
 

 

 
Abstract 

 
Our project focuses on geo-location for a 

subset of the 2015 MediaEval Placing dataset 
and produces comparable performance to 
existing submissions on the classification task 
and superior performance on the regression 
task. We restrict our training set to images only, 
and attempt to extract sufficient information 
using a Convolutional Neural Network (CNN). 
We tackle two image location tasks – first a 
classification task to predict the country, and 
second a regression task to predict the exact 
coordinates. For the classification task, we use 
as our baseline simple feature extraction 
followed by an SVM, and for our final runs 
experiment with different sets of pre-trained 
models and CNN architectures. These methods 
yield results slightly above baseline. For the 
regression task, we use pre-trained models to 
predict latitude and longitude coordinates. This 
approach shows great improvements on the 
baseline. 

 

1. Introduction 
For our project, we focus on the locale-based 

subtask of the 2015 MediaEval Placing task [8]. 
The dataset includes images, videos, and 
textual metadata, as well as pre-extracted 
features from each media source. We are 
interested in the amount of geographic 
information that can be regained from solely the 
images. This challenge is especially interesting 
because the images, stripped from social media 
sites like Flickr, lack the iconic landmarks and 
broad street view that are common in datasets 
on which geo-location is performed. Yet 
automatic geo-tagging of such images would be 
useful for many services. 

 
 

 
 
We will investigate the use of CNNs on the 

classification task of country prediction and the 
regression task of latitude and longitude 
prediction. We will experiment with training a 
CNN from scratch versus fine tuning on pre-
trained CNN models.   

2. Related Work 
 While geo-location has gotten a great deal of 
attention lately, the research tends to focus on 
specific types of data. For example, over the 
past decade, several papers have been 
published on landmark-based classification. 
These papers focus on building a strong dataset 
around each landmark and then employing 
clustering techniques [1, 10, 13]. Another 
common focus is classifying street view images 
for select cities. These papers place a strong 
emphasis on feature detection [2, 6] and use 
methods like nearest neighbor matching [12]. 
  
 In contrast, the Flickr dataset provided by 
MediaEval contains a general set of images that 
include landmarks, objects, and people, creating 
a significantly harder geo-location problem. The 
previous participants of the MediaEval Placing 
competition used approaches like clustering, 
SVMs, and k-nearest-neighbor, and achieved 
very good performance when utilizing the photo 
textual metadata. In those cases, accuracy 
within 100 km was as high as 54.33% [7], and 
as high as 69.33% for 1000 km [5]. 

 
However, when the participants performed 

runs on the visual data only, accuracies dropped 
enormously. Results were as low as 5.47% of 
correct location predictions within 1000 km [10]. 
The team that had the best results on visual 
data, with 9.07% of results lying within 100 km 
of the truth and 23.98% of results lying within 
1000 km of the truth, was also the only team to 
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use CNNs in their approach [7]. This serves as 
our inspiration to investigate the potential gains 
of CNNs for this geo-location task.  

 
Recently, Google released a paper 

addressing a task very similar to ours, geo-
locating general images using a deep network 
and an LSTM architecture. Because of their 
superior dataset size and computing resources, 
they are able to subdivide the earth into 
thousands of regions and classify over these 
regions. While it initially appears that the 
increased number of classes makes this a 
harder problem, it is also interesting to note that 
with smaller regions, the variance within each 
region decreases greatly. Thus, this approach 
seems like a fruitful one for future work. 

 
3. Methods 

 
3.1 Baseline 

As a simple baseline, we extracted HOG 
(Histogram of Oriented Gradients) features for 
each image, then used these features to train a 
multi-class SVM. We chose this feature set 
because it was the most effective out of the 
ones that we investigated for Assignment 1. 
 
3.2 Vanilla CNN 

Our vanilla CNN takes as input 48x52 sized 
images. Its architecture consists of three 
double-convolution plus max pooling layers 
followed by three fully connected layers with 256 
hidden units each. The architecture can be seen 
below. 

