
Residual Networks for Tiny ImageNet

Hansohl Kim
Stanford University

hansohl@stanford.edu

Abstract

Residual networks are powerful tools for image classifi-
cation, as demonstrated in ILSVRC 2015 [5]. We explore
the application of pretrained residual networks to the Tiny
ImageNet Challenge, with the goal of both accuracy and
minimal retraining time. We achieve high performance with
relatively little finetuning on an 18-layer Facebook resid-
ual network in Torch [3] through single-layer training and
rescaling of filter weights to obtain well-initialized param-
eters for layers that must be adapted or replaced.

We achieve 31.1% test error, 24.99% validation error,
and 8.14% top-5 validation error, matching the accuracy of
the pretrained network on its original task (full ImageNet).
These results were obtained with a model that underwent
only 32 epochs of retraining, demonstrating high perfor-
mance with little computation. The pretrained residual net-
work was highly flexible and adapted quickly to the required
changes for Tiny ImageNet, but it was also highly vulnera-
ble to poorly-initialized finetuning. Residual connections
may amplify these strengths and weaknesses, which may be
of interest in future efforts to adapt pretrained residual net-
works to new tasks.

1. Introduction
Convolutional Neural Networks have demonstrated re-

markable successes in the field of computer vision, ap-
proaching and surpassing human-level accuracy in image
classification tasks such as the ImageNet Challenge [5, 6].
Much of this progress is built not only on the increasing
complexity and capacity of networks, but also on the devel-
opment and use of new techniques that allow for effective
training of larger and deeper networks [3, 5, 6, 7, 8]. As
such, classification challenges such as ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) have served as
testing grounds and driving forces for the development of
efficient and effective networks for computer vision.

We address the Tiny ImageNet 200 Challenge, an im-
age classification dataset sampled from the larger ImageNet
data. As in full ImageNet classification, the objective is

to attain maximum classification accuracy over a diverse
range of image inputs. Although image classification is a
well-studied field relative to components of ILSVRC such
as localization and detection, the Tiny ImageNet dataset
provides an environment compact enough to facilitate ex-
perimentation with limited resources, while still providing
depth as a significant challenge.

While (as discussed later) the downsampling of images
and classes in Tiny ImageNet presents problems that differ-
entiate it from the original ILSVRC classification challenge,
the general techniques and methods developed for convolu-
tional networks in ILSVRC should still largely apply. With
limited time and computational resources, we were moti-
vated to explore the adaptation of networks pretrained on
ImageNet to the Tiny ImageNet Challenge as an experi-
ment in the efficacy of transfer learning from state-of-the-art
models to achieve high performance with limited resources.

In particular, we leverage pretrained residual networks,
which held the ImageNet classification accuracy record un-
til February 2016 [5] and incorporated several recent devel-
opments in convolutional neural networks in a unified ar-
chitecture. The techniques used in these residual networks
represent significant advancements since the previous Tiny
ImageNet Challenge, and are results of the progress made
in the full ILSVRC that we now apply to Tiny ImageNet.
These pretrained models adapt well to Tiny ImageNet and
exhibit very high performance on the classification chal-
lenge when carefully finetuned in stages. The strong re-
sults obtained with only 10-15 hours of retraining on pre-
trained models indicate high capability in this case for fine-
tuning existing residual networks, and suggest properties of
retraining residual networks that may generalize.

2. Related Work

2.1. Tiny ImageNet

The Tiny ImageNet Challenge has occured previously,
in 2015. As such, the previous year’s submissions offer
significant insight into the challenge. We first consider
the results obtained as a benchmark for our own perfor-
mance. The optimal publicized approaches in Tiny Ima-

1



geNet 2015 achieved reported test error rates between 45
to 60% [2, 4, 10, 14], with only one achieving below 50%
[10].

