracy peaking at close to 100% as
desired. Meanwhile, the validation accuracy
remains very low, with a maximum of about
24%. In addition, the loss decreases steadily as
the CNN is trained.

Our initial validation accuracy was around

22.3%. From these results, it appears that our

CNN is over-fitting on the training set. To
mitigate this, we regularized the CNN weight
initializations and added regularization strength,
but ultimately accuracy still remained quite low
at close to 24%. In future work, we will
experiment with adding spatial batch
normalization layers to further regularize the
network.

5.2.2 Optimization
We initially chose the Nesterov Momentum

update technique to train the RNN until
convergence. However, this optimization
method still seemed relatively slow and the CNN
required at least 15 epochs before loss
converged. We attempted a different
optimization method that uses a per-parameter
adaptive method to train the CNN. In particular,
we chose the Adam method to adaptively tune
learning rates for every parameter.

The results of our CNN using the Adam

update are shown in Figure 3 below. Note that
the loss and accuracy converge extremely
quickly. Within the first 50 iterations (1 epoch),
the loss jumps to close to 0 and the validation
accuracy reaches about 25% and remains in
that range until the end of training.

Fig. 3: Vanilla CNN – Loss, Training and Val Accuracy

Using Adam update for 20 epochs

5.2.3 Results
Classification on the vanilla CNN performed

almost twice as well as the baseline of 9.07%.
We reached a test accuracy of 22.3% using the

Nesterov Momentum update and 23.4% using
the Adam update.

5.3 Pre-trained Models: Country Classification

5.3.1 Training
 For both GoogLeNet and VGG 16 Net, we
used the following parameters:

- learning rate of 0.001
- batch size of 500
- 200 epochs
- Nesterov momentum of 0.9

Fig. 4: Pretrained GoogLeNet – Loss and Val Accuracy for

classification task

Fig. 5: VGG16 Net – Loss and Val Accuracy for

classification task

As can be seen above in Figures 4 and 5, the
validation accuracy converged under these
parameters, as desired. Hence, we can use
these models to test our classification accuracy.

5.3.2 Results
 GoogLeNet gave a final test accuracy of
24.3% and VGG 16 gave a final test accuracy of
23.8%. Overall, both pre-trained models
performed better than the random baseline. The
differences between the performance of the two
models seem too small to be statistically
significant.

5.4 Country Classification Model Comparison
 Using the methods described earlier, we
compared classification accuracy results on the
test set for each method, namely the SVM,
Vanilla CNN, VGG Net, and GoogLeNet.

Fig. 6: Classification Prediction Accuracy Comparison

 The best results came from our pre-trained
models. This was expected as the pre-trained
networks have been trained on other images
and thus produce features that have more
useful information for our CNN to train on.
Additionally, because of the increased efficiency
of the pre-trained models, we were able to use
additional data and train over more epochs.
Thus, we chose to use the pre-trained models
for the regression task of predicting latitude and
longitude coordinates for each image.

5.5 Pre-trained Models: Latitude and Longitude
Prediction

5.5.1 Training
 For both GoogLeNet and VGG 16 Net, we
used the following parameters:

- learning rate of 0.0001
- batch size of 500
- 500 epochs
- Nesterov momentum of 0.9

With this regression problem, we found the

initial loss to be very high with slow
convergence, as visualized in Figure 6. Thus,
we chose to use the highest learning rate that
did not cause divergence in the training loss.
Additionally, since epochs are relatively
inexpensive for this architecture, we were able
to run for a large number of epochs. While the
training loss did not fully converge within 500
epochs, we found the accuracies to be stagnant
over the last hundred epochs, and thus ended
training at that point.

Fig. 7: Loss for regression task with pre-trained models

5.5.2 Results

 In the style of the MediaEval papers, we
evaluated our performance by counting the
percentage of images whose predictions were
within 10 km, 100 km, 1000 km, and 10000 km.
We use a random baseline obtained by
evaluating the test accuracy at 0 epochs. This
baseline places 20-25% of images within 1000
km of the true location, which is also the
accuracy achieved by the best MediaEval
submission [7]. Thus, this seems like a
reasonable baseline.

 The prediction accuracy of our trained CNN is
twice as accurate compared to the baseline. In
both pre-trained models, over twice as many

test images fall into the 100 km and 1000 km
buckets after 500 epochs of training compared
to the baseline performance at 0 epochs. This is
demonstrated visually in Figure 8. Note that we
only show results for the 1000 km bucket
because in all cases, less than 1% of images fall
into the 10 km and 100 km buckets.

Fig. 8: Prediction Accuracy of Image Location Coordinates

within 1000 km of actual image location

In our best performance on the test set,
46.68% of our images lie in the 1000 km bucket.
For comparison, only 23.98% of images for the
best MediaEval competition submission fell into
the 1000 km bucket. In addition, only 53.6% of
images for Google PlaNet fell into the 750 km
bucket. While these numbers cannot be directly
compared to our results since our images were
drawn from a subset of five countries which
included some countries that were close
neighbors, these numbers still provide some
assurance that our performance is comparable,
if not superior, to the MediaEval performance.

