
Going Deeper on the Tiny Imagenet Challenge

Andrew Zhai
andrewz@stanford.edu

Abstract

In this work, we investigate how fine-tuning from pre-
trained models and network depth affect the classification
performance on the Tiny ImageNet challenge. Starting
with state of the art academic classification models such
as VGG16 and ResNet-[50,101,152], we will explore how
to adapt and fine-tune these networks trained on a differ-
ent dataset with different input image sizes to our Tiny Im-
ageNet classification dataset. We then train ResNet models
of various depth and filter sizes from scratch to allow us to
evaluate the effects of model depth on classification perfor-
mance. From these experiments, we report insights into why
fine-tuning works and the effects of network depth.

1. Introduction

Convolutional neural networks (convnets) have become
the standard approach to classification tasks within the last
few years. This transition from traditional hand labeled fea-
tures is due to the overwhelming performance of convnets
on classification challenges such as the ImageNet Large
Scale Visual Recognition Challenge [9] with the best per-
forming model achieving a top-5 error of 3.08% on the test
set [10].

Over the years, there has been a trend where the deeper
the model is, the better performance the model can get on
the ImageNet challenge. In 2012, the AlexNet architec-
ture with 8 layers resulted in a top-5 classification error of
16.4% on the ImageNet challenge [7]. In 2014, the VGG19
model with 19 layers resulted in a top-5 classification error
of 7.3% [1]. In 2015, the GoogleNet model with 22 layers
resulted in a top-5 classification error of 6.7% [11]. And fi-
nally in 2015, the ResNet model with 152 layers resulted in
a top-5 classification error of 3.57% [3]. Using this as moti-
vation we seek to investigate how deep models perform on
the Tiny ImageNet Classification Challenge. In our case,
we will be optimizing for top-1 performance on the Tiny
ImageNet dataset, a dataset derived from the standard Ima-
geNet dataset. This dataset is split into train, validate, and
test components. The training set contains 200 classes with
500 images in each class for a total of 100,000 training im-

ages. Both the validation and testing datasets contain 50
images per class for a total of 10,000 images each. We will
describe this dataset along with our preprocessing in more
detail in Section 2.

We start off our investigation by describing our method
of fine-tuning on classification models, such as VGG16 [1]
and ResNet [3], of various depths known to perform well
on the standard ImageNet challenge for the Tiny Imagenet
Challenge in Section 3. Since our dataset is derived from
the ImageNet challenge, a model tuned for the standard
challenge should also perform well here. We will address
fine-tuning challenges such as how to convert the standard
ImageNet models trained on 224x224 images to our dataset
which consists of 64x64 images.

In Section 4, we explore training ResNet models and
variants from scratch for the Tiny ImageNet dataset. This
allows us to be more flexible in the number of layers of our
model to really investigate the affects of model depth on
performance. Here we explore how the scale of the Tiny
ImageNet dataset, with its much fewer images and classes
than the standard ImageNet dataset, affects training for the
ResNet architecture variants.

In Section 5, we describe our best performing models
and dive deep into why finetuning works best for the Tiny
ImageNet dataset along with a qualitative analysis into how
we can improve our model in the future. Finally we sum-
marize our learnings in Section 6.

2. Dataset

The Tiny ImageNet dataset is derived from the standard
ImageNet challenge such that images are cropped into a
size of 64x64. There are 200 classes in this dataset, a sub-
set of which we visualized in Figure 1. We can see from
the figure that the dataset consists of both coarse and fine-
grained classes with coarse classes such as ”comic book”
and ”lampshade” to fine-grained classes such as ”German
shepherd” and ”standard poodle”. Although smaller im-
ages contain less information, we have seen that high ac-
curacy classification can still be done as shown through the
CIFAR-10 dataset [6] where more than 90% accuracy clas-
sification can be achieved on 32x32 images. One concern
with the Tiny ImageNet dataset however is that an object

1



is sometimes heavily occluded as some objects are cropped
out such as the 4th lampshade example in the figure. This
along other issues such as the fine-grained classes make this
challenge difficult.

2.1. Processing

For the various models we train, we preprocess the Tiny
ImageNet dataset by subtracting the channel wise mean as
done in [1] for the VGG model and the pixel wise mean
provided in the source code for [3]. We augment our dataset
taking random 57x57 crops of the input images along with
mirroring the images.