These approaches were non-residual convolutional net-
works, largely based on linear AlexNet or VGG-like mod-
els, as residual networks did not exist. Approaches var-
ied from experimenting with activation types [4, 10] to
the effects of progressively deeper networks and ensem-
bles [10, 14]. All included analysis of the Tiny ImageNet
dataset itself and concluded that data augmentation tech-
niques, such as random cropping, were vital to the chal-
lenge, as well as dropout to reduce overfitting [2, 4, 10, 14].
We note that in the most successful approach, the primary
factor in reducing error rate was the use of deeper net-
works with longer training [10]. Furthermore, we note that
these networks were limited to at most 16 layers (and often
fewer), and that insufficient training time and computational
resources were common considerations.

In considering our approach, we took into account the
role of network depth in these previous submissions, as well
as the commonly raised issue of data augmentation for Tiny
ImageNet. In keeping with [3] and [9], we employ the stan-
dard random crop and flip procedure used to train residual
networks, as well as color and lighting variation. We pur-
sued pretrained networks as a method to obtain depth while
allowing time for experimentation and training to conver-
gence. We also noted the unimpressive performance of
PReLU units reported by [10] and retained ReLU.

2.2. Residual Networks

Among pretrained networks we focus on residual net-
works. This model was introduced by [5] in 2015 for the
ImageNet Challenge, and it incorporates several recently
developed techniques. As a result, the residual network we
employ here for Tiny ImageNet and our usage of it draw
upon significant related literature.

The primary addition introduced by [5] is the resid-
ual connection. While many earlier convolutional net-
works used a simple linear structure of layers, recent re-
search has experimented with branching and merging lay-
ers [5, 12, 13]. Residual networks use shortcut connections
between blocks in the sequential layers to skip through the
network. These shortcut connections allow largely unim-
peded backpropagation of the loss gradient through deep
networks, improving the viability of very deep networks [5].

Residual networks also make liberal use of (spatial)
batch normalization layers [8], which accelerate training by
addressing shifting input distributions to layers during the
training process. These layers force inputs corresponding
to each feature to conform to a unit Gaussian distribution.
Means and variances are calculated across batches, and a
running average is kept for use during testing. [8] claims
this significantly speeds training when applied prior to acti-

vations by reducing sensitivity to initialization and allowing
for increased learning rates. [5] eschews dropout following
the advice of [8], which claims dropout is largely redundant
with batch normalization. We therefore do the same.

Finally, [5] largely implements the suggestions of [11]
to rely almost exclusively on convolutional layers. The
residual network architecture includes a single max-pool,
average-pool, and fully connected layer each. Spatial
downsampling is handled primarily by strided convolutions,
while removing the Fully Connected ReLU layers found at
the end of both AlexNet and VGG-net removes a large por-
tion of the parameters and greatly reduces complexity.

The initial residual networks in [5] won ILSVRC 2015
and attracted significant attention. The architecture was
later implemented by Facebook [3] for further exploration,
allowing public access to pretrained 18, 34, 59, and 101-
layer residual networks. [3] experiments with the placement
of the residual connections, the depth of the networks, and
the training algorithms used. We refer to [3] and opt to use
simple SGD with Nesterov Momentum, while noting that
the differences in performance from the various depth net-
works are relatively small compared to the additional effort
required to train deeper models.

3. Methods

3.1. Model Architecture

(a) Architecture (edited from [5]) (b) Residual Block [3]

Figure 1: 18-Layer Residual Network

Our pretrained models are obtained from [3] and are
based on the Residual Networks of [5]. A residual block
is depicted in figure 1b, where the shortcut residual con-
nection from the input is added prior to the final ReLU
layer. Our primary model is the minimal 18-layer pretrained

2



model, which is depicted in figure 1a. We note that spa-
tial downsampling is achieved by a stride of 2 in the first
conv layer of a block, and that shortcut connections also
use strided convolutions as in [5].

