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Abstract

This paper uses satellite imagery to support map cre-
ation in the developing world. I gather my own dataset by
downloading imagery released through the U.S. State De-
partment’s MapGive project and using map data provided
by the Humanitarian OpenStreetMap Team. Using this
data, I train several Convolutional Neural Network models
designed after the SegNet architecture to perform semantic
image segmentation. The output of these models are map-
like images that may in a later step be used to reconstruct
map data, accelerating the work of online remote mapping
volunteers. This paper details progress made towards this
goal; my best model’s pixel-average test accuracy of about
69% does not allow production use yet. I conclude on notes
for future work.

1. Introduction
When natural or other disasters strike, the most endan-

gered people often live in areas that are not well-mapped:
in the developing world, whole regions are lacking detailed
information on where exactly people live, and where critical
infrastructure is located. Recognizing the need for such data
in humanitarian relief missions, the Humanitarian Open-
StreetMap Team (HOT)1 has been founded as a team within
the open-source mapping community OpenStreetMap2: it
uses online volunteer workers around the globe to create
missing maps in areas that need it most. Amongst other
achievements, HOT has been recognized for its impact in
coordinating relief missions after the 2010 earthquake in
Haiti.

The importance of humanitarian mapping efforts has
been recognized by the U.S. Department of State in the
form of the MapGive initiative3, which makes available
U.S.-licensed satellite imagery for humanitarian mapping
efforts. This paper aims to support the volunteer efforts
within HOT and MapGive by using Convolutional Neural

1https://hotosm.org/
2http://www.openstreetmap.org/
3http://mapgive.state.gov/

Networks (ConvNets) to accelerate the mapping process
and reduce necessary volunteer involvement. To this end,
I use MapGive imagery and HOT-created maps in my train-
ing and testing steps.

A large part of this project has been integrating with ex-
isting HOT technology to collect sufficient training data.
The following section will detail the process of data collec-
tion and describe the collected dataset. Section 3 presents
related work and literature, motivating my methods that I
present in section 4. Preliminary results are shown in sec-
tion 5. Section 6 concludes this paper and discusses future
work.

2. Data

To integrate with existing HOT infrastructure and allow
potential production use of my results, I closely followed
the existing HOT workflows: the team’s current interface is
the “OSM Tasking Manager,” which breaks larger areas into
individual map-squares that can be assigned to individual
volunteers. For map creation, supporting satellite imagery
is overlaid in the project’s map editor, allowing tracing of
roads, buildings, waterways, etc.

Once a task has been worked on, it can be marked as
“done”. This lets other volunteers know that the task is
ready for validation; once another volunteer has marked the
task as “validated,” it is considered finished and removed.
For my data collection, I crawled the task manager and sep-
arately downloaded the satellite imagery and finished map
data for “validated” map-squares from MapGive and HOT
tile-servers. For easier handling of the data, I also down-
loaded raw map data (geojson) through OpenStreetMap’s
Overpass API.

Using this data pipeline, it is possible to (a) learn from
future volunteer work and (b) feed ConvNet results back
into the existing HOT task manager as “done,” prompting
human verification before results are released. If a high
enough accuracy is achieved, this may significantly speed
up the volunteer mapping process.

As my training data, I downloaded two finished HOT
projects in full, spanning roughly 150km2 in Haiti and
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label % of pixels
nolabel 79.4%
building 11.2%
road 4.0%
farmland 2.6%
wetland 1.6%
forrest 1.0%
river 0.2%

Table 1: Per-pixel distribution of class labels in dataset.

Colombia. At a resolution of 0.6m/pixel,4 this corre-
sponds to 10403 individual tiles of 256*256 RGB pixels
each (squares of 153m side length). I preprocessed the
satellite images by subtracting the mean image (i.e. the
mean color per pixel location), which had the side-effect
of partially washing out watermarking (“Digital Globe,” the
satellite image provider). For each of the squares, I then
downloaded the raw map data and a map image according
to latitude/longitude bounding boxes.

