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Abstract

In this paper, we investigate the problem of multi-view
3D human pose estimation from depth images using deep
learning methods. We utilize an iterative approach that pro-
gressively makes changes to an initial mean pose by feeding
back error predictions. Our model is evaluated on a newly
collected dataset (ITOP) that contains 30K annotated depth
images from top-down and frontal views. Experiments show
that our model achieves competitive results compared with
current state-of-the-art models that use non-deep learning
methods.

1. Introduction
Human pose estimation involves the identification of the

keypoint locations of the body, which includes major body
parts and joints. It has various applications including action
classification and body movement prediction. It is also one
of the basic building blocks for marker-less motion capture
(MoCap) technology. With depth sensors becoming ubiq-
uitous in applications ranging from gaming to security and
smart spaces, accurately estimating human pose from these
depth signals is a key component to leveraging the potential
of these sensors.

Given an input depth image of a human, we aim to out-
put a set of 3D coordinates corresponding to real world joint
locations of the person’s body. Current state-of-the-art re-
sults for 3D human pose estimation from depth images are
given by traditional discriminative models. Shotton et al.
[21] trained a random forest classifier for body part seg-
mentation from a single depth image and used mean shift to
estimate joint locations. Jung et al. [29] trained a regression
tree to estimate the probability distribution to the direction
toward the particular joint, relative to the current position.

Despite the success of deep learning in the RGB
space [2, 25], for human pose estimation, its use has largely
remained unsolved in the 3D depth-space. In addition, mod-
ern 3D solutions often constrain the problem to full-body
frontal views, making it infeasible for real-world applica-

tions where a clean frontal view is not available. Another
challenge is that existing depth datasets are often small in
size, both in terms of number of frames and number of
classes, which limits the use of deep learning methods. To
address these challenges, our contributions are as follows:

1. We propose a model with iterative error feedback to
predict 3D human joint positions from single depth im-
ages from multiple viewpoints.

2. To evaluate our model from challenging viewpoints,
we introduce a new dataset of 30K depth images with
annotated body part labels and 3D human joint lo-
cations. The dataset consists of front, top, and side
views of people performing actions with occluded
body parts.

2. Related Work

Our work draws on recent human pose research in gener-
ative models, discriminative part-based methods, and deep
representation learning that embeds both local and global
features in a shared embedding.

Generative Models. The human skeleton is a strong
prior that can be leveraged for pose estimation. Genera-
tive models fit a human body template, either parametric or
non-parametric, to the input data. These include variants
of iterative closest point [9, 11, 12, 17], graphical models
[13, 8], and pictoral structures [7, 3, 5, 20]. Other methods
have attempted to use point clouds with database lookups
[27], template fitting with Gaussian mixture models [28],
and kernel methods with kinematical chain structures [4].

Discriminative Models. Instead of fitting a skeleton,
discriminative models attempt to detect instances of body
parts. In [21], Shotton et al. trained a random forest clas-
sifier for body part segmentation from a single depth image
and used mean shift to estimate joint locations. This work
inspired an entire line of pose estimation research investi-
gating the use of regression tree methods: Hough forests
[10], random ferns [14], and random tree walks [29].
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Figure 1: An implementation of the Iterative Error Feedback (IEF) model[2].

Representation Learning. Convolutional networks
have seen widespread use as discriminative methods for
solving the human pose estimation task. Since valid poses
represent a much lower-dimensional manifold in the high-
dimensional input space, it is difficult to directly regress
from input image to output poses with a classical convo-
lutional network. As a solution to this, researchers framed
the problem as a multi-task learning problem where human
joints must be first detected then precisely localized[18, 6,
19]. To further constrain the space of valid poses, Jain et al.
[15] enforce global pose consistency with a Markov random
field representing human anatomical constraints. Follow up
work by Tompson et al.[24] improve the model and learning
procedure.