 
INPUT à[ [CONV -> RELU] *2 -> POOL]*3 à 

[FC à RELU]*2 àFC à SOFTMAX 
 
Initially we tried an architecture that performed 

a max pooling step after each convolution layer. 
This produced poor accuracy results on both 
training and validation sets. This is probably due 
to the already small size of input images. The 
pooling step discards too much information early 
on by removing a large percentage of the 
image’s features before the next convolution 
layer, preventing the CNN from learning deeply 
about those features before they are discarded. 
Because of this, we moved to the current 

architecture which contains two convolution 
layers before the max pooling step. This 
preserved more information about the images 
and produced better accuracy results on both 
training and validation sets. 
 

We used 32 filters of size 3x3. We chose this 
smaller filter size in order to extract as many 
features as possible from the small images 
being fed to the CNN. 

 
Each convolution and fully connected layer is 

followed by a ReLu activation function to 
accelerate convergence during training. The 
final layer is capped with a softmax classifier to 
predict the class label given the scores for each 
class. We use categorical cross-entropy loss to 
update the network’s weights after each training 
batch. 

 
Fig. 1: Equation for Cross-Entropy Loss 

  
 The relative simplicity of this model allowed us 
to implement in Lasagne [14] and train locally. 
 
3.3 Pre-trained Models 

We reduce computation time by applying two 
common pre-trained models, GoogLeNet and 
VGG 16 Net, to extract features from our 
dataset. To be more specific, we initialize the 
pre-trained model with its known weights, and 
run each of our images through the model a 
single time, pulling out the input to the model’s 
final softmax layer as our feature vector for the 
image. In this way we rely on the pre-trained 
models to be able to pick out the most 
interesting or characteristic features of the raw 
images. This has the advantage of reducing the 
dimensions of each input image to a 1 x 1000 
vector, allowing us to process many more 
images at full resolution.  

 
After retrieving features for each image, we 

fine-tune these features through several dropout 
and fully-connected layers to adjust their 
performance for our classification problem. The 
fine-tuning architecture is as follows: 

INPUT à [DROPOUT à FC]*3 



 

 

The first dropout layer is 20%, while the next 
two are 50%. These dropout layers help prevent 
our model from over-fitting. The intermediate 
fully-connected layers each have 800 hidden 
units, and allow us to fine-tune the extracted 
features to suit our task. Although our 
classification and regression tasks are different 
from the original tasks on which the pre-trained 
models are based, we make the assumption 
that the features picked out by the models will 
still be relevant to our task. If we suspected that 
this were not the case, we could extract 
activations higher up in the pre-trained model, 
and add a few convolution layers to our fine-
tuning. For now, we leave this as an area of 
future investigation. 
 
 For the country classification task, we add a 
final softmax layer and use categorical cross-
entropy to calculate loss. For the regression 
latitude/longitude prediction task, we have the 
final fully-connected layer output a coordinate 
pair and use a squared-error loss. 
 
 For this model, we used the GoogLeNet and 
VGG 16 Net models provided by 
Lasagne/Recipes [9]. We ran the models on 
K520 GPU, via an Amazon g2 instance. 
 

4. Dataset and Features 
4.1 Dataset 
 Our full dataset contains 4,672,382 images 
from the MediaEval challenge. For this project, 
we are using a subset of the data – specifically 
163,486 images. The MediaEval images were 
taken from Flickr and vary widely in appearance, 
ranging from iconic buildings to pictures of 
people and flowers. The images are all around 
500x300 pixels.  
 

We chose a smaller data set to make training 
manageable as well as to test the efficacy of our 
CNN methods. Future work would include 
running the same methods on the full data set. 
We split our data into 80% training, 10% 
validation, and 10% test sets. 
 
 
 

4.2 Data Pre-Processing 
For the vanilla CNN, we compressed the 

images to a size of 48x52. This seemed 
reasonable given the accuracy of object 
classification on the CIFAR10 dataset of 32x32 
size images. Grey scale images which do not 
have 3 color channels and provide inadequate 
information about the image were discarded. 

