
Neural Network for 3D object classification

Lin Shao
ICME

Stanford University, 94305, CA
lins2@stanford.edu

Peng Xu
ICME

Stanford University, 94305, CA
pengxu@stanford.edu

Abstract

3D object classification is an interesting topic especially
when large scale 3D CAD datasets are available. A convo-
lutional neural network combining spatial transformation
network is used to classify 3D objects in a subset of Mod-
elNet. The spatial transformation network is an attempt to
deal with rotation invariance problem in 3D object classifi-
cation. We evaluate our method by comparing with previous
result.

1. Introduction
Recent years convolutional neural network has gained

great successes on 2D image classification [2] detection and
locations. An interesting question following is can convolu-
tional network be applied to 3D model classification? With
more and more 3D CAD model data sets available, we are
now exploring this question. There are several large 3D
datasets. Trimble 3D warehouse contains 2.5M models in
total,Yobi3D has 1M models.

In this project, we focus on the classification of 3D
model problem. The model we use are the 40-classes subset
of ModelNet [6] which is a large scale 3D CAD Dataset.
The method of representation 3D model is voxelization
within a cube with 32 x 32 x 32. Every voxel takes value be-
tween 0 and 1. 1 indicates the occupation by the 3D model
in the small voxel while 0 indicates the voxel is empty.
We are trying to construct our convolutional neural network
based on this voxelization.

When the classification object expand from 2D to 3D,
transformation capacity of the object get larger because the
rotation could be done in 3D spaces. All the affine transfor-
mations make the classification complicated. In this cases,
simple conducting data augmentation and putting all the
models into the neural network to train the model become
not so applicable. So one of our focus is to deal with trans-
lation and rotation invariance problem.

To solve translation and rotation invariance problem, we
adopted the idea from Jaderberg et.al [1] to use a spatial

transformer layer to have the effect of alignment.

Figure 1: Voxelization example of airplane instance.

2. Problem Satement

In this project, we want to solve 3D object classification
on the 3D domain.

Dataset: ModelNets ModelNets dataset was introduced
by [6]. There are two ModelNets datasets: ModelNets10
and ModelNets40. ModelNets40 contains 12,311
shapes covering 40 common categories. Categories of 40
classes are airplane, bathtub, bed, bench, bookshelf, bot-
tle, bowl, car, chair, cone, cup, curtain, desk, door, dresser,
flower pot, glass box, guitar, keyboard, lamp, laptop, man-
tel, monitor, night stand, person, piano, plant, radio, range
hood, sink, sofa, stairs, stool, table, tent, toilet, tv stand,
vase, wardrobe, xbox. And ModelNets10 is a subset of
ModelNets40. For our experiments, we use the same
training and test split as [6] provided.

Basically there are two problems we attempt to address:

1. What is the best representation of 3D models? In
this paper, we focus on the voxelization representation.
The simplest voxelization representation is to set 0-1
binary value to each voxel (as shown in Figure 1). We
take this as a baseline. It is worthy to try more complex
representations.

1

2. What is the best/good architecture of deep learning
models to train 3D voxel data? A reasonable archi-
tecture is to extend the 2D convolutional networks, i.e.
the classic structure to train image data, to a 3D con-
volutional networks, as this is done by [3]. So we take
their model as our baseline and investigate other archi-
tectures.

3. Technical Approach
Baseline We take 0-1 binary voxel representation of the
all 3D models (Figure 1). We augment the data by rotating
every single model every 30◦ along the gravity direction.
And we test the VoxNet [3] as our baseline model. The
architecture of VoxNet is shown in Table 1.

Layers Parameters
fully connect 40
drop3 p = 0.4
fully connect 128*10
drop2 p = 0.4
pool2 pool shape [2 2 2]
conv2 receptive field 3x3x3 filterNum 32
drop1 p = 0.2
Conv1 receptive field 5x5x5 filterNum 32
Input Layer Size 32 x 32 x32

Table 1: Architecture of VoxNet.

3.1. Complex representation

As we mentioned in the previous section, we first will
try more complex representations than just 0-1 binary voxel
values. Under the same voxelization, for each voxel, we
assign the squared minimum distance to the surface of the
3D object. In the representation, all the voxels in the object
have value 0. There are two empirical benefits here. First,
this solves the sparsity issue of the simple 0-1 binary rep-
resentation; Second, intuitively the distribution of the voxel
values over the whole voxel cubic is approximately rotation
invariant because the distance is independent of the abso-
lute position of the voxel but relied on the relative distance
to the object itself.

3.2. 3D spatial transform network

Recently [1] proposed a spatial transform network to
deal with this problem. The basic idea is to consider the
spatial transform as regression problem as we can specify
the transformation parameters. The architecture is shown in
Figure 2. We adopt this idea, and built a 3D spatial trans-
form network into the VoxNet. The general architecture is

in Figure 3.
Basically, 3D-SPN contains 3 parts. The first part is a

localization net, in which the goal is to find the best 3D
affine transformation to predict the right labels, specifically
we take the same architecture of VoxNet, except the output
layer has only 6 neurons which are the parameters θ of the
affine transformation. The architecture of the location net
is shown in Table 2. The second and third parts of 3D-SPN
is Grid generator and feature sampler. Basically these two
parts is to apply 3D affine transformation which is set by
localization net to the original data to get transformed voxel
data. The following1 shows more details about 3D-SPN.