Because human pose estimation is ultimately a struc-
tured prediction task, it is difficult for convolutional net-
works to correctly regress the full pose in a single pass. This
problem was addressed through the use of iterative refine-
ment techniques. In [23], Sun et al. proposed a multi-stage
system of convolutional networks for predicting facial point
locations. Each stage refines the output from the previous
stage given a local region of the input. Building on this
work, Toshev et al. [26] adapted this approach for full hu-
man pose estimation. Instead of predicting absolute human
joint locations, Carreira et al. [2] refine the pose estimate by
predicting pose offsets at each iteration. However, these it-
erative deep learning methods have only been used in RGB
space. Building on this, we design a model that predicts 3D
pose offsets on depth images from multiple viewpoints.

3. Approach
3.1. Overview

We formulate the human pose estimation problem as a
regression problem. Inspired by DeepPose [26] and Iter-
ative Error Feedback (IEF) [2], we adopt an iterative ap-
proach to learn pose correction offsets for each step of the
error correction process. Instead of directly predicting joint
locations, our model progressively make changes to an ini-

tial mean pose by feeding back error predictions. Unlike
IEF, our model takes a depth image as the first channel of
the input tensor which provides depth information. We en-
code 2D spatial information by mapping 3D joint coordi-
nates into 2D image plane using known camera parameters,
and generating heatmaps from estimates of 2D joints in each
error correction step. During testing, we map the resulting
2D joint estimates back to 3D space to get real world 3D
coordinates

3.2. Model Architecture

Input Representation During the tth error correction,
the input for our CNN model is a depth image I concate-
nated with J heatmaps generated from current estimated
pose yt, where J is the number of joints. yt is a J×2 vector,
containing 2D image plane coordinates for each joint. We
map each row of yt into a 2D Gaussian heatmap centered
at the joint location with a fixed standard deviation. The J
heatmaps are stacked with the depth image, resulting in a
H ×W × (J + 1) input tensor to our deep network, where
H, W are input image height and width.

Iterative Error Feedback For the tth error correction
step, our CNN receives the input xt – depth image I stacked
with J heatmaps rendered from current estimates of joint
positions yt. The CNN outputs a correction εt. This cor-
rection is added to yt, resulting in new joint position esti-
mates yt+1. New heatmaps are generated from yt+1 and
are stacked with image I , resulting in xt+1, and so on it-
eratively. Our model can be represented mathematically as
follows:

εt = f(xt)

yt+1 = yt + εt

xt+1 = I ⊕ gt+1(yt+1)

where f represents our CNN model, g is the function that
converts each 2D joint location into one Gaussian heatmap.
Figure 1 shows the overall architecture of our model.

CNN Architecture We use the VGG-19 architecture
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(a) Frontal view (b) Top down view

Figure 2: Examples images from ITOP dataset, containing
challenging frontal and top down view images.

[22], with input images and heatmaps resized to 224 pixels
by 224 pixels. We change the size of the first convolution
layer filter from 3× 3× 3× 64 into 3× 3× (J + 1)× 64
to account for the depth channel plus J heatmaps. The net-
work consists of 13 layers of 3×3 convolutions interspersed
with 5 layers of 2×2 max-pooling operations. Additionally,
we reduce the number of neurons in the last dense layers to
2J . We replace the final softmax layer with a euclidean loss
layer. The L2 regression loss is formulated as follows:

L =

T∑
t=1

M∑
i=1

(εit − e(yi, yit))2

where T is the number of correction steps and M gives the
number of training data. εt is the predicted error correction
in the tth step while e(y − yt) gives the ground truth error
correction. The bounded error correction for the tth step
and kth joint is calculated as follows:

e(yk, ykt ) = min(L, ||u||) · û

where u = yk − ykt is the error correction vector, û =
u
||u||2 is the corresponding unit vector, and L gives the upper
bound of correction for each joint location. We minimize
the loss using stochastic gradient descent (SGD) with every
correction step being an independent training example. We
grow our training set progressively: for the (t+1)th step, we
add xt+1 to our training set with corresponding ground truth
labels, e(y, yt+1). In this way, early steps can be optimized
longer and get consolidated.

