

 1

Abstract

Two of the most popular model as of now is the Inception

module of GoogLeNet and MSRA’s Deep Residual
Network. Google’s recent research on combining residual
connection with Inception model created deep neural
network models (Inception-Resnet-v1 and Inception-
Resnet-v2) that have slightly better accuracies than their
state-of-the-art inception model (Inception v4) networks,
but have a significantly faster convergence speed. In my
research, we will try to explore the effect of residual
connections on SqueezeNet1, which is a DNN designed that
achieves accuracy level of AlexNet with 50x fewer
parameters using variation of inception model. Although
models of large neural networks like ResNet have
remarkable performance on accuracy, their size consumes
significant storage, memory bandwidth and computational
resource. For use in embedded mobile application , it is
crucial to come up with model that find a good balance
between performance and memory / computational
resource usage. Keeping the idea of performance and
memory balance in mind, our goal is to increase the
performance of the DNN without significantly increasing
the amount of parameters.

1. Introduction
We are taking on the Tiny ImageNet Challenge for the

final project of CS231N (Convolutional Neural Networks
for Visual Recognition). The Tiny ImageNet is a simplified
version of The ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) that caters to a student’s computing
and time resource. It has a smaller number of classes (200
classes instead of 1000 of ImageNet challenge). It has in
total 100,000 training images (500 training images for each
class), 10,000 validation images (50 for each class), and
10,000 test images (50 for each class). Each image has a
resolution of 64 × 64 pixels. Although Tiny ImageNet has
fewer classes and a smaller picture size, one thing worth

*Song Han helped me come up with the project idea, and offered me

help and support along the way. For that, I am deeply thankful.

noticing is the effect of down-sampling. Since in Tiny
ImageNet challenge, the picture is scaled down from
224x224 to 64x64, information in a picture is lost during1
the process. The effect of down-sampling is illustrated by
Figure 1, which is created by last year’s student Lucas
Hansen.

Two kinds of Deep Convolutional Neural Network
introduced in class are GoogLetNet (ILSVRC 2014 winner)
and ResNet (ILSVRC 2015 winner). My plan is to combine
the creative structural ideas behind the two and make a
better more efficient network. In other word, we will try to
investigate the effect residual connections have on
inception model. SqueezeNet is a state-of-the-art inception
model based Deep Neural Network that find a good balance
between classification accuracy and memory usage. Taking
our computing time and resource budget into account,
SqueezeNet is also the most reasonable model for us to
work on. The main goal of my research will be how to use
residual connections on SqueezeNet to enhance its
performance while keeping the parameter count low.

For some background of SqueezeNet performance, it has
a top-1 classification accuracy of 57.5% on the ImageNet
challenge. As mentioned at the start of introduction, Tiny
ImageNet has its pitfalls and difficulties that arise from
down-sampling. Therefore, considering our limited access
to GPU and the flaws of Tiny ImageNet, our goal will be to
replicate the accuracy (57.5%) of original SqueezeNet on
ImageNet for my accuracy on Tiny ImageNet.

2. Technical Approach
2.1 Caffe / Data Preprocessing
In my project, I am using the deep learning package

Caffe. Caffe is a deep learning framework made with
expression, speed, and modularity in mind. It is developed
by the Berkeley Vision and Learning Center (BVLC) and
by community contributors. We used the convert_imagest
python routine in Caffe to convert the given jpg format into
LMDB format. In this format, the training data size is
1.6GB.

Exploration of the Effect of Residual Connection on top of SqueezeNet

A Combination study of Inception Model and Bypass Layers

William Bokui Shen
Stanford University

bshen88@stanford.edu

Song Han*
Course TA for CS231N

Stanford University
songhan@stanford.edu

 2

2.2 Optimization / Solver Model
 Training is done by the forward pass that computes the
softmax loss and the backward pass that back-propagates
with regard to minimizing softmax loss. The update of the
parameters is achieved through stochastic gradient descent
(SGD) and momentum update. Stochastic gradient descent
updates the parameters by decreasing the parameter with a
constant factor of its gradient regarding to the final loss: W
← W − η∇W, where η is the learning rate. Momentum
update is used to simulate a particle rolling in a direction
while gaining momentum. Two kinds of such optimization
approaches (Adam and Nestrov) are tested during the
project. Nestrov with polynomial learning rate update
policy turns out to have the best performance across all
models.