From the map image I generated my final labels by re-
placing colors according to a map legend. This added noise
to my image labels, as artifacts such as text-labels, map
icons, anti-aliasing, etc. could not be fully recovered from
the map image; unfortunately, custom map renderings of
the OpenStreetMap data were not available in a straight-
forward way. This means that labels are noisy, adding to
slight label misalignment due to bounding-box inaccuracies
and existing mapping errors. Figure 1 shows a sample of
my data.

The data suffers from some class imbalance, as shown in
table 1: the majority of pixels do not have any label asso-
ciated with them. This is due to foresty “bush” areas that
make up large patches between urban settlements.

I randomly split the dataset into a training set (85%),
a validation set (10%) and a test set (5%) and validated
that the per-pixel label frequencies are roughly equally dis-
tributed amongst all sets.

3. Related work
Xie et al. [15] report remarkable results of their ConvNet

architecture to predict regional poverty levels based off
satellite imagery: using a pre-trained VGG network [13],
they first train an image-classification model to predict
night-time light intensities from day-time satellite imagery.
In a second step, they transfer the learned features into a
direct predictor of poverty levels, achieving almost survey-
level results. The authors rely heavily on transfer learn-
ing to compensate for label sparsity, and they use a resam-
pling method to counteract class imbalance. As their predic-

4This corresponds to TMS/Slippy Map zoom level 18.

tion depends more on macro-level features, they use Google
Maps5 satellite imagery at a low resolution of 2.4m/pixel,6

– this is 16-times less pixels for the same geographic square
than used in this paper. In what appears to be a very similar
approach, Facebook researchers have recently reported im-
pressive results obtained by significantly larger datasets and
networks across a wide variety of geographies [7].

Castelluccio et al. [4] present an image classifi-
cation model that mainly uses the publicly available
UCMerced dataset [16]. They employ the CaffeNet7

and GoogLeNet [14] architectures, pre-trained on Im-
ageNet challenge data [12]. Their strongest result, a
version of GoogLeNet, achieves 97% accuracy on the
dataset’s 21 balanced classes, which range from dense
residential to specific (and easily recognized) classes
such as baseball diamond.

Bergman [3] uses the success of image-classification
models to produce map images from aerial photos obtained
from Google Maps: by classifying the center pixel of an
image patch and moving this patch over the input image,
the author produces a semantic segmentation which he then
post-processes.

Mnih and Hinton [11] specifically address the issue of
noisy labels in map segmentation, which they broadly clas-
sify into “omission noise” (missing labels in maps) and
“registration noise” (misalignment between map and aerial
image). They propose an Expectation-Maximization (EM)
method to iteratively update model beliefs on these forms
of noise, and then use these beliefs to augment the segmen-
tation loss function. The authors report significant perfor-
mance improvements in their ConvNet segmentation.

Within general image segmentation, the SegNet archi-
tecture [1] presents a very general, state-of-the-art core
segmentation solution. Originally developed for street
scene segmentation during autonomous driving, the fully-
convolutional model appends an “inverted” VGG net-
work [13] after a regular VGG network (after removing all
non-convolutional layers) to obtain an encoder and a de-
coder phase of the model. In their architecture, the authors
propose an efficient way to maintain spatial information for
the decoder step, which enables a very structured network
that generates pixel-wise labels (see the following section).
In an interesting extension [9], the authors propose a Monte
Carlo method to obtain an uncertainty measure of their seg-
mentation results, which may be useful during interpreta-
tion.

Finally, Basu et al. [2] present a highly specific model
for satellite imagery, and compare it to various other clas-
sification algorithms. They propose a model that uses a

5Due to licensing issues, Google Maps data is unfortunately not avail-
able to the Humanitarian OpenStreetMap team.

