
Tiny ImageNet Challenge

Vani Khosla
Stanford University

vkhosla@stanford.edu

March 13, 2016

Abstract

This project aims to perform image classification us-
ing a Convolutional Neural Network in Keras on the
Tiny ImageNet Dataset. The goal is to find a net-
work architecture that provides the best accuracy on
the validation and testing set. The results from this
project include training accuracies up to 60% and
validation accuracies up to 25%, however testing ac-
curacies showed performances no better than ran-
dom guessing.

1 Introduction

Image classification is a fundamental problem in ma-
chine learning. There have been many successful
efforts to solve the problem of classification. This
project aims to construct a solution to the image clas-
sification problem through the use of convolutional
neural networks in order to provide a useful network
and a learning opportunity for understanding the im-
pact of convolutional networks. This project will use
a specific image dataset to train and test the network
with expected results in order to help evaluate the
technical approach to building the network.

The overall plan to approach this problem is to
create different network architectures consisting of
convolutional layers, pooling layers, and fully con-

nected layers to build the best performing network
possible. Past performance on the Tiny ImageNet
dataset ranges between 20% and 46% accuracies on
the validation set. The model architectures selected
are chosen to aim to reach the higher percentage, but
is expected to be within this range. Overall, the goal
of this project is to use this time as a learning op-
portunity for creating and understanding the perfor-
mances of convolutional neural networks and work-
ing with visual datasets.

2 Relevant Work

Because image classification is fundamental and
well approached problem in machine learning, there
are many resources available for learning and an-
alyzing results from networks that accomplish im-
age classification. The classification problem can be
solved in many ways, including a k-nearest neigh-
bor algorithm. While an effective model can be cre-
ated, it is not necessarily the most efficient model
as the algorithm requires a comparison between the
test image and every image in the training set. Con-
volutional neural networks are more commonly be-
ing used for the classification problem now because
even though training test is significantly longer, the
prediction of the test data is much faster. Within the
work done with convolutional neural networks, most

1



works have increased performance of the network
through the use of deeper and wider networks. Addi-
tionally problems arise from overfitting, which many
models have accounted for by including techniques
like dropout and other regularization methods.

The ImageNet Large Scale Visual Recognition
Challenge provides a helpful layout of progress
made for the image classification problem. Many
new ideas are first applied in this ”challenge” for-
mat, allowing standardized evaluation and compar-
ison methods for improvements and radical ideas.
While the use of a convolutional neural network has
proven to have dramatic improvement in the results
from the challenge, there are many techniques that
have emerged from the challenge results. Methods
such as max pooling, dropout, and batch normaliza-
tion have proven to have an impact on performance.
Additionally, changing filter sizes (sizes of 5x5 and
3x3 have been found as effective sizes) and the num-
ber of filters have also proven to have an impact on
performance, which allows for changing the depth of
width of the network.

3 Methods

3.1 Framework

The framework used for this project is Theano.
Theano is written in Python and is a popular choice
for machine learning applications. There are several
libraries built for Theano that create an easier layer
on top of Theano’s interface, making the API easier
to navigate. Overall, this framework allows for more
comprehensive control over the network formation
than both Caffe and Torch, and has many deep learn-
ing libraries including Keras and Lasagne. Keras was
selected as the deep learning library to use for this
project. Keras is a highly modular library written in
Python and is capable of running either Theano or
TensorFlow. It was selected for this project because

it is easy to use and and allows for fast experimen-
tation of different models. While Keras allows for
training on both a CPU and GPU, all models for this
project were trained on a NVIDIA GRID K520 GPU
(Amazon g2 instance).

3.2 Network Layers

There are six main layers used in each network ar-
chitecture:

1. Convolutional 2D Layers:

Convolution operator for filtering windows of
two-dimensional inputs. The number of filters
and filter size are defined within each layer.

2. Pooling:

Max pooling is a form of non-linear down-
sampling. For all model architectures, a pool
size of 2x2 was used.

3. Dropout:

Dropout consists in randomly setting a frac-
tion p of input units to 0 at each update during
training time, which helps prevent overfitting.
Dropout probabilities used in the model archi-
tectures were either 0.25 or 0.50 (generally at
the fully connected layer).

4. Batch Normalization:

A normalization method used which is done by
a batch of activations with each dimension unit
gaussian. It is defined as x̂(k) = x(k)−E[x(k)]√

V ar[x(k)]

5. reLu:

ReLu is the activation function that was selected
for all model architectures. ReLu activation
function is defined as max(0, x).