3.3. Training and Optimization

We train the full model end-to-end in a single step of op-
timization. We train the CNN from scratch with all weights
initialized from a Gaussian with µ = 0, σ = 0.005. We use
the Adam optimizer [16] with a learning rate of 1 × 10−5,
β1 = 0.9, and β2 = 0.999. Our training batches consist of
depth images resized to 224 pixels by 224 pixels. Heatmaps
are then generated from current joint estimates to form the
input tensor x as outlined in Section 3.2.

4. Datasets

To more rigorously evaluate our model, we collect a new
dataset consisting of varied camera viewpoints.

4.1. Invariant-Top View Dataset (ITOP)

Existing depth datasets in the front view are often small
in size. Besides, the benchmark for the evaluation of top-
view human pose still does not exist. To resolve these is-
sues, we collected our own dataset consisting of 30K depth
images. The dataset is two orders of magnitude larger than
previous depth-based pose estimation datasets and contains
images from both frontal and top views of 20 people per-
forming 15 action sequences each. Each image is labeled
with 15 precise 3D joint locations from the point of view of
the respective camera. For both frontal and top-down views,
we use the video sequences of the first 4 people as our test
set, and the remaining 8 for training.

Data Collection. We collect our data using two kinect
depth cameras, with one facing front and the other facing
top-down. Since the Kinect camera is unable to perform
top-down human pose estimation, we use a front-facing
camera to estimate 3D joint locations and transform these
coordinates to a top-view coordinate system shared by the
top-view camera based on the translational offsets and rel-
ative Euler angles of the two cameras. This method can be
extended to n cameras from arbitrary viewpoints. Figure 2
shows example images from the ITOP dataset.

Ground Truth Error Correction. The aforementioned
coordinate transformation is successful when front-facing
skeleton is accurately generated – this is a strong assump-
tion that does not always hold true. To solve the problem
of noisy skeleton estimates, we propose an approach that it-
eratively refines the initial estimation of both the front and
top-view human pose estimates by performing local mode-
finding on an intermediate body part representation (see
Figure 3).

In the initial step, we perform a background subtrac-
tion on the depth images using Gaussian mixture-based
foreground-background segmentation on sequential frames.
The background-subtracted images are then segmented into
body parts using the following procedure:

1. Generate the human pose skeleton by connecting ad-
jacent joints in topological order. Each pixel on
the skeleton is assigned a label based on the relative
weights of joints on both ends (e.g. torso is physically
larger than the shoulders and therefore carries a greater
relative weight).

2. Pixels on the skeleton and their assigned body part la-
bels are used as training examples and class labels for
a k-nearest neighbor model, respectively.
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Refined Ground Truth
Body Part Representation +

Mean Shift Density EstimationInitial Ground Truth

Figure 3: Ground truth correction for front and top views. In the event that ground truth skeleton data is noisy, we correct the
ground truth using an iterative refinement technique.

(a) Frontal view

(b) Top down view

Figure 4: Training and validation loss for IEF from frontal
and top-down views.

3. Pixels not directly on the skeleton are assigned body
part labels based on the resulting k-NN model.

Joint positions are re-calculated from the estimated body
parts by accumulating the global 3D centers of probability
mass for each part. As the final step, we manually go over
each frame and remove frames that present inaccurate joint

positions.

5. Experiment
5.1. Baselines

Our comparison with state-of-the-art methods is split
into two parts: (i) training and testing on frontal views, (ii)
training and testing on top views. We compare our model
to Shotton et al. [21] and Random Tree Walks (RTW) [29].
We implemented both models from scratch, as their source
code are not publicly available.

The Shotton model consists of multiple decision trees
that traverse each pixel to find the body part labels for that
pixel pixel. Once the pixels are classified into body parts,
the possible joint positions are found with multiple mean-
shifts. RTW trains a regression tree to estimate the proba-
bility distribution to the direction toward the particular joint,
relative to the current position. At test time, the direction for
the random walk is randomly chosen from a set of represen-
tative directions.