While our pretrained model is defined by [3], we make
certain adjustments to the structure to adapt it to Tiny Im-
ageNet. The primary adjustment is the replacement of the
final 256 to 1000 fully connected classification layer with a
256 to 200 fully connected layer. This is required for our
smaller number of classes. We also later consider replacing
the initial 7x7 stride 2 convolution and 2x2 max-pool with
a single 3x3 stride 1 convolution.

3.2. Implementation Framework and Computation

We implement our experiments in the Torch framework
[1]. Torch is based on the Lua scripting language and is
highly modular, allowing for simple modification of mod-
els for experimentation. Torch also has good access to re-
cently developed models and techniques, and the publicly
released pretrained Facebook residual networks are also im-
plemented in Torch.

Retraining was done with an AWS G2.2xlarge instance,
which provided access to an NVIDIA GRID K520 GPU.

3.3. FC Layer Retraining

Adapting the pretrained residual networks required re-
placing the final fully connected (fc) layer to match the
reduced number of classes (200 rather than 1000). The
adapted model was then trained using the same techniques
employed by [5] and [3], with stochastic gradient descent
operating through standard backpropagation. The class
scores calculated by the final layer were input into a soft-
max function for a cross-entropy loss. The softmax function
normalizes scores across all classes to sum to 1.

Softmax(zj) =
ezj∑
k e

zk
(1)

This allows interpretation of each class score as the (un-
normalized) log probability of a class given the input im-
age. Then the we consider the probability that the class y is
j based on incoming features x and weights w in the fully
connected (final) layer to be:

P (y = j|x;w) =
ex

Twj∑
k e

ex
T wk

(2)

Which allows prediction of class based on the highest
probability, as well as the definition of the loss as:

Lossj = − log(Softmax(xTwj)) (3)

Allowing us to backpropagate the loss (depending on the
target) through the network. As in [3], we use Nesterov
momentum with stochastic gradient descent.

We note, however, that important nuances arise in the
manner of retraining. We first considered the straightfor-
ward “naive” method of adapting the pretrained network to
Tiny ImageNet, where we simply reset the final layer and
retrain the entire network on the Tiny ImageNet data. Here
we allowed backpropagation through the entire network.

We then considered the case of fixing the first 17 layers
at their pretrained values and only retraining the reset final
layer. Then we only allow backpropagation through the fi-
nal layer, and this is equivalent to viewing the first 17 layers
as a fixed pretrained feature extractor feeding a linear soft-
max classifier.

Finally, we considered merging the two methods in a
staged pattern. We first fix the first 17 layers and train the
reset final layer to convergence. We then release the first
17 layers for finetuning once the final layer has been well
initialized.

3.4. Image Size Adaptation

In addition to the reduced number of classes, another ma-
jor adaptation required for Tiny ImageNet is the reduced
image size and corresponding resolution. ImageNet data
consists of 256x256 pixels, while our pretrained networks
accept 224x224 pixel crops. Tiny ImageNet data, however,
consists of 64x64 pixel images.

We initially bypassed this issue by scaling the input im-
ages to 256x256 with bicubic interpolation. This allows for
224x224 crops for the network. However, this introduces
significant potential for error and scaling artifacts, as well
as harmful noise and non-existent texture.

(a) Original 7x7 (b) Scaled to 3x3

Figure 2: Sample of Initial Convolution Filter Weights

We therefore attempted to address this scale-by-4 issue
by replacing the initial 7x7 stride 2 convolutional and 2x2
max-pool layers with a single 3x3 stride 1 convolutional
layer. This allows for 56x56 crop input while maintaining
the spatial size for each interior layer, so the final convo-
lution still produces a 7x7 spatial output and each layer is
observing features at the expected scale.

Again, we attempted a blank initialization of this first
layer as well as a meaningful initialization. For the initial-
ization we scaled the 7x7 filter weights themselves using
bicubic interpolation, as the initial convolution filters con-
sist of basic Gabor-patterns (figure 2).

