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Abstract 

 
Two of the most popular model as of now is the Inception 

module of GoogLeNet and MSRA’s Deep Residual 
Network. Google’s recent research on combining residual 
connection with Inception model created deep neural 
network models (Inception-Resnet-v1 and Inception-
Resnet-v2) that have slightly better accuracies than their 
state-of-the-art inception model (Inception v4) networks, 
but have a significantly faster convergence speed. In my 
research, we will try to explore the effect of residual 
connections on SqueezeNet1, which is a DNN designed that 
achieves accuracy level of AlexNet with 50x fewer 
parameters using variation of inception model. Although 
models of large neural networks like ResNet have 
remarkable performance on accuracy, their size consumes 
significant storage, memory bandwidth and computational 
resource. For use in embedded mobile application , it is 
crucial to come up with model that find a good balance 
between performance and memory / computational 
resource usage. Keeping the idea of performance and 
memory balance in mind, our goal is to increase the 
performance of the DNN without significantly increasing 
the amount of parameters. 
 

1.  Introduction 
We are taking on the Tiny ImageNet Challenge for the 

final project of CS231N (Convolutional Neural Networks 
for Visual Recognition). The Tiny ImageNet is a simplified 
version of The ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) that caters to a student’s computing 
and time resource. It has a smaller number of classes (200 
classes instead of 1000 of ImageNet challenge). It has in 
total 100,000 training images (500 training images for each 
class), 10,000 validation images (50 for each class), and 
10,000 test images (50 for each class). Each image has a 
resolution of 64 × 64 pixels. Although Tiny ImageNet has 
fewer classes and a smaller picture size, one thing worth 
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noticing is the effect of down-sampling. Since in Tiny 
ImageNet challenge, the picture is scaled down from 
224x224 to 64x64, information in a picture is lost during1 
the process. The effect of down-sampling is illustrated by 
Figure 1, which is created by last year’s student Lucas 
Hansen. 

Two kinds of Deep Convolutional Neural Network 
introduced in class are GoogLetNet (ILSVRC 2014 winner) 
and ResNet (ILSVRC 2015 winner). My plan is to combine 
the creative structural ideas behind the two and make a 
better more efficient network. In other word, we will try to 
investigate the effect residual connections have on 
inception model. SqueezeNet is a state-of-the-art inception 
model based Deep Neural Network that find a good balance 
between classification accuracy and memory usage. Taking 
our computing time and resource budget into account, 
SqueezeNet is also the most reasonable model for us to 
work on. The main goal of my research will be how to use 
residual connections on SqueezeNet to enhance its 
performance while keeping the parameter count low. 

For some background of SqueezeNet performance, it has 
a top-1 classification accuracy of 57.5% on the ImageNet 
challenge. As mentioned at the start of introduction, Tiny 
ImageNet has its pitfalls and difficulties that arise from 
down-sampling. Therefore, considering our limited access 
to GPU and the flaws of Tiny ImageNet, our goal will be to 
replicate the accuracy (57.5%) of original SqueezeNet on 
ImageNet for my accuracy on Tiny ImageNet. 

 

2.  Technical Approach 
2.1 Caffe / Data Preprocessing 
In my project, I am using the deep learning package 

Caffe. Caffe is a deep learning framework made with 
expression, speed, and modularity in mind. It is developed 
by the Berkeley Vision and Learning Center (BVLC) and 
by community contributors. We used the convert_imagest 
python routine in Caffe to convert the given jpg format into 
LMDB format. In this format, the training data size is 
1.6GB. 
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2.2 Optimization / Solver Model 
 Training is done by the forward pass that computes the 
softmax loss and the backward pass that back-propagates 
with regard to minimizing softmax loss. The update of the 
parameters is achieved through stochastic gradient descent 
(SGD) and momentum update. Stochastic gradient descent  
updates the parameters by decreasing the parameter with a 
constant factor of its gradient regarding to the final loss: W 
← W − η∇W, where η is the learning rate. Momentum 
update is used to simulate a particle rolling in a direction 
while gaining momentum. Two kinds of such optimization 
approaches (Adam and Nestrov) are tested during the 
project. Nestrov with polynomial learning rate update 
policy turns out to have the best performance across all 
models. 
 