5.2. Implementation Details

To aid in reproducibility, we provide a detailed list of
preprocessing, hyperparameters, and model settings.

Iterative Error Feedback. Our model from section 3
is implemented using TensorFlow[1]. We use mini-batches
of size 10. To generate heatmaps at the first error correction
step, the mean 2D pose of the training set is used. Heatmaps
are 224 pixels by 224 pixels and centered at joint locations.
Each image is concatenated with J heatmaps where J is the
number of human joints. Our model takes a 224 × 224 ×
(J + 1) tensor as input, and is trained for 4 error correction
steps, using 20 epochs for each step. Other information can
be found in section 3.3.

Shotton et al. We implement the model from Shotton et
al.[21] as its original implementation is not publicly avail-
able. We train and test our implementation on ITOP (top-
view) and are able to produce comparable results. We set
the model parameters as follows: a random forest of 3 trees,
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Figure 5: Qualitative results from frontal and top down views for Shotton and RTW. Column (a) and (c) are good prediction
examples, (b) and (d) are bad ones.

15 deep, approximately 3,000 training pixels per image,
2,000 candidate features, and a probe offset of 100 pixels.
The same local mode-finding approach is employed to gen-
erate joint proposals from body part labeling predictions.
We use a bandwidth of 0.065m, a probability threshold of
0.14, and a z offset of 0.039m.

Random Tree Walks. Random tree walks [29] is a re-
fined model based on the model from Shotton et al. and
enjoys significantly faster runtime by training a regression
tree for each joint instead of each pixel. Five hundred sam-
ple points are randomly generated with a maximum offset
of 30 pixels along each axis. For each sample point, we gen-
erate 500 features in random directions with a probe offset
of 100 pixels.

5.3. Evaluation Metric

For summary tables and figures, we use the mean av-
erage precision (MAP), which is simply the mean of the
average precision scores for all human body parts.

5.4. Results

Iterative Error Feedback Figure 4 shows training and
validation loss for our Iterative Error Feedback model.
From Figure 4 (a) we can see that for frontal view, both
training and validation losses drop exponentially during the
first error correction step (i.e. first 20 epochs) but slow down
after the first step. The small but noticeable gap between
training and validation loss indicates that the model slightly
overfits. For top-down view, there is a bigger gap between

ITOP (front-view) ITOP (top-view)
Parts RTW S IEF RTW S IEF

H 0.978 0.638 0.944 0.983 0.954 0.851
N 0.958 0.864 0.866 0.822 0.985 0.492
LS 0.934 0.845 0.801 0.911 0.878 0.657
RS 0.947 0.821 0.776 0.924 0.901 0.738
LE 0.797 0.791 0.541 0.771 0.589 0.379
RE 0.761 0.673 0.566 0.830 0.559 0.458
LH 0.720 0.489 0.339 0.729 0.466 0.441
RH 0.690 0.537 0.285 0.809 0.516 0.462
T 0.938 0.650 0.890 0.681 0.805 0.363

LHIP 0.798 0.542 0.840 0.536 0.117 0.451
RHIP 0.807 0.474 0.796 0.578 0.283 0.364
LK 0.660 0.690 0.798 0.561 0.016 0.547
RK 0.716 0.623 0.837 0.516 0.036 0.531
LF 0.690 0.579 0.842 0.344 0.000 0.664
RF 0.678 0.646 0.804 0.227 0.000 0.601

mAP, U 0.848 0.707 0.751 0.847 0.731 0.560
mAP, F 0.805 0.658 0.728 0.682 0.474 0.533

Table 1: Comparison of results with different methods using
a 10 cm threshold. U and F stand for upper body and full
body; S stands for Shotton et al. The body parts we evaluate
on include head (H), neck (N), shoulders (LS/RS), elbows
(LE/RE), hands (LH/RH), torso (T), hips (LHIP/RHIP),
knees (LK/RK), and feet (LF/RF).
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(a) IEF [2] (frontal)
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(b) RTW [29] (frontal)
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(c) Shotton [21] (frontal)
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(d) IEF [2] (top down)
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(e) RTW [29] (top down)
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(f) Shotton [21] (top down)