3



4. Dataset
4.1. Tiny ImageNet 200

The Tiny ImageNet Challenge is essentially a downsam-
pled version of the ImageNet Challenge for classification.
The 2012 ImageNet Classification Dataset consists of over
1.2 million labeled training examples with 1000 classes
[5]. The state-of-the-art (December 2015) top-5 test error
is 3.57%, while the top-1 validation error is 19.38% [5].

In contrast, Tiny ImageNet consists of 200 classes, each
with 500 training examples, as well as 10000 images in each
of the validation and testing sets. The images are also down-
sampled from 256x256 pixels to only 64x64 pixels. As
noted by [2] and [4], this sampling can actually pose signif-
icant problems, as it is possible for the reduction process to
distort relevant information or even crop it out completely.
Furthermore, 500 training examples per class is far fewer
than in CIFAR 10 (5000) or ImageNet (1000). It is there-
fore difficult to assert that the smaller size of Tiny ImageNet
should easily allow accuracy rates exceeding those achieved
on ImageNet, since the downsampling may introduce new
difficulties as well. We may, however, expect somewhat
similar accuracy rates, as the two challenges do share many
common aspects.

Figure 3: From [4]: “Note the scaling artifacts prominent
in (a) and (d), the loss of texture in (c) and (g), the loss of
crucial information due to cropping in (b), (f), and (h), and
the difficulty of locating small objects in (c)”

4.2. Data Augmentation

With relatively few training images per class, we rely
heavily on data augmentation to counter overfitting and al-
low for a generalizable model. We train our networks with
randomized 224x224 crops of input images (56x56 for our
later models with size adaptation) that are also randomly
flipped (horizontal reflection). Additional augmentation is
provided by [3], following the example of [5] (first de-
scribed in [9]) in the form of color and lighting jitter, intro-
ducing another form of regularization. This jitter averages
to 0, allowing us to run testing unaffected.

(a) Single Center Crop (b) Part of a 10-Crop

Figure 4: Test Image Crop Methods

The randomized crops, however, must be addressed dur-
ing testing, and the method used can affect the performance
of a model. We considered several different schemes to ac-
count for random crop training at test time.

The default test method from [3] is a single, centered
crop of the test image. This requires only a single pass
through the network, but also discards potentially signifi-
cant information around the edges. Resizing the full im-
age to the crop size allows for a similar effect, but without
removing the edge information. Resizing, however, poses
potential problems in warping the information.

In addition, we employ a 10-Crop method, a standard
procedure that takes four crops from each corner, as well as
one from the center, and then performs a horizontal flip on
each to pass 10 crops from a single test image through the
network. The classification scores are then combined to de-
termine the most likely class. In keeping with the interpre-
tation of score as log probability, we sum the exponentials
of the scores from each crop.

We also introduce a 12-Crop, where we rescale the full
image to crop size and include the scaled full image and its
horizontal reflection in the 10-Crop scheme. This has po-
tential usefulness in Tiny ImageNet, where the extremely
small image sizes often result in significant loss of informa-
tion from further cropping. The additions to the 12-Crop
allow the network an opportunity to view the whole image.

5. Experiments and Results
5.1. FC Layer Retraining

The first change to the pretrained network was the re-
placement of the final, fully connected layer. The new fully
connected layer was not initialized beyond the default Torch
behavior. Naive finetuning, where we subsequently allowed
the entire network to retrain on the Tiny ImageNet data,
converged to 48% validation error within 9 epochs. On the
GRID K520 GPU, this corresponded to only 4 hours.

Recalling the previous submission benchmarks of 60-
45% validation error, we observe that even a straightforward
approach to applying pretrained residual networks achieves
good results with minimal computation.