 2.3 Network Design
 2.3.1 Original Fire Model
The original fire model of SqueezeNet is defined as

follow, according to the original paper:

Figure 2: the design of original fire model. It’s a form of inception
model. The most important characteristic is the idea of squeezing
of the 1x1 conv squeeze layer which significantly reduce the count
for parameters.

 3

2.3.2 New Models
In order to explore the effect of residual connection on
SqueezeNet, we need to change the fire model by adding
residual connection on top of the original model. Two types
of new model is explored, we’ll call them TypeA-Fire and
TypeB-Fire.

Figure 3: The schema for TypeA-Fire module of the Bypassed
SqueezeNet.

Figure 4: The schema for TypeB-Fire model of the Bypassed
SqueezeNet.

Type-A Fire adds an 1x1 convolution layer on top of the

bypass connection. The main advantage of Type-A Fire
comparing to TypeB-Fire is its ability to ignore the
disagreement between input channel number and output
channel number.

2.3.3 Network structure
 Three kind of new network structure has been explore in
the project. They are: Partially Bypassed 8 Layer
SqueezeNet, Fully Bypassed 8 Layer SqueezeNet, Fully
Bypassed 12 Layer SqueezeNet. The structure of Fully
Bypassed 8 Layer SqueezeNet is shown below. The full
detail of this structure is shown in table 1.

Figure 5: The structure for the Fully Bypassed 8 layer SqueezeNet.
For the partially bypassed, every TypeA is being replaced by the
orginal fire model, thus making all the residual connection direct
identity mapping bypass. For the fully bypassed 12 layer, two

 4

more sets of “TypeA – TypeB ” layer is added, with a maxpool
layer before the last TypeA.

Table 1: Detailed structure of Fully Bypassed 8 layer SqueezeNet .
In column 4 and 5, s denotes squeeze conv; e denotes expand conv.

Layer

Output
Size

s e Param# Param#
(no-

bypass)
input 64x64x3 - -

conv1 64x64x96 2592 2592

maxpool 32x32x96 - -

TypeA 32x32x128 16 64 24064 11776

TypeB 32x32x128 16 64 12288 12288

TypeA 32x32x256 32 128 77824 45056

maxpool 16x16x256 - -

TypeB 16x16x256 32 128 49152 49152

TypeA 16x16x384 48 192 202752 104448

TypeB 16x16x384 48 192 110592 110592

TypeA 16x16x512 64 256 385024 188416

maxpool 8x8x512 - -

TypeB 8x8x512 64 256 196608 196608

conv10 8x8x200 102400 102400

avgpool 1x1x200 - -

Total 1,163,296 823,328

Here what we mean by 8 layer or 12 layer is not the total

conv layer number, but rather the number of TypeA/TypeB
model incorporated in the network. The depth of the 8 layer
Fully Bypassed SqueezeNet is 18; the 12 layer Fully
Bypassed SqueezeNet has depth 26.

Another alteration to the original SqueezeNet model is
the introduction of batch normalization layers. In my
implementation, every convolution layer is followed by a
batch normalization layer, and this contributes a lot to the
final performance.

3. Analysis
3.1 Memory / Parameter Count

 As computer vision, or more specifically image
classification and image recognition, being used more and

more in mobile end, mobile-first companies have become
very sensitive to the size of the binary files. Saving size on
a feature will bring great convenience when bringing deep
neural network to the mobile end.
 Having this mindset, it’s important to take into account
the memory needed and the total parameter count when
comparing different models.
 Table 2 is a breakdown on the memory / parameter count
comparison between our modified version of SqueezeNet
and the current mode with best performance in the field,
ResNet. The size of caffemodels are all size before any
compression. The size of ResNet’s caffemodel is the size of
the 152 layer caffemodel provided in the github repository
of the original ResNet paper. In the original paper about
SqueezeNet, using deep compression can help to further
reduce the size of the model by a factor of more than 9
without any drop in the accuracy performance of the model.
In this way, the memory needed for SqueezeNet will be less
than 0.8 MB even for the deeper 12 layer Fully Bypassed
SqueezeNet; this level of memory needed will suit the use
in embedded system very well.