 2.3 Network Design 
  2.3.1 Original Fire Model 
The original fire model of SqueezeNet is defined as 

follow, according to the original paper: 

 
  
  

 
Figure 2: the design of original fire model. It’s a form of inception 
model. The most important characteristic is the idea of squeezing 
of the 1x1 conv squeeze layer which significantly reduce the count 
for parameters. 
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2.3.2 New Models 
In order to explore the effect of residual connection on 
SqueezeNet, we need to change the fire model by adding 
residual connection on top of the original model. Two types 
of new model is explored, we’ll call them TypeA-Fire and 
TypeB-Fire. 

 
 
Figure 3: The schema for TypeA-Fire module of the Bypassed 
SqueezeNet. 

 
Figure 4: The schema for TypeB-Fire model of the Bypassed 
SqueezeNet. 

 
Type-A Fire adds an 1x1 convolution layer on top of the 

bypass connection. The main advantage of Type-A Fire 
comparing to TypeB-Fire is its ability to ignore the 
disagreement between input channel number and output 
channel number. 
 

2.3.3 Network structure 
 Three kind of new network structure has been explore in 
the project. They are: Partially Bypassed 8 Layer 
SqueezeNet, Fully Bypassed 8 Layer SqueezeNet, Fully 
Bypassed 12 Layer SqueezeNet. The structure of Fully 
Bypassed 8 Layer SqueezeNet is shown below. The full 
detail of this structure is shown in table 1. 
 

 
Figure 5: The structure for the Fully Bypassed 8 layer SqueezeNet. 
For the partially bypassed, every TypeA is being replaced by the 
orginal fire model, thus making all the residual connection direct 
identity mapping bypass. For the fully bypassed 12 layer, two 
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more sets of “TypeA – TypeB ” layer is added, with a maxpool 
layer before the last TypeA. 
 
Table 1: Detailed structure of Fully Bypassed 8 layer SqueezeNet . 
In column 4 and 5, s denotes squeeze conv; e denotes expand conv. 

Layer 
 

Output 
Size 

 

s e Param# Param# 
(no-

bypass) 
input 64x64x3   - - 

conv1 64x64x96   2592 2592 

maxpool 32x32x96   - - 

TypeA 32x32x128 16 64 24064 11776 

TypeB 32x32x128 16 64 12288 12288 

TypeA 32x32x256 32 128 77824 45056 

maxpool 16x16x256   - - 

TypeB 16x16x256 32 128 49152 49152 

TypeA 16x16x384 48 192 202752 104448 

TypeB 16x16x384 48 192 110592 110592 

TypeA 16x16x512 64 256 385024 188416 

maxpool 8x8x512   - - 

TypeB 8x8x512 64 256 196608 196608 

conv10 8x8x200   102400 102400 

avgpool 1x1x200   - - 

Total    1,163,296 823,328 

 
Here what we mean by 8 layer or 12 layer is not the total 

conv layer number, but rather the number of TypeA/TypeB 
model incorporated in the network. The depth of the 8 layer 
Fully Bypassed SqueezeNet is 18; the 12 layer Fully 
Bypassed SqueezeNet has depth 26. 

Another alteration to the original SqueezeNet model is 
the introduction of batch normalization layers. In my 
implementation, every convolution layer is followed by a 
batch normalization layer, and this contributes a lot to the 
final performance. 

3.  Analysis 
3.1 Memory / Parameter Count 

 As computer vision, or more specifically image 
classification and image recognition, being used more and 

more in mobile end, mobile-first companies have become 
very sensitive to the size of the binary files. Saving size on 
a feature will bring great convenience when bringing deep 
neural network to the mobile end.  
 Having this mindset, it’s important to take into account 
the memory needed and the total parameter count when 
comparing different models. 
 Table 2 is a breakdown on the memory / parameter count 
comparison between our modified version of SqueezeNet 
and the current mode with best performance in the field, 
ResNet. The size of caffemodels are all size before any 
compression. The size of ResNet’s caffemodel is the size of 
the 152 layer caffemodel provided in the github repository 
of the original ResNet paper. In the original paper about 
SqueezeNet, using deep compression can help to further 
reduce the size of the model by a factor of more than 9 
without any drop in the accuracy performance of the model. 
In this way, the memory needed for SqueezeNet will be less 
than 0.8 MB even for the deeper 12 layer Fully Bypassed 
SqueezeNet; this level of memory needed will suit the use 
in embedded system very well. 