 
We also pre-processed the images by using 

mean subtraction and normalization. We 
subtracted the mean across every individual 
feature in the image data, centering our data 
around the origin. After zero-centering our data, 
we also normalized the data dimensions by 
dividing each dimension by its standard 
deviation to produce features of the same scale. 
 

Our pre-trained models expect input of 
224x224, so we began by compressing the 
smaller dimension of our image to 224. We then 
took a centered 224x224 crop of this for our final 
image. We subtracted the mean values 
(104,117,123) of the images on which the 
models were originally trained, so that our 
images would undergo the same pre-processing 
as the original images used on the pre-trained 
models [9]. 
 
4.3 Evaluation 
 Each image is labeled with a set of 
geographic labels ranging from coarse (country) 
to exact (latitude and longitude coordinates). We 
began with trying to predict the country label for 
each image. Additionally, because the dataset 
has images from over 200 different countries, 
and there is high variance in the number of 
images between each country, we selected 5 
countries with similar numbers of images to 
avoid biased training of our CNN. The images 
we chose for our dataset are roughly equally 
distributed across Germany, Canada, Italy, 
Spain, and France. 
 
 After experimenting with a number of different 
models on the classification problem, we will 
use the best-performing models on the more 
exact problem of latitude and longitude 
coordinates prediction. We approximate the 
distance in km between the predicted 



 

 

coordinates (x1, y1) and the true coordinates 
(x2, y2) using the equirectangular approximation 
of 

 
where R is the radius of the Earth (6371 km) 
and the coordinates are given in radians [4]. 
 
4.4 Expected results 

We expected this to be a hard problem. Upon 
inspecting the dataset, we saw that many 
images, being stripped from social media, lack 
the context one would expect for successful 
geo-location. Indeed, the best performance on 
visual data is within 100 km (the radius of a 
small country) only 9.07% of the time [1]. Thus, 
even when using coarse country labels, we 
should expect performance only slightly above 
that of random guessing. 

 
 
5. Experiments and Results 
 
5.1 Baseline: Multi-Class SVM 
 To get a simple baseline, we decided to make 
use of an approach that mirrored the approach 
of one of the teams that competed in the original 
MediaEval 2015 challenge [3]. We extracted 
HOG features from the images after 
compressing the images to 150x90 due to 
memory limitations. We than ran these features 
through a multi-class SVM. We used a subset of 
1880 images spread over five countries for our 
training set, and set aside a test set of roughly 
10% this size, with the same spread over the 
countries. 
 
 We achieved a validation accuracy of 20.99%. 
This is very close to the figure that would result 
from random guessing. This makes sense since 
the teams that did not use convolutional neural 
networks for the MediaEval challenge got very 
poor results when restricting runs to visual data 
only. 
 
 
 
 
 

5.2 Vanilla CNN 
 

5.2.1 Training 
 In training our CNN, we maximized accuracy 
by tuning hyper-parameters and settled on the 
following values: 

- learning rate of 0.045 
- regularization strength of 0.01 
- batch size of 500 
- 20 epochs 

 
We initially chose a lower learning rate but 

found that a higher and more aggressive 
learning rate was necessary for the CNN to 
process enough features from the small images. 
We chose to train with a batch size of 500 
images. After trying different batch sizes, we 
chose this as the appropriate batch size since it 
balanced the amount of “wiggle” or variation in 
the calculated loss. After about 15 epochs, we 
see the loss and the training accuracy 
converging and so we stop training at 20 
epochs. 

 

 
Fig. 2: Vanilla CNN – Loss, Training and Val Accuracy 

Using Nesterov Momentum update for 20 epochs 
 

In Figure 2, we see a steady increase in 
training accuracy peaking at close to 100% as 
desired. Meanwhile, the validation accuracy 
remains very low, with a maximum of about 
24%. In addition, the loss decreases steadily as 
the CNN is trained. 

