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Abstract 

 

Despite the radical simplicity of convolutional 

neural networks some researchers have found direct 

correlates between network layer properties and actual 

neuron responses. In model systems such as the 

macaque [1] there are clear analogies between the early 

visual cortex layers (V1-V4) and the properties of a 

trained convolutional network. We plan to explore this 

interesting dynamic in the context of motion. Our goal 

is to modernize an older model of the visual stream 

dedicated to motion [2]. The original model explicitly 

coded the features selected for at each layer, based on 

the known anatomical properties of macaque V1 and 

MT. In contrast, we plan to build a generic 

convolutional neural net architecture, which will be 

trained to discriminate examples of motion. Because 

our architecture is more generic it will fail to precisely 

model the known anatomy of V1. This leaves open the 

possibility that during training the network will ‘learn’ 

similar features, such as simple and complex cell 

receptive fields. Our goal in building this model is to 

develop a model system within which we can test other 

interesting questions, such as whether a convolutional 

architecture will develop similar behavioral 

asymmetries to the actual human (and monkey) visual 

systems. 

 

Introduction 

As cognitive neuroscientists one of our core goals 

is to understand human behavior. Because we can’t 

easily probe neural signals in human brains we often to 

turn to model systems such as monkeys or rodents as 

sources of data to understand behavior. We think of 

these model systems as implementing the same 

computations while using different algorithms and 

neural implementations. For example, to understand 

how humans process information about motion 

researchers have created a number of simple tasks 

involving moving dots. Using these stimuli humans 

can discriminate various features motion speed, 

coherence, contrast, etc. How do we do this? Monkeys 

are also able to perform this task and offer a wealth of 

information about what neurons in different cortical 

areas might be doing and the limits of neural 

representations [3]. One issue with monkeys is that we 

aren’t quite sure that they are behaving identically to 

humans--they show very distinct training patterns and 

in some ways their behavior looks nothing like human 

behavior [4]. Because of these issues cognitive 

neuroscientists have begun to think of model systems 

as pieces of a puzzle, best interpreted in light of other 

pieces--such as evidence from other model systems [5]. 

Despite their radical architectural differences artificial 

neural networks can be trained to perform the exact 

same behavioral tasks that we are interested in 

studying in humans [1]. They act in this sense as 

another model system that can give us insights into 

how information might be represented in the human 

brain. 

In this study we designed a motion network 

(MotionNet) with architectural similarities to the 

human visual stream up to human area hMT+ (areas 

MT/MST in the monkey). Our neural network was 

trained to perform direction discrimination on video 

clips of random dot displays at full contrast, full 

coherence, uniform speed and dot number, and low 

noise. We show that our model has characteristics that 

are qualitatively similar to humans, such as poor 

motion discrimination under adverse conditions of low 

contrast, low coherence, and high noise. We also show 

that our model has quantitative similarity to humans, in 

that its ability to discriminate untrained features of the 

stimulus tracks human performance. We believe that 

models like MotionNet are a powerful tool to 

understand the human visual system and can give us 

precise and testable predictions about how the brain 

may represent motion. 

 

Methods 

We trained our network on a psychophysical task in 

which white dots undergo random translational motion 

on a black background.  We put together basic 

functions to generate an unlimited number of 

translational random dot displays. All of these stimuli 

can have arbitrary contrast (e.g. Michelson contrast, 

difference between luminance intensities in the dots 

and background, compared to the total luminance),  

Table 1: Training Dataset Parameters 
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speed, number of dots, etc. This parameterization 

allowed us to generate an unlimited set of training 

examples on the fly.  One advantage of having tools to 

generate online data is that we can build batches 

without relying on a heavy memory load, allowing us 

to train our dataset on an arbitrary number of examples 

with no overhead for loading and saving data. This also 

allows us to generate far more variability in our input 

dataset, similar to jittering of image data.  