4



45

50

55

60

65

70

75

80

85

90

95

1 2 3 4 5 6 7 8 9

V
al

id
at

io
n

 E
rr

o
r 

(%
)

Epochs Trained

Validation Error over Training Epochs

Naïve Retraining

Feature Extractor + FC

Feature Extractor (50 layer) + FC

Figure 5: FC Layer Retraining Methods

We note, however, that fixing the first 17 layers as a fea-
ture extractor and training only the fc layer achieved equally
competitive results and converged more quickly (figure 5).
The 50-layer pretrained fixed feature extractor also con-
verged more quickly than the 18-layer naive finetuning.
There was, however, no notable difference in accuracy ob-
served between the feature extractors, so the 18-layer model
was selected for all further developments, as the 50-layer
network was significantly slower to train and was greatly
limited in batch size by the memory requirements of the pa-
rameters. The 18-layer feature extractor achieved 50% val-
idation error in only 54 minutes on the GRID K520 GPU.

We would expect an optimization over a single layer to
perform poorly compared to an optimization over all lay-
ers, unless the remaining 17 layers were already completely
optimal for Tiny ImageNet. We therefore view the equal
performance obtained by the naive finetuning and the fixed
feature extractor as evidence that the naive approach inter-
feres significantly with the finetuning process, as expected.
Large loss gradients backpropagating from the complete re-
training of the fc layer are potentially out of scale relative
to the finely pretrained parameters in the preceding 17 lay-
ers. Such wild gradients may greatly perturb these highly
trained parameters from their optimal values, ruining some
of the benefit of using pretrained networks.

We therefore expected the staged approach, where we
initially fixed 17 layers and retrained prior to full network
finetuning, to achieve lower error than the previous ap-
proaches. This staged, well-initialized finetuning broke the
45% validation error barrier and dropped to below 30% in 5
epochs (figure 6 - blue). The improvement in accuracy was
expected, but the magnitude of the improvement was not.
This discrepancy suggests that these pretrained residual net-
works are highly susceptible to the negative effects of poor
(or arbitrary) initialization in altered layers. We also note,
however, that the residual networks readjust and (approxi-
mately) converge quickly in all cases, potentially aided by
the residual connections introduced to provide efficient and
coherent training across layers.

26

28

30

32

34

36

38

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V
al

id
at

io
n

 E
rr

o
r 

(%
)

Epochs Trained

Validation Error over Training Epochs

Initialized Finetune

Naïve Natural Size

Initialized Natural Size

Figure 6: Initial Convolution Retraining Methods

5.2. Image Size Adaptation

The significant effects of initialization were also ob-
served in the first layer. To allow the pretrained network
- trained on 224x224 pixel crops - to train on the natural
56x56 pixel crop size of Tiny ImageNet, we replaced the
initial 7x7 stride 2 layer with a 3x3 stride 1 layer and re-
moved a max-pool. This was an experiment on the adapt-
ability of the pretrained residual network, and we had no
prior reason to expect improvement from these changes.

Figure 6 depicts the retraining of the replaced convolu-
tional layer compared against the well-initialized finetune
model achieved at the end of Section 5.1 (blue). In the
“naive” approach, we apply the scaling of the 7x7 filter
weights to 3x3 filter weights discussed in Section 3.4 but
proceed to retrain the entire network at once. The validation
error increases, but is at only 38% after a single epoch. The
network is able to largely recover from the alteration and
achieve similar accuracy on the natural 56x56 crops rather
than crops scaled to 224x224. The scaling of Gabor filters
in section 3.4 therefore seems to be an effective tool in this
situation. However, this method does not manage to com-
pletely regain its prior accuracy.

The “well-initialized” approach is largely identical to
section 5.1. By fixing all other layers and only training the
initial convolutional layer, we provide an improved initial-
ization for full network finetuning. The model trained with
this method not only regains its prior accuracy, but actually
exceeds it, reducing validation error by almost 2%.