 
Our initial validation accuracy was around 

22.3%. From these results, it appears that our 



 

 

CNN is over-fitting on the training set. To 
mitigate this, we regularized the CNN weight 
initializations and added regularization strength, 
but ultimately accuracy still remained quite low 
at close to 24%. In future work, we will 
experiment with adding spatial batch 
normalization layers to further regularize the 
network. 

 
5.2.2 Optimization 
We initially chose the Nesterov Momentum 

update technique to train the RNN until 
convergence. However, this optimization 
method still seemed relatively slow and the CNN 
required at least 15 epochs before loss 
converged. We attempted a different 
optimization method that uses a per-parameter 
adaptive method to train the CNN. In particular, 
we chose the Adam method to adaptively tune 
learning rates for every parameter.  

 
The results of our CNN using the Adam 

update are shown in Figure 3 below. Note that 
the loss and accuracy converge extremely 
quickly. Within the first 50 iterations (1 epoch), 
the loss jumps to close to 0 and the validation 
accuracy reaches about 25% and remains in 
that range until the end of training. 

 

 
Fig. 3: Vanilla CNN – Loss, Training and Val Accuracy  

Using Adam update for 20 epochs 
 

5.2.3 Results 
Classification on the vanilla CNN performed 

almost twice as well as the baseline of 9.07%. 
We reached a test accuracy of 22.3% using the 

Nesterov Momentum update and 23.4% using 
the Adam update.  
 
5.3 Pre-trained Models: Country Classification 
 

5.3.1 Training 
 For both GoogLeNet and VGG 16 Net, we 
used the following parameters: 

- learning rate of 0.001 
- batch size of 500 
- 200 epochs 
- Nesterov momentum of 0.9 

 
 

 
Fig. 4: Pretrained GoogLeNet – Loss and Val Accuracy for 

classification task 
 
 

 
Fig. 5: VGG16 Net – Loss and Val Accuracy for 

classification task 
 



 

 

As can be seen above in Figures 4 and 5, the 
validation accuracy converged under these 
parameters, as desired. Hence, we can use 
these models to test our classification accuracy. 
 

5.3.2 Results 
 GoogLeNet gave a final test accuracy of 
24.3% and VGG 16 gave a final test accuracy of 
23.8%. Overall, both pre-trained models 
performed better than the random baseline. The 
differences between the performance of the two 
models seem too small to be statistically 
significant. 
 
5.4 Country Classification Model Comparison 
 Using the methods described earlier, we 
compared classification accuracy results on the 
test set for each method, namely the SVM, 
Vanilla CNN, VGG Net, and GoogLeNet. 
 
 

 
Fig. 6: Classification Prediction Accuracy Comparison 

 
 The best results came from our pre-trained 
models. This was expected as the pre-trained 
networks have been trained on other images 
and thus produce features that have more 
useful information for our CNN to train on. 
Additionally, because of the increased efficiency 
of the pre-trained models, we were able to use 
additional data and train over more epochs. 
Thus, we chose to use the pre-trained models 
for the regression task of predicting latitude and 
longitude coordinates for each image. 
 
5.5 Pre-trained Models: Latitude and Longitude 
Prediction 
 

5.5.1 Training 
 For both GoogLeNet and VGG 16 Net, we 
used the following parameters: 

- learning rate of 0.0001 
- batch size of 500 
- 500 epochs 
- Nesterov momentum of 0.9 

 
With this regression problem, we found the 

initial loss to be very high with slow 
convergence, as visualized in Figure 6. Thus, 
we chose to use the highest learning rate that 
did not cause divergence in the training loss. 
Additionally, since epochs are relatively 
inexpensive for this architecture, we were able 
to run for a large number of epochs. While the 
training loss did not fully converge within 500 
epochs, we found the accuracies to be stagnant 
over the last hundred epochs, and thus ended 
training at that point. 

 

 
Fig. 7: Loss for regression task with pre-trained models 

 
5.5.2 Results 

 In the style of the MediaEval papers, we 
evaluated our performance by counting the 
percentage of images whose predictions were 
within 10 km, 100 km, 1000 km, and 10000 km. 
We use a random baseline obtained by 
evaluating the test accuracy at 0 epochs. This 
baseline places 20-25% of images within 1000 
km of the true location, which is also the 
accuracy achieved by the best MediaEval 
submission [7]. Thus, this seems like a 
reasonable baseline. 
 