3. Fine-tuning
As we’ve seen from [2] [8], convnet features trained

from large scale datasets such as the ImageNet dataset [9]
can be used as generic image descriptors that outperforms
traditional hand crafted features. We see that using such
generic features as a baseline, we can bootstrap the learning
process on new datasets by fine-tuning on existing classifi-
cation models trained on the ImageNet such as VGG16 [1]
and ResNet [3]. Because we have seen progressive im-
provements from VGG16 to ResNet in terms of classifica-
tion performance on ImageNet, we predict that this trend in
performance will continue to hold after fine-tuning on our
new dataset, especially as our dataset was derived from Im-
ageNet. We will investigate whether this is true or not.

3.1. VGG16

The standard VGG16 architecture as shown in Figure 2
is structured starting with a series of convolution + ReLU
layers with max pooling layers occasionally to reduce the
spatial dimension. Fully connected layers are then used be-
fore the final softmax layer [1]. The convolution layers use
3x3 kernels with a stride of 1 and padding of 1 to ensure that
each activation map retains the same spatial dimensions as
the previous layer. The max pooling layer uses 2x2 kernels
with a stride of 2 and no padding to ensure that each spatial
dimension of the activation map from the previous layer is
halved.

We have described our fine-tune procedure in Figure 2.
One problem with using the standard VGG16 architecture
is that the input to the first fully connected layer depends
on the spatial dimension of the activation maps from the
previous max pool layer. This spatial dimension depends
on the input image size. Because the standard VGG model
requires 224x224 input images while we want the input to
the network to be 57x57 crops of the 64x64 images in the
Tiny ImageNet dataset, there is a mismatch with the number
of weights required by the fully connected layers. As such
we require retraining the fully connected layers, one layer
with 4096 hidden units and one with 200 units to reflect the
number of classes for the softmax layer.

Although we can’t reuse the fully connected layers, we
can reuse all the weights in the convolution layers because
of their independence with the input image size as shown
in the middle image of the figure. This is still desirable as
these convolution layers usually learn low level descriptors
for images such as edges and patterns [12]. We can imagine
that similar descriptors would be learned for the Tiny Ima-
geNet dataset and by reusing these weights, we can speed
up training. We dive more into this in the Section 5.

When training, we add a cross entropy loss function on
top of the softmax layer to get the following per example
loss function:

Li = − log
esyi∑200
j=1 e

sj

The softmax function, quantity inside the log, measures the
probability of the given correct class yi from the scores vec-
tor s given by the previous fully connected layer. The− log
then turns the function into one where we want to mini-
mize, as per all loss functions. As such by minimizing the
loss function, we are trying to increase the probability of
the correct class. We average this per example loss for the
batch example loss function.

We trained our model using Caffe [5] with the VGG16
model in the Model Zoo. For the new fully connected lay-
ers, we initialized the weights using MSRA fillers [4] and
biases to zero. The first fully connected layer is trained with
a 0.5 dropout ratio. Our fine-tuning was done in two phases.
In the first phase, we set the learning rate of the convolution
layers to be zero to only learn the fully connected weights.
This is because the convolution weights have already been
well learned and so we concentrate on learning representa-
tions for the fully connected layers to ”catch up” to the con-
volution weights. We started training with a learning rate of
0.1 for 6,000 iterations with a step size of 2,000 iterations.
Afterwards, for the second phase, we allow all layers to be
trained so that the entire model is specialize for our current
dataset. We start with a learning rate of 0.001 and train for
12,000 iterations with a step size of 4,000. For both phases,
we train using momentum based SGD with momentum of
0.9 with a batch size of 256 and weight decay of 0.0001.
We achieved a top-1 validation accuracy of 51.8% as shown
in Figure 5. Note that the step sizes were chosen by dy-
namically visualizing the training loss and noticing when
the training loss had plateaued.

We achieved a effective batch size of 256 through us-
ing the accumulated gradients technique where the effec-
tive batch size = actual batch size * itersize. This tech-
nique is implemented such that for our forward and back-
ward pass, we run the computation for the actual batch size;
the solver however does not update the gradients immedi-
ately and instead continues the forward and backward pass
itersize times, accumulating the gradients for the parame-

2



Figure 1. Example images for six classes in the Tiny ImageNet dataset. The dataset contains 64x64 images of 200 classes. These categories
are both coarse (poodle vs lampshade) and fine-grained (German shepherd vs poodle).

ters each time. Finally after the effective batch size number
of images have been passed through the network, the solver
updates the gradients. We then call this accumulated update
of the effective batch size number of images an iteration.