As we can see, ResNet is not very memory friendly by
taking up size more than 200 megabytes, but our model of
SqueezeNet is significantly more memory friendly. It uses
around 40 times less parameters than ResNet (1.6 * 106 vs.
6 * 107). And the caffemodel size differs with a similar
ratio, the caffemodel for ResNet takes 230.26 megabytes
while the caffemodel for the 12 layer fully-bypassed
SqueezeNet takes 6.4 megabyte. The difference is huge
enough. Considering the small size Fully-Bypassed
SqueezeNet, it’s reasonable for us to sacrifice certain
degree of accuracy. And as the following section will show,
the performance of Fully Bypassed SqueezeNet over Tiny
ImageNet suggests that adding bypass layer/residual
connection to SqueezeNet, the performance of the model is
significantly increased.

Table 2: A detailed comparison among the memory efficiency of
Original SqueezeNet, Fully Bypassed 8 layer SqueezeNet,
FullyBypassed 12 layer SqueezeNet, and the 152 layer Resnet.

 CaffeModel Size

Param#

Original
8 layer 3.2 MB

0.82M

Fully
Bypass
8 layer

4.8 MB

1.16 M

Fully
Bypass
12 layer

6.4 MB

1.6 M

ResNet 230.26 MB

60 M

 5

3.2 Accuracy Results
The accuracy is measured in both top1 and top5 accuracy.

Top-k accuracy means the model produce the k most likely
label it classifies, and if the correct label is in these k
prediction, we say that the model correctly classifies the
image. The state-of-the-art top1 accuracy for Deep Neural
Network is around 77% accuracy, while the state-of-the-art
top 5 accuracy for any Deep Neural Network is around
94%.

For our models, the accuracy is measured on the training
set, the validation set and the test set on the evaluation
server provided by the CS231N course stuff. The test set
accuracy is the most unbiased since we don’t have access
to the correct label for the test set, and our result can only
be measured every 2 hour by uploading our own
classification result to the server.

All the training started from scratch and was run on a
GPU instance on AWS (Amazon Web Service). Each
model is trained for 24-36 hours on the instance due to my
limited budget. This results in the following training epochs
for different models: 50+ epochs for the original
SqueezeNet, 50+ epochs for the partially bypassed 8-layer
SqueezeNet, 35+ epochs for the fully bypassed 8-layer
SqueezeNet, ~30 epochs for the fully bypassed 12-layer
SqueezeNet. The difference in epoch number is due to the
limitation of GPU which can take only a smaller batch size
when the model complexity is increased. For the original
SqueezeNet, the batch size can be increased up to 40, while
the 12 layer fully bypassed SqueezeNet can only take a
batch size of 10 for each training iteration.

During the training phase, if the accuracy doesn’t go up
by at least 1 percent for 2 epochs, the learning rate for the
Nestrov solver (experimented to out perform other solver
optimization like Adam) will be decrease by a factor of 5;
the next drop in learning rate will be by a factor of 2; the
next will be 5 again, and so on.

Table 3: The accuracy performance of different SqueezeNet
models. The top 5 accuracy is only measured for the validation set
for the two best model. The test set performance is only measure
for the two best models as well.

The accuracy result is listed in table 3. Here are a few
interesting findings.

First, partially bypassing SqueezeNet doesn’t make much
difference. As we can see, the top 1 accuracy on training set
have less than 1% difference between original SqueezeNet
and partially bypassed SqueezeNet. Although the validation
set accuracy has a 3% difference, it’s mainly because of the
small size of validation data cause a level of randomness.
We should see the two model as having almost identical
performance. Thus, partially bypassing SqueezeNet is not
helpful.