As we can see, ResNet is not very memory friendly by 
taking up size more than 200 megabytes, but our model of 
SqueezeNet is significantly more memory friendly. It uses 
around 40 times less parameters than ResNet (1.6 * 106 vs. 
6 * 107 ). And the caffemodel size differs with a similar 
ratio, the caffemodel for ResNet takes 230.26 megabytes 
while the caffemodel for the 12 layer fully-bypassed 
SqueezeNet takes 6.4 megabyte. The difference is huge 
enough. Considering the small size Fully-Bypassed 
SqueezeNet, it’s reasonable for us to sacrifice certain 
degree of accuracy. And as the following section will show, 
the performance of Fully Bypassed SqueezeNet over Tiny 
ImageNet suggests that adding bypass layer/residual 
connection to SqueezeNet, the performance of the model is 
significantly increased. 

 

Table 2: A detailed comparison among the memory efficiency of 
Original SqueezeNet, Fully Bypassed 8 layer SqueezeNet, 
FullyBypassed 12 layer SqueezeNet, and the 152 layer Resnet. 

 CaffeModel Size 
 

Param# 

Original 
8 layer 3.2 MB 

 
0.82M 

Fully 
Bypass 
8 layer 

4.8 MB 
 

1.16 M 

Fully 
Bypass 
12 layer 

6.4 MB 
 

1.6 M 

ResNet 230.26 MB 
 

60 M 



 

  5 

3.2 Accuracy Results 
The accuracy is measured in both top1 and top5 accuracy. 

Top-k accuracy means the model produce the k most likely 
label it classifies, and if the correct label is in these k 
prediction, we say that the model correctly classifies the 
image. The state-of-the-art top1 accuracy for Deep Neural 
Network is around 77% accuracy, while the state-of-the-art 
top 5 accuracy for any Deep Neural Network is around 
94%. 

For our models, the accuracy is measured on the training 
set, the validation set and the test set on the evaluation 
server provided by the CS231N course stuff. The test set 
accuracy is the most unbiased since we don’t have access 
to the correct label for the test set, and our result can only 
be measured every 2 hour by uploading our own 
classification result to the server. 

All the training started from scratch and was run on a 
GPU instance on AWS (Amazon Web Service). Each 
model is trained for 24-36 hours on the instance due to my 
limited budget. This results in the following training epochs 
for different models: 50+ epochs for the original 
SqueezeNet, 50+ epochs for the partially bypassed 8-layer 
SqueezeNet, 35+ epochs for the fully bypassed 8-layer 
SqueezeNet, ~30 epochs for the fully bypassed 12-layer 
SqueezeNet. The difference in epoch number is due to the 
limitation of GPU which can take only a smaller batch size 
when the model complexity is increased. For the original 
SqueezeNet, the batch size can be increased up to 40, while 
the 12 layer fully bypassed SqueezeNet can only take a 
batch size of 10 for each training iteration. 

During the training phase, if the accuracy doesn’t go up 
by at least 1 percent for 2 epochs, the learning rate for the 
Nestrov solver (experimented to out perform other solver 
optimization like Adam) will be decrease by a factor of 5; 
the next drop in learning rate will be by a factor of 2; the 
next will be 5 again, and so on. 

 
Table 3: The accuracy performance of different SqueezeNet 
models. The top 5 accuracy is only measured for the validation set 
for the two best model. The test set performance is only measure 
for the two best models as well. 

The accuracy result is listed in table 3. Here are a few 
interesting findings. 

First, partially bypassing SqueezeNet doesn’t make much 
difference. As we can see, the top 1 accuracy on training set 
have less than 1% difference between original SqueezeNet 
and partially bypassed SqueezeNet. Although the validation 
set accuracy has a 3% difference, it’s mainly because of the 
small size of validation data cause a level of randomness. 
We should see the two model as having almost identical 
performance. Thus, partially bypassing SqueezeNet is not 
helpful. 