3.2. ResNet

The main contribution of [3] when introducing the
ResNet architecture was the idea of using residual connec-
tions as a manner of making it easier to train deeper net-
works that perform better. We see in Figure 3 that the ba-
sic building block of the ResNet architectures is designed
to learn residual functions F (x) where the residual func-
tion is related to the standard function learned H(x) by
H(x) = F (x) + x. One motivation for introducing these
residual functions is that the authors believed that the ideal
H(x) learned by any model is closer to the identity func-
tion x than random and as such, instead of having a net-
work learn H(x) from randomly initialized weights, we
save training time by instead learning F (x), the difference
of H(x) and x. Additionally by introducing these identity
functions x, we allow easier training of deeper networks
by allowing the gradients to pass unaltered through these
skip connections to alleviate traditional problems in train-
ing deep networks such as vanishing gradients.

The actual form of the F (x) function learned with the
input x is of the form 1x1 conv-bn-relu N → 3x3 conv-
bn-relu N → 1x1 conv-bn-relu 4N where N is the number
of filters learned and conv-bn-relu is convolution → batch
normalization → ReLU. Padding and stride are chosen so
the spatial dimension remains constant.

One variant of this architecture is shown in Figure 4 for
the ResNet-152 architecture. Here we start off with the stan-
dard beginning of all ResNet variants, a 7x7 conv-bn-relu
with stride 2 and padding 3 followed by a max pooling layer
using a 3x3 kernel and stride 2. We then have 3 replicas of
the building block with N = 64, then we have 8 replicas of

the building block with N = 128, then we have 36 repli-
cas of the building block with N = 256, then we have 3
replicas of the building block with N = 512, and finally we
average pool spatially and have a fully connected layer fol-
lowed by a softmax layer. Note that for every change in N
in the building blocks, the first 1x1 convolution of the block
uses a stride of 2 to lower the spatial dimension by half.
To ensure dimension matching, the residual connection x is
modified by a 1x1 convolution with stride 2 to match the
reduced dimension of the learned F (x). Here the variant is
called ResNet-152 because 1+(3+8+36+3)∗3+1 = 152.

We fine-tune on the ResNet-50, ResNet-101, and
ResNet-152 variants as they are the only models released
for Caffe. (Unfortunately the shallower networks such as
ResNet-18 and ResNet-34 were not released for Caffe. We
attempted to convert the Facebook trained Torch models for
ResNet-18 and ResNet-34 to Caffe with no success). Simi-
lar to VGG16, we cannot reuse the FC layer of the standard
network and instead learn a new FC layer with hidden size
200. We adopt the same two phase fine-tuning method as
before, training only new FC weights with a starting learn-
ing rate of 0.1 for 200 iterations with a step size of 100. We
then train end to end with a learning rate of 0.01, step size
of 5000 for a total of 17500 iterations. For both phases, we
train using momentum based SGD with momentum of 0.9
with a weight decay of 0.001 and a batch size of 128 for
the ResNet-50 variation and of 32 for the ResNet-[101,152]
variations. We use accumulated gradients so that each pa-
rameter update is done after seeing a total of 256 images.
Though this is incorrect because batch normalization breaks
accumulated gradients since forward calculations are batch
dependent, it was a compromise done due to not being able
to fit the model in memory. We summarize the top-1 valida-
tion accuracy of all our fine-tuning in Figure 5 with our best
performing model, ResNet-101, achieving a top-1 valida-
tion accuracy of 59.69% and top-1 test accuracy of 53.2%.

3



Figure 2. We start out with the standard VGG16 model on the left,
re-use the convolution weights as shown in the middle, and learn
new FC weights as shown on the right.

Figure 3. Here we see how residual connections differ from the
standard connections. In particular for residual connections, we
are learning a residual mapping F (x) instead of H(x).

4. Train From Scratch

One problem with fine-tuning is that our architecture is
limited by what pre-trained models we find. Because pre-
trained models were tuned for other datasets, they may not
be the most optimal architecture for our specific task. As
such here we investigate training models from scratch. We
stick to the overall ResNet architecture due to the belief
the general architecture improvements against predecessors
such as VGG16 should hold even for new datasets. We how-
ever investigate how depth and less filters affect training and
performance.