Second, fully bypassing SqueezeNet result in a much
better performance and a faster convergence rate with
respect to epochs. The difference is significant: in the same
training period of time, the Fully-Bypassed 8 layer
SqueezeNet reaches a top 1 validation accuracy of 54.3
percent. It out performs the original 8 layer SqueezeNet by
almost 10 percent in validation set top 1 accuracy and 8
percent in training set top 1 accuracy. Considering the
Fully-Bypassed SqueezeNet receive less epochs due to its
higher complexity. It’s safe for us to say that it converges
faster than the original with regard to epoch. The test set
performance of the fully bypassed 8 layer is a 49.3 percent
error rate. This (validation accuracy differs with test set
accuracy by 3-4 percent) is an interesting phenomenon that
is observed by other participants in the Tiny ImageNet
challenge. The likely reasons behind this is the
characteristics of different classes not reflected in the 200
training images for each class, resulting in the model’s
unfamiliarity with the test set images.

Third, going deeper does increase the performance, but
inevitably facing the problem of over fitting the Tiny
ImageNet dataset. As shown in the table, the Fully
Bypassed 12 layer SqueezeNet has the best overall
performance by reaching validation accuracy of 58% and
test set error rate of 45.2% (54.8% top 1 accuracy) which
ranks us 5th place on the course leader board (1st in groups
not using ResNet). It has a four percent increase in
validation set top 1 accuracy and a five percent increase in
test set top 1 accuracy than the Fuly Bypassed 8 layer
SqueezeNet. The model does out perform, but in the
process, it faced the problem of significant over fitting. Our
first try of the deeper structure result in a brutal over fit,
reaching a 97 percent accuracy on training set top 1
accuracy (with validation accuracy of 56 percent and test
accuracy of 51 percent). Hieu Pham, the course TA, gave
me the idea of adding dropout layer. The retain ratio of 0.5,
0.6 and 0.7 has been experimented, and it turns out that 0.5
works the best. With the help of dropout layer, the problem
of over fitting is mitigated but still present. The training set
accuracy dropped by 7 percent to 90%, but interestingly, the
performance of top 1 accuracy of validation set and test set
both increased, to 58% and 54.8% respectively.

To conclude, we do see a significant increase in model
performance if we introduce residual connection. Our

Training

Set
Top 1

Validation
Set

Top 1

Test
Set

Top 1

Param#

Original
8 layer 0.70 0.41 -

0.8 M

Partially
Bypass

8 layer
0.71 0.44 -

0.8 M

Fully
Bypass
8 layer

0.79 0.54
top 5:0.77 0.50

1.1 M

Fully
Bypass
12 layer

0.90 0.58
top 5:0.83 0.55

1.6 M

 6

hypothesis that residual connection will help an inception
model like SqueezeNet is validated.

3.3 Error Analysis
Among best performance categories for our model are

school bus, banana, orangutan, triumph arch and go-kart.
Here, an example set of incorrect classification is presented.

Figure 6: An example set of erroneously classified images. The
first line is the correct label, the second line is the label the model
produced.

For the first image, it’s understandable why the model
made the mistake, even myself can’t explicitly say the
difference between a mountain lion and a female lion. The
second image is shape-wise confusion: the plunger handle
has a similar shape to a drummer holding a drumstick. The
third image is very likely to be color confusion: the image
is mainly green which might remind the model of
guacamole. The fourth is taken from an interesting angle
which made the car seems longer, which might cause the
model to think that it’s a limo. In the fifth image, the model
made the mistake of looking at part of the image rather than
the whole picture, viaduct is like a sequence of triumph arch
aligned in sequence. The last image symbolized the totally
random and uninterpretable mistakes that model makes.

By seeing the above example mistakes. We can see that
the model does “understand” a lot of the image even when
it’s making mistakes. It can sniff out features in the picture
and make a reasonable deduction based on that.