5.6 Qualitative Results
 We look at some examples of correctly and
incorrectly classified images to understand the
strengths and potential improvements to our
model.

Fig. 9: Correctly Classified Images

Left: Italy, Right: Spain

 As we can see from the images above, our
models successfully classify the location of
images that contain landmarks and iconic
objects. In the image on the left, the rounded
dome with its distinctive light blue green color is
an easily identifiable depiction of an Italian
cathedral. Similarly, the image on the right
shows an iconic post with a golden cross on top,
a common street-side sight in Spanish cities. In
addition, the dark green shutters and orange
walls along the sidewalk are additional markers
that the scene is an image in Spain and act as
strong indicators for the CNN.

Fig. 10: Incorrectly Classified Images

Left: Correct Germany, Predicted Spain
Right: Correct Spain, Predicted Italy

Two examples of incorrectly classified images

are seen above. The image of the butterfly is
difficult to classify because of the focus on a
single object without location-specific context.
Since our dataset is from a set of images
uploaded on Flickr, many of the images in our
dataset are similar to the butterfly, depicting
close-ups of specific objects that are not easily
identifiable, even by an oracle.

Images common across countries are also
difficult for our CNN to classify. The second
image in Figure 10 shows a procession of
people wearing religious garb and carrying
many religious icons. These symbolic objects
are common in pictures taken in predominantly
Catholic countries like Spain and Italy. Thus, it is
difficult for the CNN to differentiate between the
locations of these common symbolic images
when taken in multiple locations.

6. Future Work
 Due to limitations in computing resources, we
work with only a subset of the full dataset in this
paper. This limited our ability to make fine-
grained coordinate predictions, as evidenced by
the percentages for the 100 km bucket which
were below benchmark compared to the
percentages for the 1000 km bucket which were
much better than the best MediaEval
submission.

To further improve results, data augmentation
could also be useful. Currently we take the
center crop when using pre-trained models, and
thus lose some information from each image.
Sampling random crops and scaling would
increase the likelihood that we capture specific
landmarks or objects with distinctive geographic
features.

 We can also improve our results by using
more advanced CNN architectures. For
example, we can upgrade our vanilla CNN to a
more complicated architecture such as ResNet
and see what accuracy gains it supplies. For the
pre-trained models, we can use activations from
an earlier layer as our features, then manually
add convolutional layers for fine-tuning. If
implemented, both of these options would
demand higher computing resources.

References
[1] Y. Avrithis, Y. Kalantidis, G. Tolias, and E.

Spyrou. Retrieving Landmark and Non-Landmark
Images from Community Photo Collections. In
ACM Multimedia, 2010.

[2] D. Chen, G. Baatz, K. Koser, S. Tsai, R.
Vedantham, T. Pylvan, K. Roimela, X. Chen, J.
Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk.
City-scale landmark identification on mobile
devices. In CVPR, 2011.

[3] N. Duong-Trung, M. Wistuba, L. Drumond, and L.
Schmidt-Thieme. Geo_ML @ MediaEval Placing
Task 2015. MediaEval 2015 Workshop, 2015.

[4] Calculate distance, bearing and more between
Latitude/Longitude points. Moving Type Scripts.
http://www.movable-
type.co.uk/scripts/latlong.html

 [5] P. Kelm, S. Schmiedeke, and L. Goldmann.
Imcube @ MediaEval 2015 Placing Task: A
Hierarchical Approach for Geo-referencing
Large-Scale Datasets. MediaEval 2015
Workshop, 2015.

[6] H. J. Kim, E. Dunn, and J.-M. Frahm. Predicting
Good Features for Image Geo-Localization Using
Per-Bundle VLAD. In ICCV, 2015.

[7] G. Kordopatis-Zilos, A. Popescu, S.
Papadopoulos, and Y. Kompatsiaris.
CERTH/CEA LIST at MediaEval Placing Task
2015.MediaEval 2015 Workshop, 2015.

[8] MediaEval Benchmarking Initiative for Multimedia
Evaluation. 2015 Placing Task: Multimodal geo-
location prediction.
http://www.multimediaeval.org/mediaeval2015/pl
acing2015

[9] E. Olson, Lasagne recipes: examples, IPython
notebooks, ...

 https://github.com/ebenolson/Recipes, 2015.

[10] T. Quack, B. Leibe, and L. Van Gool. World-

Scale Mining of Objects and Events from
Community Photo Collections. In CIVR, 2008.

[11] T. Weyand, I. Kostrikov, and J. Philbin. PlaNet-
Photo Geolocation with Convolutional Neural
Networks. arXiv preprint arXiv:1602.05314,
2016.

[12] A. R. Zamir and M. Shah. Image Geo-
Localization Based on Multiple Nearest Neighbor
Feature Matching Using Generalized Graphs.
PAMI, 36(8), 2014.

[13] Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U.
Buddemeier, A. Bissacco, F. Brucher, T.-S.
Chua, and H. Neven. Tour the world: Building a
Web-Scale Landmark Recognition Engine. In
CVPR, 2009.

[14] Code Libraries: scikit-learn, Theano, Lasagne