4.1. Original

Here we training the original ResNet-[50,101,152] ar-
chitectures from scratch. In addition to the ResNet-
[50,101,152] architectures, we introduce the ResNet-20 and
ResNet-38 architectures. The ResNet-20 architecture is
shown in Figure 4 and differs from the ResNet-[50,101,152]
architectures by having less replicas and less spatial pool-

Figure 4. We show various variants of the ResNet architecture we
trained. On the left is the standard ResNet-152, in the middle is
the same architecture as ResNet-152 but with filter size divided
by 4 throughout the network, and on the right is the ResNet-20
architecture involving less replicas of the buildings blocks and less
spatial poolings. Note in the diagrams, we did not show the spatial
pooling. This pooling occurs during the first conv-batch-relu for
every basic block filter size change (from 64 to 128, from 128 to
256, and from 256 to 512).

Figure 5.

ings. The ResNet-38 architecture is similar to the ResNet-
20 architecture but with 3x, 5x, 4x replicas instead of the 2x,
2x, 2x replicas in ResNet-20. Note that we chose not to base
our architecture on the ResNet-18,34 variants introduced in
[3]. This is because we did not want to confound our re-
sults with differences in how the residual function F (x) is
modeled.

Although we attempted to train ResNet-[101,152] from
scratch, we did not finish the training due to computational
constraints. The models did not seem like they were con-
verging within a reasonable amount of time and so we did
not finish training these models. For ResNet-[20,38], we
trained the models using momentum based SGD with mo-
mentum of 0.9 starting with a learning rate of 0.1, batch size
of 256, weight decay of 0.0001, and step size of 5000 for a
total of 22500 iterations. For ResNet-50, we trained with

4



momentum of 0.9, batch size of 128, base learning rate of
0.1, weight decay of 0.001, and step size of 10000 for a
total of 45000 iterations. The step sizes were chosen by dy-
namically visualizing the training loss and noticing when
the training loss has plateaued. The weight decay parame-
ter was chosen initially through hyper-parameter tuning on
a fold of the training set through a grid search in log scale.

We show the results in Figure 5. Interestingly enough,
deeper did not perform better in our case unlike the study
done in [3]. We note however that we see trends of over-
fitting from Figure 5 in that our training loss is decreasing
as we increase depth but our model’s validation accuracy is
also decreasing. Even the worse training loss achieved, a
loss of 0.167 for the ResNet-20 variant, has a training top-1
accuracy of 98.86%, much better than the validation top-1
accuracy of 45.59%

4.2. Less Filters

To further investigate the effects of overfitting, we tried
simplifying our model by reducing the number of filters in
the ResNet variants by 4x, resulting in 16 being the lowest
number of filters per any convolution as shown in the middle
of Figure 4. Note that before changing the architecture, we
tried other overfitting prevention mechanisms such as using
stronger weight decay, smaller batch sizes for batch nor-
malization to be more noisy, data augmentation techniques
such as random distortions of the aspect ratio of the input
image and random crops. None of these mechanisms re-
sulted in better performance while the signs of overfitting
still existed or the model simply did not converge for ex-
treme weight decay and batch size values.

With less filters, we had the computation power to train
the ResNet-[101,152] variants. As such for our study
on how depth affects performance, we trained ResNet-
[20,38,50,101,152] variants from scratch. Each model was
trained with momentum based SGD using a base learn-
ing rate of 0.1, step size of 5000 for a total of 17500 it-
erations, weight decay of 0.0001, and momentum of 0.9.
Through using accumulated gradients, we ensured that for
each model, gradients are accumulated for 256 images. In
other words, our effective batch size was 256 though the
in-memory batch size varied due to memory constraints.