We set up a four layer convolutional neural network, 

modeled after the human visual system (Fig. 1).  To 

that end we have a layer corresponding to each cortical 

and sub-cortical region spanning the retina to 

MT.  Although this is far from a perfect analogy to 

cortical computations we introduced several constraints 

that will allow us some anatomical similarity to cortex. 

First, we enforced the first three layers to be 2D 

convolutions (across both spatial dimensions), whereas 

the final layer (MT) was a 3D convolution (across both 

spatial dimensions and time). Our full model 

parameters are shown in Table 2. While it is true that 

LGN, and V1 have interesting temporal dynamics, for 

the behavior that we are interested in, we can think of 

these layers as making static computations on 

individual frames.  Second, we used spatial batch 

normalization as a form of divisive normalization. 

Divisive normalization is a property of local sets of 

neurons in cortex whereby they inhibit each other: a 

feature of the brain that limits explosive response rates. 

Our hope is that although these constraints are not 

explicitly anatomically correct, they will nevertheless 

lead to the MotionNet learning a set of features 

analogous to the human/monkey visual system. We 

trained the neural network to do motion direction 

discrimination on stimuli with constant contrast, 

coherence, number of dots, noise, and velocity (Table 

1). 

Our network was able to achieve near perfect cross 

validated classification accuracy (95.6%). We chose to 

train for direction discrimination because it is a simple 

task and the architecture responsible for performing the 

task is well understood in the monkey brain [2]. V1 

neurons are thought to be edge detectors that yield 

positional information about the stimuli, and MT 

neurons differentiate V1 behavior in order to obtain 

motion information.  

 

Feature Inversion 
 

We computed feature and class inversion according to 

the following algorithm: 
    img = random initial image 

    for i iterations: 

        forward pass img 

        compute gradient relative only to one  

class/feature 

        img += dImg * stepsize 

 

Table 2: Model Parameters. Our model included four 

convolutional layers and a single dense readout layer. 

The full architecture is shown above with details about 

parameter numbers and kernel sizes for each of the 

layers. 

 

Video Size 16 Frames x 64 pixels x 64 pixels 

Angle Directions [0-360] 0, 45, 90, 135, 180, 225, 270, 315 

Coherence [0-100%] 100% 

Velocity [0-inf] 3 pixels / frame 

Number of dots [0-inf] 15 

Dot radius [0-inf] 2 pixels (std of gaussian dot) 

Contrast [0-100%] 100% 

Noise [0-255] 4 (std of additive gaussian noise) 

Number Train Examples 1600 

Number Validation Examples 200 

Number Test Examples 200 

Training parameters: learning Rate: 1e-3, L2-regularization on W 
matrices: 1e-3, batch size 20 

Name Layer Input 

Space 

Output 

Space 

Params 

 ZeroPad3D: 0x1x1 16x64x64 16x66x66 0 

LGN Conv3D: 4x1x3x3 

ReLU, BatchNorm 

16x66x66 16x64x64 40 

 MaxPool3D: 0x2x2 16x64x64 16x32x32 0 

 ZeroPad3D: 0x1x1 16x32x32 16x34x34 0 

V1s Conv3D: 4x1x3x3 
ReLU, BatchNorm 

16x34x34 16x32x32 40 

 MaxPool3D: 2x2x2 16x32x32 8x16x16 0 

 ZeroPad3D: 0x1x1 8x16x16 8x18x18 0 

V1c Conv3D: 4x1x3x3 
ReLU, BatchNorm 

8x18x18 8x16x16 40 

MT Conv3D: 4x5x3x3 8x16x16 4x14x14 184 

LIP Dense Fully 

Connected 

4x4x14x14 8 3144 
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Psychometric Discrimination Functions 

Human volunteers (n=3, two female one male) were 

paid to perform approximately 2000 trials of a contrast 

discrimination and a motion discrimination task. Our 

experiment was approved by the Stanford IRB and all 

subjects gave informed written consent. Each subject 

was shown two random dot displays and asked which 

display had higher contrast or motion coherence. Data 

was collected at different contrast and motion 

coherence differences. A maximum likelihood fit was 

found for a Weibull function of the form: 

 

(     )  (       
 
)    

 

Where T is the threshold,   is the slope,    is the lapse 

rate, and   is chance performance. To compute 

psychophysical performance for the model we 

generated a dataset with 100 examples each of a base 

contrast (10%) or coherence (20%) and a test contrast 

(10-100%) or coherence (20-100%). We read out layer 

activations from the trained model at each 

convolutional output layer (see Information Readout) 

giving us data in the same format as for the humans. 