 The prediction accuracy of our trained CNN is 
twice as accurate compared to the baseline. In 
both pre-trained models, over twice as many 



 

 

test images fall into the 100 km and 1000 km 
buckets after 500 epochs of training compared 
to the baseline performance at 0 epochs. This is 
demonstrated visually in Figure 8. Note that we 
only show results for the 1000 km bucket 
because in all cases, less than 1% of images fall 
into the 10 km and 100 km buckets. 
 

 
Fig. 8: Prediction Accuracy of Image Location Coordinates 

within 1000 km of actual image location 
 

In our best performance on the test set, 
46.68% of our images lie in the 1000 km bucket. 
For comparison, only 23.98% of images for the 
best MediaEval competition submission fell into 
the 1000 km bucket. In addition, only 53.6% of 
images for Google PlaNet fell into the 750 km 
bucket. While these numbers cannot be directly 
compared to our results since our images were 
drawn from a subset of five countries which 
included some countries that were close 
neighbors, these numbers still provide some 
assurance that our performance is comparable, 
if not superior, to the MediaEval performance. 

 
5.6 Qualitative Results 
 We look at some examples of correctly and 
incorrectly classified images to understand the 
strengths and potential improvements to our 
model. 
 

 
Fig. 9: Correctly Classified Images 

Left: Italy,  Right: Spain 
 
 As we can see from the images above, our 
models successfully classify the location of 
images that contain landmarks and iconic 
objects. In the image on the left, the rounded 
dome with its distinctive light blue green color is 
an easily identifiable depiction of an Italian 
cathedral. Similarly, the image on the right 
shows an iconic post with a golden cross on top, 
a common street-side sight in Spanish cities. In 
addition, the dark green shutters and orange 
walls along the sidewalk are additional markers 
that the scene is an image in Spain and act as 
strong indicators for the CNN. 
 

 
Fig. 10: Incorrectly Classified Images 

Left: Correct Germany, Predicted Spain 
Right: Correct Spain, Predicted Italy 

 
Two examples of incorrectly classified images 

are seen above. The image of the butterfly is 
difficult to classify because of the focus on a 
single object without location-specific context. 
Since our dataset is from a set of images 
uploaded on Flickr, many of the images in our 
dataset are similar to the butterfly, depicting 
close-ups of specific objects that are not easily 
identifiable, even by an oracle. 



 

 

Images common across countries are also 
difficult for our CNN to classify. The second 
image in Figure 10 shows a procession of 
people wearing religious garb and carrying 
many religious icons. These symbolic objects 
are common in pictures taken in predominantly 
Catholic countries like Spain and Italy. Thus, it is 
difficult for the CNN to differentiate between the 
locations of these common symbolic images 
when taken in multiple locations. 

 

6. Future Work 
 Due to limitations in computing resources, we 
work with only a subset of the full dataset in this 
paper. This limited our ability to make fine-
grained coordinate predictions, as evidenced by 
the percentages for the 100 km bucket which 
were below benchmark compared to the 
percentages for the 1000 km bucket which were 
much better than the best MediaEval 
submission.  
 

To further improve results, data augmentation 
could also be useful. Currently we take the 
center crop when using pre-trained models, and 
thus lose some information from each image. 
Sampling random crops and scaling would 
increase the likelihood that we capture specific 
landmarks or objects with distinctive geographic 
features. 
 
 We can also improve our results by using 
more advanced CNN architectures. For 
example, we can upgrade our vanilla CNN to a 
more complicated architecture such as ResNet 
and see what accuracy gains it supplies. For the 
pre-trained models, we can use activations from 
an earlier layer as our features, then manually 
add convolutional layers for fine-tuning. If 
implemented, both of these options would 
demand higher computing resources. 
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