We show our top-1 validation accuracy results and final
training loss in Figure 5 and plot the training loss and top-1
validation accuracy versus iterations in Figure 6. As we can
see from the plot, by the end of training the training loss and
the top-1 validation accuracy has plateaued for our various
models. We can see that as we increase the depth of our
model, both the training and validation loss decreases. This
shows that as we increase the depth of our model, the model
has more of a tendency to overfit with our training data as it
achieves a better training loss but worse validation accuracy.
This is interesting in that though somewhat expected that a

Figure 6. Visualization of the Training Loss and the Top-1 Valida-
tion Accuracy vs Iterations for the Less Filters variants. Here we
see that increase in model depth results in lower training loss. Un-
fortunately, this trend of lower training loss also results in a trend
of lower validation accuracy, showing that we are overfitting to
the dataset more as we increase depth. Note: we did not plot the
curves for the ResNet-152 model due to loss of the training logs.

more expressive model will overfit the data more, we would
expect some signs that increased depth would increase per-
formance as mentioned in [3]. This is especially true as the
most shallow network, ResNet-20, had a final training top-1
accuracy of 57.52%, showing no extreme signs of overfit-
ting to the training data. Overall reducing the number of fil-
ters resulted in worse performance compared to the original
models trained from scratch, most likely due to the decrease
in expressibility of the less filter variants.

5. Error Analysis

Our final best performing model was an majority vote en-
semble of our finetuned ResNet-[50,101,152] models at the
3 latest snapshots each for a total of 9 models in the ensem-
ble. (We snapshotted every 1000 iterations). For a given
image, we would get the top-1 prediction of each of the
9 classification models and pick the majority agreed class.
In case of no agreement, we took the prediction of the last
snapshotted ResNet-101 model, our best performing indi-
vidual model on the validation accuracy. This ensemble
achieved a final validation top-1 accuracy of 61.53% and
a final test top-1 accuracy of 55.40%.

5



5.1. Why Finetuning Performed Best

Here we investigate why we could not beat our finetuned
models. It is well established that the first convolution in
a convnet usually learns gabor like edge filters and color
indicators [12]. When visualizing the learned conv1 fil-
ters in Figure 7, we can see when training from scratch,
that the conv1 filters for ResNet-50 do not seem to con-
verge well. Starting from random noise at Iteration 0, the
conv1 filters for ResNet-50 become more defined at itera-
tion 8000, showing some signs of gabor like filters and color
indicators. However as we approach the end of training at
iteration 200000, we see that still, these filters have not be-
come very defined even though top-1 training accuracy has
reached 97.43%. In contrast, for our fine-tuned ResNet-50
model, when viewing the conv1 filters at iteration 7200, we
can clearly see well defined gabor like filters and color in-
dicators.

One can make an argument however that perhaps our
Tiny ImageNet dataset is different in that the optimal conv1
filters learned are not suppose to be gabor like or color in-
dicators. We disprove this notion by also visualizing the
conv1 filters for our shallower ResNet-20 model trained
from scratch at iteration 15000. In this case, the filters for
our ResNet-20 model look as expected, similar to the fine-
tune filters, showing that the optimal conv1 filters for our
dataset is still most likely gabor/color filters. This shows
that our ResNet-50 model was able to do well on the train-
ing set without ever needing to learn generalizable represen-
tations, strengthening the belief that the ResNet-50 model
trained from scratch was overfitting the training dataset.
As for why our ResNet-20 trained from scratch performed
worse than the fine-tuned models even though the conv1
filters look decent, we can see that the conv1 filters for
the ResNet-20 model still look noisy, showing that perhaps
we need to train the model longer. Note however that the
ResNet-20 model is our best performing model trained from
scratch.

More in general, we can see finetuning is powerful be-
cause we start training with representations that are already
close to what we want as an output from training. The
trained ResNet-20 conv1 filters look very similar to the ones
in our finetuned ResNet-50’s conv1 filters and in fact, our
trained ResNet-20 filters look more noisy. As such it is not
surprising that our finetuned models perform better as they
were initially trained from a larger dataset, allowing general
purpose representations to be learned.

When looking to improve our fine-tuned models, we be-
lieve that simply fine-tuning from shallower networks such
as the ResNet-18 or ResNet-34 models released by Face-
book for Torch could improve our accuracy. This is be-
cause when looking at the final training top-1 accuracy of
our ResNet-50 finetuned model, we can see that the model
is overfitting as we achieve an accuracy of 95.97%, much

Figure 7. Visualization of the conv1 filters for the three Resnet-50
variants and the Resnet-20 model.

higher than our validation top-1 accuracy of 59.11%. Un-
fortunately by the time we came to this conclusion, we did
not have enough time to either move our entire stack to
torch, or convert the torch model weights into Caffe.