 

Information Readout 

The information types that we tried reading out were 

speed, contrast, number of dots, coherence, and noise. 

For each layer of the network and information type, we 

generated N = 2400 train examples, N = 240 validation 

examples, and N = 240 test examples.  We then fed 

each example through the network, and took the output 

at the layer of interest.  We then averaged the output 

across space and time, meaning that we have one 

feature for each filter (which is less than 10 for each 

layer).  The logic for averaging across space and time 

is that a given filter is measuring the same information 

regardless of its spatiotemporal position. We 

subsequently trained a linear regression with this 

reduced dimension activation as input and the 

parameter of interest as output.  For example, if we 

were trying to decode speed, the output for the 

regression would be speed.  This linear regression was 

trained on the train set, a regularization parameter was 

chosen using the validation set, and performance was 

measured using the test set. 

 

Code 

All code, dataset generating, and analysis scripts are 

in our repository: https://github.com/dbirman/motnet. 

Our convolutional neural network is built using Keras 

with a mixture of custom code and existing pull 

requests to implement 3D convolutions. Keras is a  

wrapper package that simplifies the implementation for 

Theano [6]. 

 

Results 

We measured the similarity of our model to humans 

using three qualitative and quantitative measures.  (1) 

We looked at the features learned by the model, (2) the 

psychophysical performance of the model on 

discrimination tasks, and (3) the information 

representation of individual model layers. 

 

MotionNet Features 

Our features at layer MT are videos that cannot be 

reproduced in print, but can be found on our website, 

Figure 1: Architecture. MotionNet has four convolutional layers, one per synapse in the human visual system. Each 

layer was assigned four features, sufficient to drive near perfect discrimination of 8-direction translational motion, but 

also enough to force the model to encode multiple directions into each feature. 

https://github.com/dbirman/motnet
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along with the features at all of the other layers at 

http://gru.stanford.edu/doku.php/deepmotion. One 

drawback of 3x3 convolutions is that we do not get 

much out of visualizing the weights directly; rather, it 

is through feature inversion that we can gain insight 

into the behavior of our features (see Methods).  We 

can observe that our early layers (LGN, V1s) 

developed a preference for very strong edges.  This 

makes sense since tracking the position of edges is 

central to the task of detecting motion.  Furthermore, 

each MT neuron seems to have preferences over 

motion directions.  However, one significant 

difference between our model and the human neural 

network is that our MT learned a much more 

distributed representation of motion direction.  In 

humans, each MT neuron has one preferred direction 

of motion, whereas our MT neurons seem to be 

encoding something more complicated than a singular 

motion direction.  This is due, in part, to the fact that 

we only have four neurons in our MT.  Having very 

few MT neurons was a design choice that we made to 

force the network to use all available features in its 

representations. 

 

Results: Psychophysics 

Next, we wanted to test whether MotionNet would 

perform similarly to humans on psychophysical tests. 

We tested this in two ways: first, by looking at the 

tuning of our model to the motion stimulus parameters 

(Fig. 2). Second, we looked at how we could read out 

information from our model (Fig. 3 & Fig. 4). 

In Figure 2 we varied the stimulus parameters to 

understand where our model performed optimally. We 

found that, as expected, our model was tuned to the 

parameters of the training stimulus set. Performance 

dropped off whenever any parameter extended too far 

from the optimum. This is qualitatively similar to what 

we see in human psychophysics data. To test this 

quantitatively we examined linear readouts from our 

model output layers. 