Not depicted in figure 6 is the true naive approach, with
no initialization of the new convolutional layer at all. This
method immediately diverged above 50%, and we note that
significant error in the first layer can cascade and be ampli-
fied through the remaining layers, perturbing pretrained pa-
rameters. The validation error did not return to below 50%
within the allotted 15 epochs. These results suggest that the
scaled initialization from Section 3.4 is significantly better
than blank re-initialization, and enforce our understanding
of the vulnerabilities of our pretrained residual network.

5



(a) (b) (c) (d)

Figure 7: Images Vulnerable to Crop Type

5.3. Test-Time Cropping

The various test-time cropping methods discussed in
Section 4.2 offered a final source of improvement for both
validation and test performance. We previously noted that
data augmentation was particularly important with only 500
images per class. However, simple changes in test-time be-
havior to account for our data augmentation crops changed
validation performance by 2 to 3% (Table 1).

We note that the default center crop method we had be
using performs poorly in both validation and testing. Figure
7 contains example images that were particularly suscepti-
ble to reclassification as the crop methods were changed.
Both full and center crop methods classified (a) as a spider
and (b) as volleyball. Both center crop and 10-Crop classi-
fied (c) as an apron and (d) as a lake (note the presence of a
lighthouse in the far left).

While these mistakes qualitatively make some sense,
these images appear to represent a problematic balance be-
tween attention to global and local detail. The full and cen-
ter crop methods are more attuned to global details, cap-
turing the large features such as the shape of the Christ-
mas stockings where crop methods fail. As a consequence
though, these methods are less capable of detecting impor-
tant local clues. 10-Crop can easily distinguish the deer in
(a) and the lamp in (b), and the crops focused on those ob-
jects contribute a strong signal to the overall decision. We
note, however, that both (c) and (d) represent shortcomings
of 10-Crop (as well as the center crop), as the inability to
capture the entire image risks ignoring or missing impor-
tant details. Any of the 10 crops of (c) lose a significant
portion of the stocking shape, while fewer than half of the
10 crops of (d) contain any trace of the lighthouse.

The 12-Crop method was an attempt to address these

Table 1: Test-Time Crop Methods. Results from model with
FC initialized finetuning but no size adaptation (224x224)

Error Rate (%) Val Top-5 Val Top-1 Test Top-1
Full (Resize) 8.97 28.8 34.4
Center Crop 9.94 28.9 34.2

10-Crop 9.10 27.1 32.2
12-Crop 8.48 26.8 32.0

problems. The 10 original crops allow for attention to local
detail, while the additional scaled full images allow the abil-
ity to avoid cropping any useful information. While this ap-
proach still fails in several extreme cases (such as (d), which
is an unfortunate combination of a very localized detail that
is not particularly strong in any crop), it provides consistent
improvement to both validation and test accuracy. We there-
fore choose the 12-Crop method over the other systems. We
note that this optimality may be unique to the smaller Tiny
ImageNet data, where the low resolution and small picture
size increase the possibility of several local objects blend-
ing together or crops discarding vital details, necessitating
the full image.

As an additional note, we experimented with different
methods of combining the crop predictions in 10-Crop and
12-Crop, but found that the sum of escore remained opti-
mal for our network and test data (albeit by less than 1%),
possibly reinforcing our view of the trained class score pre-
dictions as unnormalized log probabilities of classes. We
therefore continue using the exponential sum to average the
contributions.

5.4. Final Model

Table 2: Test-Time Crop Methods. Results from model with
FC initialized finetuning but no size adaptation (224x224)

Error Rate (%) Val Top-5 Val Top-1 Test Top-1
Naive FC 23.65 48.69 N/A

Feat. Extr. FC 24.31 48.93 N/A
Feat. Extr. FC (50) 24.14 48.56 N/A

Initialized FC 8.48 26.83 32.1
Final Model 8.14 24.99 31.1

The final model for our Tiny ImageNet Challenge sub-
mission was an “initialized finetuning” model for both the
final fc layer and the initial convolutional layer. It used 12-
Crop testing and exponential summing of crop scores. The
model achieved 31.1% test error, 24.99% validation error,
and 8.14% top-5 validation error. The fc layer initialization
was 5 epochs, the fc layer finetuning was 10 epochs, the
convolutional layer initialization was 4 epochs, and the fi-
nal finetuning was 13 epochs. 32 epochs of training were
therefore required for this model, 9 of which were signif-
icantly faster single-layer training epochs. On the GRID
K520 GPU this slightly under 13 hours.