4. Conclusion
 First, residual connection does benefit an inception

model like SqueezeNet. On the aspect of convergence rate,
it agrees with the Google’s inception v4 paper that adding
residual connection or bypass layer significantly increases
the convergence speed of the model. Result in a shorter

training time with regard to epochs. On the aspect of actual
model performance, our result disagrees with Google’s
paper. We can see an significant increase (10 percent) in
performance when we fully bypass SqueezeNet. My
interpretation why adding residual connection to
SqueezeNet yields such an improvement is as follow:
Residual connection deals with the information
downsampling during the squeezing process. SqueezeNet
will lose a significant amount of information during the
squeeze convolution layer which reduce the channel
number by around 80% (the idea to save computing
resource will obviously take some sacrifice), the model is
then trying to recover this loss of information by doing the
expand operation but it’s impossible to do so since a huge
amount of information is not recoverable. Adding residual
connection can address this information leakage very well.
Whether it is TypeA or TypeB module, the input
information is either expanded with the help of 1x1
convolution (as in TypeA) or directly preserved (as in Type
B) to the output; therefore, the information will not be
wasted when flowing through the neural network.

Second, going deeper with residual connection on top of
SqueezeNet can create a better performance but should
proceed with caution. The extra performance is
substantiated by the result shown in table 3. But there are
two aspects that we should keep in mind. First, the problem
of over fitting. Going deeper can cause the problem of
severe over fitting, especially in the case of Tiny ImageNet,
which has a smaller input size and class number. The
problem might be mitigated in the case of ImageNet, but if
we go even deeper, the problem might surface. What we
can do to address the problem is by using dropout layer. The
second thing worth noticing is that by going deeper, we
quickly pack up more memory and parameter count, which
is going backward from our goal of saving space.

 Third, I would like to argue that the performance
improvement is worth the memory and parameter count
increase. As demonstrated above, changing the model to 12
layer fully bypassed increase the model size by 33% (4.8
mB to 6.4 mB). With the deep compression technology in
the original SqueezeNet paper, the final compressed model
size will be around 680 kB without losing performance
accuracy. The size is still way below 1 mB and the extra
170 kB is worth it when we can get an additional 10% in
accuracy.

5. Future work
 First, getting more computing resource. The training time

is limited on every model, as a student, financial budget is
a concern. With sufficient training time, I expect the
performance of the model to go even higher. Considering
that the typical training epoch for a deep neural network
competing for ImageNet challenge goes more than 90

 7

epochs, my guess is that if we reaches somewhere around
90 epochs, the performance will go up by around 5 percent.

Second, I would like to experiment my model on the
ImageNet challenge. It would be interesting to see how the
model performs when trying to process a much larger input
and a larger set of categories.

Third, the effect of dropout layer will be examined more
thoroughly. As demonstrated above, one way to improve
performance is by going deeper, but the effect of dropout
layer becomes more important along the way. Where to add
dropout layer, how to set dropout ratio will be two problems
worth investigating.

Fourth, the effect of squeeze ratio is worth exploring.
Squeeze ratio is negatively correlated to the final
performance since it’s a process of sacrificing information
for the sake of memory efficiency. With the help of residual
connection, a larger portion of information can flow
through the neural network. My hypothesis is that we can
increase the squeeze ratio and keep the original
performance if residual connection is implemented.

6. Special Thanks
 First, I thank Song Han for introducing me to

SqueezeNet, and for helping me with the project along the
way.

Second, I thank Andreg Karpathy, Justin Johnson and
Professor Fei Fei Li for bringing such a wonderful class and
introducing me to the wonderland of Deep Convolution
Neural Network.

Third, I thank other couse TA (Namrata Anand, Hieu
Pham, Serena Yeung) for helping me with the technicality
like caffe, AWS etc.

Finally, I thank Red Bull, Starbucks and tea. I would have
fallen asleep without you guys.

References
[1] Going Deeper with Convolutions, Christian Szegedy, Wei

Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich. arXiv:1409.4842

[2] Deep Residual Learning for Image Recognition, Kaiming
He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
 arXiv:1512.03385

[3] SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1MB model size, Forrest N. Iandola,
Matthew W. Moskewicz, Khalid Ashraf, Song Han, William
J. Dally, Kurt Keutzer. arXiv:1602.07360

[4] Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning, Christian Szegedy, Sergey Ioffe,
Vincent Vanhoucke arXiv:1602.07261

[5] Tiny ImageNet Challenge Submission, Lucas Hansen,
http://cs231n.stanford.edu/reports/lucash_final.pdf