 We performed model readout in two ways. First we 

tried to simply reconstruct the input stimulus 

parameter as a linear readout from each layer’s 

activations, the results from this analysis are shown in 

Figure 3. We found that the low-level parameters of 

the stimulus such as number of dots, contrast, and 

noise were all trivial to read out from our LGN layer 

and progressively more difficult to read out as we 

progressed further into the model. Layer MT was 

relatively invariant to these features. In contrast we 

found that parameters related to motion like speed and 

coherence could only be read out from the later layers. 

This makes sense in comparison to the human cortex, 

where motion cannot be easily read out from area V1, 

while it can be easily read out from area MT. We were 

surprised to see that speed could be decoded from layer 

V1c, but we interpret this as an effect of very high 

speeds where the dots would start to “jump” due to our 

low temporal resolution.  

 Our second approach to model readout was to 

explicitly compare the model’s discrimination of 

stimulus features with human discrimination. We chose 

to use contrast and coherence rather than motion 

discrimination itself because these are a low-level 

stimulus feature and a high level one, respectively, that 

we know humans can easily discriminate. For this 

experiment, we varied the each stimulus property’s  

difference between a baseline stimulus and a test 

stimulus.  The task was to discern which stimulus has 

the higher contrast or motion coherence. Our model 

was able to perform this task and the results are shown 

Figure 2. Validation Performance. We validated our model 

by looking at its performance on untrained ranges of the 

stimulus features. As expected we found that the model was 

“tuned” to the parameters of the training dataset, with 

performance dropping off as parameters extended too far 

away from the optimum. 

http://gru.stanford.edu/doku.php/deepmotion
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in Figure 3. As the difference increased, this task 

becomes easier. Similar to the humans, for both 

contrast and coherence discrimination, the computer 

exhibits a smooth increase from chance to perfect 

performance.  For contrast, performance looked 

markedly similar for both humans and robots, which is 

impressive since the parameters of our model are so 

different from biological settings.  Coherence, on the 

other hand, was more difficult to read out of the neural 

network.  This is because we used a linear readout 

model.  However, the true process of reading out 

coherence information from MT is inherently 

nonlinear.  Consequently, if we were to train a more 

involved readout procedure, we might be able readout 

coherence from MT. 

Conclusions 
Our results show that, although anatomically very 

different from human visual cortex, an artificial neural 

network nevertheless has many qualitative similarities 

to humans. In our goal of understanding precisely how 

human vision represents motion information, a tool 

where we have explicit access to every computation 

and every input and output is a huge strength. 

Normally at best we can observe brain activity and 

make small tweaks--although we are always at risk of 

overinterpreting our results, in particular when 

behavioral similarities between model systems turn out 

to be overstated [3]. The greatest advantage of our 

MotionNet as a model system is its ability to be 

iterated over in fast steps. The model can be trained in 

a matter of minutes and the validation and analyses can 

be run within a few days--this fast turnaround means 

that hypotheses about the human visual system can be 

implemented and tested at speeds order of magnitudes 

faster than in traditional model systems. Ultimately we 

see artificial neural networks as a model system that 

adds to our existing models. One of our goals for future 

work with MotionNet is to see whether our layer 

activations show correspondence with the activation of 

layers in the human and monkey visual system. For 

example, one approach based on the the work of 

Yamins et al. [1] would involve trying to predict 

human fMRI BOLD activity as a weighted sum of a 

small number of units in our MotionNet model. By 

seeing which layers are most predictive of human 

BOLD activity we can infer what kinds of 

representations the human brain stores in neural 

activity within individual voxels. These kinds of 

approaches are difficult to do in other model systems 

because of the lack of available data--but with 

MotionNet we can generate arbitrary amounts of data 

from many different models in rapid iterations. 

Ultimately the strength of artificial neural networks as 

a model system will depend on their success in 

generating new insights about the human visual 

system.  
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