6This corresponds to TMS/Slippy Map zoom level 16.
7CaffeNet is a slightly modified version of AlexNet [10], distributed

with the caffe package [8]
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(a) Satellite image (b) Map image (c) Segmentation label

Figure 1: Samples from the input dataset: a mean-centered satellite image, the corresponding map image, and the derived
class labels (colored for easier recognition). Artifacts (noise) created by the text labels and icons are clearly visible. The
segmentation task is to create a segmentation, given only a satellite image.

deep belief network on 150 statistical and image-processing
features generated from satellite imagery to obtain classifi-
cation results that are reported to significantly outperform
ConvNets models on more complex datasets. Analyzing the
statistical properties of their feature space, the authors note
that properties beyond the ConvNet-typical edge-detection
and color-filters are relevant for aerial images.

4. Methods & Models

I used a number of different models in architectures that
are all inspired by SegNet [1], visualized in figure 2. Con-
ceptually, SegNet uses a series of convolutional, batchnorm,
ReLU and max-pool layers to encode an input image into
a spatially smaller, deep representation. It then reverts this
process using a spatial upsampling technique and more con-
volutional layers to arrive at a layer of the same spatial ex-
tent as the input image, with per-pixel classification scores
(in my model, this is 256x256x7). The following para-
graphs describe notable specifics in the architecture.

Since the encoding layers of SegNet are identical to the
convolutional layers of VGG, it is possible to apply transfer
learning to initialize the model weights with pre-trained fil-
ters. For this, I used the original VGG filters from [13]. The
decoder layers are initialized randomly.

The encoder phase reduces the spatial extend of the in-
put image by applying several steps of max-pooling, during
which a window of typically 2x2 pixels is reduced to only
the largest value within that window. This method reduces
computational complexity and, crucially, increases the re-
ceptive field of deeper units in the network. In the decod-
ing phase, the deep representation has to be “upsampled” to
the original input dimension again. As a way to preserve
spatial information through this process, SegNet stores the
position of the maximum element seen during max-pooling
and then restores the calculated value to the original posi-

tion during upsampling, leaving the remaining (typically 3)
positions at 0. As the upsampling layer is followed by a
convolution, this allows the decoder to convolve over en-
codings that originated from spatially close positions in the
encoder.

For the neural network’s loss function, I used a pixel-
average maximum entropy loss on softmax class probabili-
ties, as given by

Loss(i) =
1

2562

256∑
x=1

256∑
y=1

−wlabel log(
escorexy=label∑

c∈classes e
scorexy=c

)

where i ∈ R256∗256∗3 is the input image and and
scorexy=label is shorthand for “the classification score of
class label at position (x, y)”. In the naive version,
wc = 1∀c ∈ classes. Label predictions are straight-
forward: the model will choose pixel-wise classes as ĉxy =
argmaxc scorexy=c.

Given the imbalanced nature of my dataset, this choice
of loss function biases the network to predict the preva-
lent nolabel class “with high confidence,” i.e. towards
scorexy=nolabel � scorexy=c∀c 6= nolabel. To bal-
ance the loss function, I therefore used median class bal-
ancing [6]; this sets

wc =
mediani(class frequency(i))

class frequency(c)

where class frequency(c) is defined as the total number of
pixels of class c divided by the number of images with c-
pixels. This framework allows more general tuning of the
model, as it allows to put more emphasis on classification
errors for specific classes; I used this in later experiments
to put more emphasis on the building class, as this class
is most directly linked to population density, which is of-
ten the most pressing issue for humanitarian missions and
policy.
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I mainly experimented with three networks: after
SegNet-basic as proposed by [1] failed to learn within
reasonable computation time, I devised two significantly
smaller networks, which I initialized from scratch: the first,
dubbed “SmallNet” here, only uses two convolutional lay-
ers for encoding and decoding, respectively. The second,
“LargerNet,” like SegNet-basic, has eight convolutional lay-
ers in total, but uses significantly less parameters through
less, and smaller, filters. In LargerNet, I also experimented
with nonlinearities (ReLU) in the decoder phase. The spe-
cific design of each network can be found in table 2.8