Localization network The localization networks takes
the input feature map U ∈ RH×W×L, where H ×W × L
is the size of the voxel data and outputs θ, the parameters
of the transformation Tθ to be applied to the feature map:
θ = floc(U). In general floc can take any architecture that
we can specify. Here in our model, we use the same convo-
lutional network structure in VoxNet.

Parameterised Sampling Grid In order to get the right
output feature V after certain transformation Tθ, we need
parameterize the sampling grid of the input U . Specifi-
cally, for each output voxel (xt

i, y
t
i , z

t
i) must be on a regular

grid G. Here we consider a 3D affine transformation in (1).
Then given Tθ, we can find the position of the source voxels
(xs

i , y
s
i , z

s
i) by (1).

xs
i

ysi
zsi

 = Tθ(Gi) =

 θ1 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34



xt
i

yti
zti
1

 (1)

where (xt
i, y

t
i , z

t
i) is the target position of the output voxel

data and (xs
i , y

s
i , z

s
i) is the source position of the input voxel

data. And we used normalized coordinates such that −1 ≤
xt
i, y

t
i , z

t
i ≤ 1 when within the spatial bounds of the output

and −1 ≤ xs
i , y

s
i , z

s
i ≤ 1 when within the spatial bounds

of the input. In our model, currently we only consider the
transformations along the gravity direction so we constrain
the transformation to be

Tθ =

 θ1 θ12 0 θ14
θ21 θ22 0 θ24
0 0 1 0

 .

Differentiable Image Sampling After finding the right
correspondence of positions between input U and V , we
need fill in the voxel values in the output. Specifically, for
each target position (xt

i, y
t
i , z

t
i) , the voxel value Vi is de-

fined as the average at (xs
i , y

s
i , z

s
i) in the input U by some

1Most the contents here is from [1], but we extend it to 3D settings.

2

Figure 2: spatial transformation network. Basically, SPN
constain 3 parts. the first part is a localization net, which is
doing regression over the parameter θ of the affine transfor-
mation. The second part is Grid generator, which finds the
exact position of the voxel after the affine transformation.
The third part is Sampler of image features.

sampling kernel as follows:

Vi =

H∑
n

W∑
m

L∑
l

Unmlk(x
s
i −m; Ψx)k(y

s
i − n; Ψy)k(z

s
i − l; Ψz)

(2)

where Vi is the voxel value at (xt
i, y

t
i , z

t
i), Ψx, Ψy and Ψz

are the parameters of a generic sampling kernel k(). Specif-
ically we use a bilinear sampling kernel, which gives

Vi =

H∑
n

W∑
m

L∑
l

Unml max(0, 1− |xs
i −m|)

max(0, 1− |ysi − n|)max(0, 1− |zsi − l|). (3)

In this scheme, we can derive the backpropagation of the
loss by computing the gradients:

∂Vi

∂Unml
=

H∑
n

W∑
m

L∑
l

max(0, 1− |xs
i −m|)

max(0, 1− |ysi − n|)max(0, 1− |zsi − l|)

∂Vi

∂xs
i

=
H∑
n

W∑
m

L∑
l

[
max(0, 1− |ysi − n|)max(0, 1− |zsi − l|)

·


0 |m− xs

i | ≥ 1

1 xs
i ≤ m < xs

i + 1

−1 xs
i − 1 < m ≤ xs

i

]
.

4. Experiment Results
experiment setting We test our model in
ModelNets40. In the training set of ModelNets40,
we augmented the data by rotating each model 30◦ along
the gravity direction. In the test set of ModelNets40, we

Layers Parameters
fully connect 6
drop3 p = 0.4
fully connect 128*10
drop2 p = 0.4
pool2 pool shape [2 2 2]
conv2 receptive field 3x3x3 filterNum 32
drop1 p = 0.2
Conv1 receptive field 5x5x5 filterNum 32
Input Layer Size 32 x 32 x32

Table 2: Architecture of localization net in 3D-SPN.

Figure 3: Architecture of 3D-SPN-VoxNet. The input is the
3D voxel data, and first go through 3D-SPN, then feed into
VoxNet and get the output.

have two sets of test data. One set is rotating every single
model 30◦ along the gravity direction as in the training set.
The other set is rotating every one 12◦ along the gravity
direction.

First we show the benchmark results as in Table 32.