Second, fully bypassing SqueezeNet result in a much 
better performance and a faster convergence rate with 
respect to epochs. The difference is significant: in the same 
training period of time, the Fully-Bypassed 8 layer 
SqueezeNet reaches a top 1 validation accuracy of 54.3 
percent. It out performs the original 8 layer SqueezeNet by 
almost 10 percent in validation set top 1 accuracy and 8 
percent in training set top 1 accuracy. Considering the 
Fully-Bypassed SqueezeNet receive less epochs due to its 
higher complexity. It’s safe for us to say that it converges 
faster than the original with regard to epoch. The test set 
performance of the fully bypassed 8 layer is a 49.3 percent 
error rate. This (validation accuracy differs with test set 
accuracy by 3-4 percent) is an interesting phenomenon that 
is observed by other participants in the Tiny ImageNet 
challenge. The likely reasons behind this is the 
characteristics of different classes not reflected in the 200 
training images for each class, resulting in the model’s 
unfamiliarity with the test set images. 

Third, going deeper does increase the performance, but 
inevitably facing the problem of over fitting the Tiny 
ImageNet dataset. As shown in the table, the Fully 
Bypassed 12 layer SqueezeNet has the best overall 
performance by reaching validation accuracy of 58% and 
test set error rate of 45.2% (54.8% top 1 accuracy) which 
ranks us 5th place on the course leader board (1st in groups 
not using ResNet). It has a four percent increase in 
validation set top 1 accuracy and a five percent increase in 
test set top 1 accuracy than the Fuly Bypassed 8 layer 
SqueezeNet. The model does out perform, but in the 
process, it faced the problem of significant over fitting. Our 
first try of the deeper structure result in a brutal over fit, 
reaching a 97 percent accuracy on training set top 1 
accuracy (with validation accuracy of 56 percent and test 
accuracy of 51 percent). Hieu Pham, the course TA, gave 
me the idea of adding dropout layer. The retain ratio of 0.5, 
0.6 and 0.7 has been experimented, and it turns out that 0.5 
works the best. With the help of dropout layer, the problem 
of over fitting is mitigated but still present. The training set 
accuracy dropped by 7 percent to 90%, but interestingly, the 
performance of top 1 accuracy of validation set and test set 
both increased, to 58% and 54.8% respectively. 

To conclude, we do see a significant increase in model 
performance if we introduce residual connection. Our 

 
Training 

Set 
Top 1 

Validation 
Set 

Top 1 

Test 
Set 

Top 1 

 
Param# 

Original 
8 layer 0.70 0.41 - 

 
0.8 M 

Partially 
Bypass 

8 layer 
0.71 0.44 - 

 
0.8 M 

Fully 
Bypass 
8 layer 

0.79 0.54 
top 5:0.77 0.50 

 
1.1 M 

Fully 
Bypass 
12 layer 

0.90 0.58 
top 5:0.83 0.55 

 
1.6 M 
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hypothesis that residual connection will help an inception 
model like SqueezeNet is validated. 

 
3.3 Error Analysis 
Among best performance categories for our model are 

school bus, banana, orangutan, triumph arch and go-kart. 
Here, an example set of incorrect classification is presented. 
 
Figure 6: An example set of erroneously classified images. The 
first line is the correct label, the second line is the label the model 
produced. 

 
 

For the first image, it’s understandable why the model 
made the mistake, even myself can’t explicitly say the 
difference between a mountain lion and a female lion. The 
second image is shape-wise confusion: the plunger handle 
has a similar shape to a drummer holding a drumstick. The 
third image is very likely to be color confusion: the image 
is mainly green which might remind the model of 
guacamole. The fourth is taken from an interesting angle 
which made the car seems longer, which might cause the 
model to think that it’s a limo. In the fifth image, the model 
made the mistake of looking at part of the image rather than 
the whole picture, viaduct is like a sequence of triumph arch 
aligned in sequence. The last image symbolized the totally 
random and uninterpretable mistakes that model makes. 

By seeing the above example mistakes. We can see that 
the model does “understand” a lot of the image even when 
it’s making mistakes. It can sniff out features in the picture 
and make a reasonable deduction based on that.  

 

4.  Conclusion 
 First, residual connection does benefit an inception 

model like SqueezeNet. On the aspect of convergence rate, 
it agrees with the Google’s inception v4 paper that adding 
residual connection or bypass layer significantly increases 
the convergence speed of the model. Result in a shorter 

training time with regard to epochs. On the aspect of actual 
model performance, our result disagrees with Google’s 
paper. We can see an significant increase (10 percent) in 
performance when we fully bypass SqueezeNet. My 
interpretation why adding residual connection to 
SqueezeNet yields such an improvement is as follow: 
Residual connection deals with the information 
downsampling during the squeezing process. SqueezeNet 
will lose a significant amount of information during the 
squeeze convolution layer which reduce the channel 
number by around 80% (the idea to save computing 
resource will obviously take some sacrifice), the model is 
then trying to recover this loss of information by doing the 
expand operation but it’s impossible to do so since a huge 
amount of information is not recoverable. Adding residual 
connection can address this information leakage very well. 
Whether it is TypeA or TypeB module, the input 
information is either expanded with the help of 1x1 
convolution (as in TypeA) or directly preserved (as in Type 
B) to the output; therefore, the information will not be 
wasted when flowing through the neural network. 