5.2. What Errors are Made

We visualize the top-1 errors made by our ensemble in
Figure 8 with the true label on top and the predicated label
on bottom. As we can see, in general the model’s errors are
due to fine-grained classes, misunderstanding the intent of
the image, or simply getting confused with visually similar
images.

We see examples of fine-grained classes errors with the
scorpion versus centipede example. Because of the low res-
olution of the input image, the most distinct part of the im-
age is the shelled body of the animal. In this case, both scor-
pions and centipedes have similar shelled bodies. Another
example is the pig vs bison example. Both are similar in that
they are four legged animals with brown fur. To understand

6



Figure 8. Images that our best performing model makes mistakes
on. Each image is marked with the true class on top and the pre-
dicted class on the bottom.

the distinction between the two, our model needed to em-
phasize the shape of the animal as a whole more as bisons
have a slightly different shape than a pig. One potential fix
for this in our modeling may be to remove the initial 7x7
conv and maxpool with stride 2 each as this aggressively
reduces the spatial dimension of our input. Starting from
an input of size 57x57, after the maxpool layer, we already
have reduced our spatial dimension by 4 as the spatial size
becomes 14x14. This may remove the spatial information
necessary to tell the difference in shape between a pig and
a bison.

We can see misunderstandings of the intent of the im-
age most clearly with the crane vs lakeside example. In this
case, the crane is by a lakeside so it is not incorrect that our
model produced lakeside as the top classification, especially
because the lake is the majority of the image. The problem
however is that in this image, our intent was to label the
crane. Similarly for the snorkel vs swimming trunks exam-
ple, it is perfectly plausible that the people in the image are
going snorkeling. Instead however, our intent when labeling
the image was the swimming trunks that they were wearing.
This type of error is harder to fix as the classifier outputs are
perfectly reasonable. Perhaps to improve upon this, we may
want to learn an attention model for what the focus of an im-
age is. This way, the model would better guess the intent of
the image when multiple class predictions are reasonable.

Finally we see examples of mis-classifications due to vi-
sually similar images. For example in the poncho vs flag-
pole image, the way the person is standing and the loose
shape of the poncho can make the person seem like a flag-
pole with the poncho as a red flag. Similarly with the punch-
ing bag vs pop bottle example, the punching bag happens to
be in a bottle shape. For these examples, better modeling
of coarse-grained classes can fix these errors. For example,
see that the poncho image has a person in it which should
lower the probability that the image is a flagpole.

6. Conclusion
We approached the Tiny ImageNet Challenge by looking

towards the top performing academic classification mod-
els. By finetuning VGG16 and ResNet-[50,101,152], we
were able to achieve our highest performing single model,
the finetuned ResNet-101. In order to improve upon the
finetuned models however, we attempted to learn represen-
tations from scratch with the hope that adjusting the scale
of the ResNet architecture for the smaller scaled Tiny Im-
ageNet dataset through changing the depth and filter sizes
would improve performance. However, when implementing
these solutions, we noticed strong signs of overfitting and a
general lack of performance compared to the fine-tuned al-
ternatives. By analyzing why finetuning was so much better,
we saw that in general, finetuning starts with representations
that are already near what we want to learn from scratch.
Furthermore, by being pre-trained on a larger dataset, our
finetuned models are able to learn more generic representa-
tions. Even for our fine-tuned models however, we do notice
signs of overfitting in the shallowest model, ResNet-50, and
as such, given more time we would immediately look into
using Facebook’s ResNet-[18,34] models to finetune.

References
[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zis-

serman. Return of the devil in the details: Delving
deep into convolutional nets. In British Machine Vi-
sion Conference, 2014.

[2] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. Decaf: A deep convolu-
tional activation feature for generic visual recognition.
ICML, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. Arxiv, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. CoRR, 2015.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[6] A. Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, 2009.

[7] A. Krizhevsky, S. Ilya, and G. E. Hinton. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information Process-
ing Systems (NIPS), pages 1097–1105. 2012.

[8] A. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: an astounding base-
line for recognition. CVPR, 2014.

7



[9] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. ImageNet large scale visual recog-
nition challenge. arXiv preprint arXiv:1409.0575,
2014.

[10] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-
v4, inception-resnet and the impact of residual con-
nections on learning. CoRR, 2016.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. arXiv
preprint arXiv:1409.4842, 2014.

[12] M. Zeiler and R. Fergus. Visualizing and understand-
ing convolutional networks. ECCV, 2014.

8