Algorithm ModelNet40 ModelNet 10
MVCNN[5] 90.1% NA
VoxNet[3] 86.22% 92%

DeepPano[4] 77.63% 85.45 %
3DShapeNets[6] 77.3% 83.5 %

Table 3: Classification accuracy benchmark on ModelNets

4.1. Complex Representation

In this section, we test the idea in Section 3.1. The results
are in Table 4. We found that have 1.2% improvement on
the test accuracy comparing using 0-1 binary data trained
on VoxNet.

4.2. 3D spatial Transformer Network

In this section, we combine the 3D spatial Transform
Network with VoxNet, which we call 3D-SPN-VoxNet.

2In our experiments, we obtained 86.22% accuracy on ModelNet40
using VoxNet as 83% accuracy reported in [3].

3

Algorithm ModelNet40-12 ModelNet40-30
Dist+VoxNet 87.44% NA
01+VoxNet 86.22% 85.45%

Table 4: Classification accuracy using data of different rep-
resentations. “Dist+Voxnet” means using the distance based
voxel data to train on VoxNet. “01+VoxNet” means using
the standard 0-1 binary voxel data to train on VoxNet.

Here we use the standard binary voxel data to train on those
models. The results are in Table 5. We can see that we
achieve 2% improvement on the test accuracy.

Algorithm ModelNet40-12 ModelNet40-30
3D-SPN-VoxNet 88.25% 86.39%

VoxNet 86.22% 85.45%

Table 5: Classification accuracy.

4.3. Visualization

We extract the features of 3D SPN which are new vox-
elizations. We then compare new voxelizations with the ori-
gin voxelizations to understand how the 3D SPN works.

Figure 4: Input Voxelization of Piano

Figure 4 shows an instance of piano. The voxeliazation
is rotated every 30 degrees starting from left to right then
from top to down. There voxelizations are the input of our
3D-SPN-VoxNet model. Figure 5 shows the results of SPN.
The twelves voxelizations correspond to the voxelizations
in Figure 4 one by one. After SPN, the voxelizations are
aligned along one direction of cube surface. It indicates that
SPN actually has the effect of alignment.

Figure 5: Output Voxelization of Piano after spatial trans-
form layer

Figure 6 and 7 shows the input and output voxelization
of a bed model. The output voxelization of SPN also get
aligned along one direction of cube surface. Compare the
alignment direction of bed with the alignment direction of
piano. In these different alignments, the differences be-
tween the piano and bed get larger while the shape differ-
ences within the same models get minimized.

Figure 6: Input Voxelization of Bed

However the effect of alignment does not work for all
voxelizations. Figure 8 and 9 show the visualization of air-
plane categories. Voxelizations in Figure 8 are the origin

4

Figure 7: Output Voxelization of Bed after spatial transform
layer

Figure 8: Input Voxelization of Airplane

inputs. Voxelizations in Figure 9 are the output of SPN.
There is no obvious alignment effect of SPN since the out-
put voxelizations in Figure 9 also rotate.

It could be explained why SPN has no alignment ef-
fect on voxelizations in airplane category. The origin
Voxnet classification accuracy in airplane category has al-
ready achieved 100 percents. It indicates that airplane vox-
elizations are easily recognized by a classical CNN models.
No matter what kind of degrees the airplane voxelizations
rotate, the classical CNN models could recognized it. Then
the loss function in the final layer will get zero scores. There
is no back propagation to update the parameters in the SPN.

Figure 9: Output Voxelization of Airplane after spatial
transform layer

5. Discussion

By visualizing we realize that the SPN architecture has
the effect of alignment. Models are intended to align along
surface directions of the cube. Based on the fact, we realize
that there is an important assumption. There are some spe-
cial directions that if models are aligned along these direc-
tions then the total differences between 40 categories mod-
els get maximized.

When models are aligned the shape variation within a
same category is much smaller right now. Without SPN,
data augmentation will be conducted. Same models will
rotate several times to cover all possible rotations. This type
of augmentation will not work if we allow the rotation axis
to change in 3D space. The CNN models are required to be
more complicated to classify so many instances of models.
It will become difficult to train such a neural network.

An interesting and important question following is why
the most models are aligned along these special directions
of the cube. Current we could not give a reasonable expla-
nation.

Besides rotation, the SPN also have the effect of zoom-
ing. The output voxelization becomes larger than the input
voxelization which means there are more points to represent
the model.

Based on the alignment and zooming effect of SPN, we
could redesign more complicated CNN models after the
SPN architectures. Because the input of later CNN models
are aligned and adjusted their sizes to be better recognized.

5

References
[1] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. 2015.
[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[3] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional
Neural Network for Real-Time Object Recognition. In IROS,
2015.

[4] B. Shi, S. Bai, Z. Zhou, and X. Bai. Deeppano: Deep
panoramic representation for 3-d shape recognition. Signal
Processing Letters, IEEE, 22(12):2339–2343, 2015.

[5] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition.
In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 945–953, 2015.

[6] A. K. F. Y. L. Z. X. T. J. X. Z. Wu, S. Song. 3d shapenets:
A deep representation for volumetric shapes. In Computer
Vision and Pattern Recognition, 2015.

6