Second, going deeper with residual connection on top of 
SqueezeNet can create a better performance but should 
proceed with caution. The extra performance is 
substantiated by the result shown in table 3. But there are 
two aspects that we should keep in mind. First, the problem 
of over fitting. Going deeper can cause the problem of 
severe over fitting, especially in the case of Tiny ImageNet, 
which has a smaller input size and class number. The 
problem might be mitigated in the case of ImageNet, but if 
we go even deeper, the problem might surface. What we 
can do to address the problem is by using dropout layer. The 
second thing worth noticing is that by going deeper, we 
quickly pack up more memory and parameter count, which 
is going backward from our goal of saving space. 

 Third, I would like to argue that the performance 
improvement is worth the memory and parameter count 
increase. As demonstrated above, changing the model to 12 
layer fully bypassed increase the model size by 33% (4.8 
mB to 6.4 mB). With the deep compression technology in 
the original SqueezeNet paper, the final compressed model 
size will be around 680 kB without losing performance 
accuracy. The size is still way below 1 mB and the extra 
170 kB is worth it when we can get an additional 10% in 
accuracy. 

 

5.   Future work 
 First, getting more computing resource. The training time 

is limited on every model, as a student, financial budget is 
a concern. With sufficient training time, I expect the 
performance of the model to go even higher. Considering 
that the typical training epoch for a deep neural network 
competing for ImageNet challenge goes more than 90 
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epochs, my guess is that if we reaches somewhere around 
90 epochs, the performance will go up by around 5 percent. 

Second, I would like to experiment my model on the 
ImageNet challenge. It would be interesting to see how the 
model performs when trying to process a much larger input 
and a larger set of categories. 

Third, the effect of dropout layer will be examined more 
thoroughly. As demonstrated above, one way to improve 
performance is by going deeper, but the effect of dropout 
layer becomes more important along the way. Where to add 
dropout layer, how to set dropout ratio will be two problems 
worth investigating. 

Fourth, the effect of squeeze ratio is worth exploring. 
Squeeze ratio is negatively correlated to the final 
performance since it’s a process of sacrificing information 
for the sake of memory efficiency. With the help of residual 
connection, a larger portion of information can flow 
through the neural network. My hypothesis is that we can 
increase the squeeze ratio and keep the original 
performance if residual connection is implemented. 

 

6.  Special Thanks 
 First, I thank Song Han for introducing me to 

SqueezeNet, and for helping me with the project along the 
way. 

Second, I thank Andreg Karpathy, Justin Johnson and 
Professor Fei Fei Li for bringing such a wonderful class and 
introducing me to the wonderland of Deep Convolution 
Neural Network. 

Third, I thank other couse TA (Namrata Anand, Hieu 
Pham, Serena Yeung) for helping me with the technicality 
like caffe, AWS etc. 

Finally, I thank Red Bull, Starbucks and tea. I would have 
fallen asleep without you guys. 

 
 

References 
[1]   Going Deeper with Convolutions, Christian Szegedy, Wei 

Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir 
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew 
Rabinovich.  arXiv:1409.4842 

[2]   Deep Residual Learning for Image Recognition,  Kaiming 
He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 
 arXiv:1512.03385 

[3]   SqueezeNet: AlexNet-level accuracy with 50x fewer 
parameters and <1MB model size, Forrest N. Iandola, 
Matthew W. Moskewicz, Khalid Ashraf, Song Han, William 
J. Dally, Kurt Keutzer.   arXiv:1602.07360 

[4]   Inception-v4, Inception-ResNet and the Impact of Residual 
Connections on Learning, Christian Szegedy, Sergey Ioffe, 
Vincent Vanhoucke  arXiv:1602.07261 

[5]   Tiny ImageNet Challenge Submission, Lucas Hansen, 
http://cs231n.stanford.edu/reports/lucash_final.pdf 