To train each network, I used the AdaGrad algorithm [5],
a version of stochastic gradient descent (SGD). This algo-
rithm scales the iterative parameter updates to parameter p
at time t by a factor of

αp,t =

√√√√ t∑
i=0

(∇i
pLoss(p, . . . ))2 + ε

−1

where∇i
pLoss(p, . . . ) is the gradient of the loss with re-

spect to p at iteration step i, and ε is a small constant for
numerical stability. To further help learning, I reduced the
global learning rate over time (stepwise, halved every train-
ing epoch). As a means of regularization, I used a miniscule
weight-decay, which over time “pulls” learned weights back
to 0.

All networks were trained using AWS GPU instances,
using the caffe framework [8]. For upsampling, I used the
SegNet version of caffe distributed with [1]. Minor changes
to the caffe core code were required to handle the sparse
classes in my dataset: as no single map square contains
all classes (and many only contain nolabel), per-pixel-
averages would produce division-by-0 issues. To avoid this,
I edited caffe’s accuracy layer and “test” module to calcu-
late per-class accuracy only on those images that actually
contain pixels of the given class. I also modified caffe’s ac-
curacy layer to include the intersection-over-union metric
(see below).

Given the sparse dataset, constraints on GPU memory
were especially problematic: when training LargerNet, only
15 input images would fit into GPU memory (4GB), mak-
ing for heavily imbalanced batches even when randomly
shuffling each batch. This made per-batch loss virtually
impossible to interpret and may have contributed to in-
consistent gradients during backpropagation. Caffe’s little-
documented iter size parameter allowed accumulating
loss and gradients over a number of batches, which greatly
helped training consistency.

8Additionally, all code is also available to https://github.com/
larsroemheld/OSM-HOT-ConvNet.

Figure 2: Full SegNet architecture, comprised of the 13 con-
volutional layers of VGG-16 in the encoder phase, an “in-
verted” VGG-16 with 13 convolutional layers in the decoder
phase, a convolutional classification layer, and a pixel-wise
softmax loss function. Visualization from [1]
.

5. Results & Discussion
As mentioned above, Segnet-basic failed to train given

my limited computation resources and relatively small and
noisy dataset. I therefore discuss only results of the two
smaller nets, SmallNet and LargerNet.

LargerNet was trained specifically to detect buildings,
as this was a main goal set by HOT: this was achieved by
using a higher loss-weight for buildings than the relative
class frequency would have warranted. With this setting,
the best result achieved after 20 epochs of training (roughly
16 hours of computation) was a global pixel-average accu-
racy of 68.9% on the test set. Even with an emphasis on
detecting buildings, the class accuracy of building was
only 27% of predicted pixels; the prediction for nolabel
was correct for 82.7% of pixels.

For the purposes of the project, this result is slightly, but
not significantly, better than the naive baseline of “classify
all pixels as nolabel”: this naive baseline would outper-
form LargerNet on the global accuracy metric (as 79% of
pixels are in the nolabel class), but it would obviously
never find any buildings.

SmallNet was trained on neutral median-frequency loss
weights. This results in a significantly higher training accu-
racy on farmland, and lower accuracy on buildings.

The real weakness of these results is revealed in an anal-
ysis of intersection-over-union (IU), a metric that takes into
account false-negative prediction: for each class c, IU is de-
fined as