Training hyperparameters were initially set by random-
ized search, validating over three epochs of training. Learn-
ing rate began at 0.01 and was reduced when the running
average of validation error over epochs did not improve no-
tably over three epochs. We note, however, that the hyper-
parameters from [3] and [5] were near optimal to achieve
our results.

6



6. Conclusions and Future Work
By achieving 31.1% test error with only 32 epochs of re-

training, we have demonstrated that pretrained residual net-
works for ImageNet can be efficiently adapted to the Tiny
ImageNet Challenge with relatively little retraining while
achieving very high accuracy. We note that the original vali-
dation error rate for the 18-layer Facebook residual network
on ImageNet was 30.6% using single crop testing. Our fi-
nal model achieved 27.1% validation error and 32.0% test
error when restricted to center crop testing. We are there-
fore approaching equality between the accuracy rate on the
original task and the adapted task.

Perhaps most noteworthy is the short retraining time re-
quired. Careful and staged initialization and retraining of
the replaced layers prior to full model finetuning allowed
us to train our final model in fewer than 13 hours on a
publicly available (priced) Amazon GRID K520 GPU. The
speed of readjustment from major layer changes was per-
haps the most surprising aspect of finetuning these resid-
ual networks, particularly after noting that even the minia-
turized 18-layer network is deeper than previous Tiny Ima-
geNet architectures based on AlexNet or VGG-net. If this
speed and ability to adapt generalize to other residual net-
works and tasks, finetuning of pretrained residual networks
could represent an efficient and powerful tool for fast pro-
totyping and experimentation.

Future work could therefore be focused on exploring
whether the flexibility of residual networks observed here is
applicable in other similar situations. Determining whether
the residual connections themselves significantly improve
retraining and finetuning efficiency, in addition to their
demonstrated ability to improve initial training efficiency,
may be of particular interest.

An equally important question may be whether the same
residual connections amplify the negative effects of poor
initialization in naive retraining. Poor initialization was ob-
served to significantly impair our networks’ performance,
and we were forced to address this with initialization tech-
niques. If the residual connections serve to facilitate the dis-
turbance of pretrained parameters from their optimal ranges
in early retraining, residual networks may merit more care
than usual in finetuning. In this case, experiments with a
strongly varying set of individual learning rates for each
layer or staged freezing of layers while finetuning may yield
useful results.

References
[1] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7:

A matlab-like environment for machine learning, 2011. In
Biglearn, NIPS Workshop, number EPFL-CONF-192376.

[2] S. Feng and L. Shi. Kaminet - a convolutional neural network
for tiny imagenet challenge. CS 231N, 2015.

[3] S. Gross and M. Wilber. Training and investigating residual
nets. http://torch.ch/blog/2016/02/04/resnets.html, 2016.

[4] L. Hansen. Tiny imagenet challenge submission. CS 231N,
2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv:1512.03385, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. arXiv:1502.01852, 2015.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv:1207.0580,
2012.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167, 2015.

[9] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012.

[10] Y. Le and X. Yang. Tiny imagenet visual recognition chal-
lenge. CS 231N, 2015.

[11] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for simplicity: The all convolutional net.
arXiv:1412.6806, 2015.

[12] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. arXiv:1505.00387, 2015.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. arXiv:1409.4842, 2014.

[14] L. Yao and J. Miller. Tiny imagenet classification with con-
volutional neural networks. CS 231N, 2015.

7