Figure 6: Detection rates for various detection thresholds for body parts: head (H), neck (N), shoulders (LS/RS), elbows
(LE/RE), hands (LH/RH), torso (T), hips (LHIP/RHIP), knees (LK/RK), and feet (LF/RF).

training and validation loss, indicating more severe over-
fitting (as Figure 4 (a) shows). To address this, we could
do data augmentation such as random crops to increase the
training set size, or/and increase regularization strength. In
addition, due to limited time and computation resources, we
were only able train the top-down view model for 2 error
correction steps, 20 epochs each step. As the model has not
yet converged, we believe it can achieve better performance
with more error correction steps.

Quantitative Analysis Table 1 shows the average preci-
sion for each joint using a 10 cm threshold and the overall
mean Average Precision (mAP) for Iterative Error Feedback
(IEF) [2], Random Tree Walk (RTW) [29] and Shotton et al
[21]. RTW achieves the best overall accuracies for both full
and upper body joints from frontal and top-down view. IEF
is less robust on hands and elbows, but achieves the best
performance on lower body joints, and gives competitive
results for upper body joints. As occlusions happen most
often with lower body joints in the ITOP dataset (in partic-
ular from top down view), IEF appears to be the most ro-
bust among three methods in the case of occlusion. Overall,
Shotton gives the lowest mAP. This is due to the limitation
of the size of our training set (9K images for each view-
point), as the original model was trained on 900K images
with 300K images per tree. Figure 6 shows the precision
results of each methods in detail.

Qualitative Analysis Figure 5 shows examples of qual-

itative results from frontal and top down views for all three
methods. For top down view, we show only 8 joints on the
upper body (i.e. head, neck, left shoulder, right shoulder,
left elbow, right elbow, left hand, and right hand) as the
lower body joints are almost always occluded. Shotton and
RTW give reasonable results when all joints are visible (as
in figure 5 (a) and (c)) but do not perform well when occlu-
sion happens (Figure 5 (b) and (d)). For Shotton, we can see
from figure 5 (b) that the prediction for the occluded right
elbow is topologically invalid though both right shoulder
and hand are visible and correctly predicted. This is because
the model doesn’t take into account the topological informa-
tion among joints, so it is not able to modify its prediction
for one joint base on the predicted positions of neighboring
joints. For RTW, figure 5 (b) shows that the predicted po-
sition for right hand goes to the right leg. Though legs and
hands possess very different depth information, the model
mistook the right leg for right hand when the hand is oc-
cluded and the leg appears in the common spatial location
of a hand. Figure 5 (d) shows that the prediction results for
visible joints are affected due to partial occlusions. IEF also
performs well when all joints are visible (as in figure 5 (a)
and (c)). In addition, figure 5 (b) shows that IEF is able to
give reasonable predictions for the occluded left shoulder,
elbow and hand.
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6. Conclusion and Future Work
We introduced a multi-view model that estimates 3D

human pose from a single depth image. Instead of di-
rectly regressing to joint locations, we adopt an iterative ap-
proach that progressively make changes to an initial pose
by feeding back error corrections. We compared our model
with two state-of-the-art models that we implemented from
scratch, and showed that our model achieves competitive
performance. All three models were trained and tested on a
newly-collected depth dataset with 30K images from multi-
ple viewpoints. Qualitative results shows that our model is
able to achieve better performance in the case of occlusion.

For future work, we would like to train and test on a mix-
ture of frontal and top down view poses, in order to further
explore our model’s ability to handle multiple viewpoints.
In addition, due to the limitation of computing power, we
are only able to train the IEF model with 9,000 images for
4 error correction steps with 20 epochs each per viewpoint.
We believe that the model can achieve better performance
when trained on a larger dataset for more epochs and error
correction steps.
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