IUc =
|{(x, y)|c = ĉxy = labelxy}|

|{(x, y)|c = ĉxy} ∪ {(x, y)|c = labelxy}|

That is, IUc describes the size of areas classified as c rel-
ative to the joined area where c was the correct class and
where c was predicted. If IUc = 1, then all pixels of class
c have been recognized as belonging to c, and every pixel
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SegNet-basic SmallNet LargerNet
conv7 64 conv3 64
BN BN
ReLU ReLU
MaxPool2 MaxPool4

conv7 128 conv 3 64
BN ReLU
ReLU
MaxPool2

conv7 256 conv7 64 conv3 128
BN BN BN
ReLU ReLU ReLU
MaxPool2 MaxPool4 MaxPool2

conv7 512 conv7 128 conv3 256
BN BN ReLU
ReLU ReLU MaxPool2
MaxPool2 MaxPool4

(encoded) (encoded) (encoded)

upsample2 upsample4 upsample2
conv7 256 conv7 64 conv3 128
BN BN ReLU

upsample2 upsample4 upsample2
conv7 128 conv7 64 conv3 128
BN BN ReLU

upsample2 conv3 7 conv3 64
conv7 64 BN
BN ReLU

upsample2 upsample4
conv7 64 conv3 64
BN BN

ReLU

conv1 7 conv1 7

Table 2: Detailed architecture of the 3 main networks used
in this paper. convX Y denotes a convolutional layer with
Y filters of size X*X. MaxPoolX denotes a max-pooling
layer with stride X and size X*X. upsampleX denotes up-
sampling with size X*X as described here. ReLU denotes a
rectified linear unit, point-wise y = max(0, x). BN denotes
Batch Normalization with learnable shift and scale parame-
ters.

classified as c was really a c. For all classes except the
dominant nolabel, this metric is almost 0, indicating that
while LargerNet does have some accuracy in its prediction
of buildings, it misses many areas where it should have de-
tected buildings (on the test set, IUnolabel = 62.6% and
IUriver = 2.6% are the two highest IU values.)

Table 3 summarizes the most relevant model accuracies.
In the remainder of this section, I will provide some quali-
tative analysis of the bad model performance.

As is evident by comparing training and test accuracies,
the networks did not overfit at all. Given the very low reg-
ularization rates, this is likely due to significant noise in the
training data: the data obtained through MapGive and OSM
includes clouds, glare, and significant false-negatives in the

LargerNet SmallNet
training test training test

average 68.8% 68.9% 60.6% 61%
nolabel 83.0% 82.7% 72.2% 72.5%
building 25.2% 27.0% 11.6% 13.6%
farmland 2.5% 2.5% 23.9% 19.9%
river 24.8% 23.9% 28.5% 26.8%

Table 3: Per-pixel average and class average accuracies of
SmallNet and LargerNet. Validation accuracies have been
ommitted, as they are almost identical to training and test
accuracies.

map labels.
Given “real world data,” noise was to be expected –

more computation time (more epochs) and more training
data may have helped overcome some data problems. An-
other, more subtle, problem is that with the more shallow
nets I used (as opposed to a full 26-layer SegNet), even
LargeNet did not have a particularly expressive receptive
field, as much of it was created through big max-pooling
layers. This may help explain why LargeNet is missing
larger structures in images. Figure 3 gives a visual overview
of model performance.

6. Conclusion
The task attempted in this project was ambitious: satel-

lite data is known to be a challenging image recognition
task [4], and even more so on a segmentation problem with-
out a pre-trained model. Through the data pipeline created
for this project, a large amount of additional training data
is available – I was lacking computational power to use
significantly more data, but recent work on massive aerial
imagery datasets seems promising [7]. If successful, this
project would ultimately help HOT and may offer relief to
some of the world’s most disadvantaged people. I hope to
continue the project; maybe others will follow my data.

Until now, significant work went into establishing the
project outline and the data pipeline; unfortunately, I did not
achieve actionable results yet. Besides more in-depth class
balancing, for example through a re-sampling technique
during training, it would be interesting for future work to
see how expectation-maximization models may help model
label noise and facilitate learning. It may also be interesting
to explore feature generation through more sophisticated
image preprocessing, and to explore different ConvNet ar-
chitectures for aerial imagery in a more structured way.
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(i) Segmentation misinterprets evenly spaced
structure.
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