2



6. Fully Connected Layers:

A Fully Connected Layer works the same as in
an ordinary Neural Network. Neurons in this
layer have connections to all other activation
layers, allowing to activations to be computed
using matrix multiplication.

In addition to the layers used above, the loss func-
tion used in all models was a softmax loss function.
Two different optimizers were experimented with:

1. Stochastic Gradient Descent (SGD) with Mo-
mentum:

SGD with momentum is an update function to
the weights by the following equation: w :=
W − η5Qi(w) + α5 w

2. Adam

Adam is an update step that combines momen-
tum and an RMSprop like update with a bias
correction. It is a popular choice to use as an
optimizer.

Using the six main layers described and the two
optimizers, three different model architectures were
designed and are described in the next section.

3.3 Model Architectures

There were three different models built for exper-
imentation. All models were built from scratch
(including no pre-trained weights), using an L2 reg-
ularization rate of 0.01 and Gaussian initialization
scaled by fan in for weight initialization. In addition,
all models were trained using batches of size 128.
The three models are described below.

Model 1:
conv3-32 - relu - conv3-32 - relu - max pool -
dropout - conv3-64 - relu - conv3-64 - relu - max
pool - dropout - fc(512) - relu - dropout - softmax

Model 2:
conv3-32 - relu - conv3-32 - relu - max pool -
dropout - conv3-64 - relu - conv3-64 - relu - max
pool - dropout - conv3-128 - relu - conv3-128 - relu
- max pool - dropout - fc(512) - relu - dropout -
softmax

Model 3:
conv5-32 - relu - conv3-32 - relu - max pool -
conv3-64 - relu - max pool - conv3-128 - relu - max
pool - fc(256) - relu - dropout - fc(200) - softmax

Note: conv3-32 indicates a convolutional layer
with 32 filters of size 3x3, and fc(512) indicates a
fully connected layer 512 units.

Figure 1: Five classes from the dataset, including five
image examples of each class.

4 Dataset

The dataset used in this project is the Tiny ImageNet
dataset, as provided by the Neural Networks class

3



at Stanford, is a subset of the ILSVRC2014 dataset.
The dataset consists of 100,000 training images, with
200 classes (see Figure 1 for examples of classes and
images that belong to each class). Each class has 500
training images, 50 validation images, and 50 testing
images. Each image has an input size of 64x64. For
this project, preprocessing of the images was done
by subtracting the mean image and normalizing by
the variance.

5 Results and Discussion

The results from the three models can be seen in Ta-
ble 1. As the table shows, relatively good training
accuracies were achieved (between 55% - 65%) on
two of the models. However the best validation ac-
curacy achieved was around 25%, which is not as
accurate of a result as desired. In addition the test
accuracies (not reported in the table) were no better
than the result from random guessing, indicating that
none of the models were sufficient after training.

Model Training Accuracy Validation Accuracy
1 0.5693 0.2435
2 0.1871 0.1799
3 0.6236 0.1560

Table 1: Training and Validation Accuracies for each
Model.

In order to identify what went wrong in training of
the models, an investigation into Model 1 was done.
From the training phase of the model, the training
and validation loss can be seen in Figure 2. As the
figure shows, the training loss is going down over
many epochs, but starts to plateau in it’s decrease
around epoch 100. This is explains why the train-
ing accuracy was able to produce reasonable results,
as the loss is going down and there is improvement

being made during the training phase. One thing
to note is that this model used Adam as the opti-
mizer, which explains why there is good decrease
in the loss in the early epochs, and at later epochs
there is less decrease in the loss as more fine tuning
needs to happen. The training loss is not yet below
1, which is where it would be expected before see-
ing a good result. In contrast, the behavior of the
validation loss is not what is expected from a rea-
sonable model. The validation loss decreases in a
reasonable fashion until around epoch 20, where it
then takes a turn and steadily increases for the rest of
training. This demonstrates why the validation accu-
racy is not improving even as training loss decreases
and training accuracy increases. More thorough in-
vestigations need to be done in order to determine
why the validation loss is not yet where it should be.

Figure 2: Training and Validation Loss for Model 1.

To understand why the validation loss and accura-
cies are not behaving in the expected manner, a visu-
alization of the model was done to see what is hap-
pening to the filters at each layer. Two examples have
been included in this paper (see Figure 3 and Fig-

4



Figure 3: Visualization of a few filters from the first
layer in Model 1.

ure 4). In Figure 3 we can see the filters from the first
layer of the model. The filters in this image display
moderate results, better visualizations of the filters
are expected, but the results are not terrible. While
the visualizations of the filters from the first layer
have some interesting results, it is more the growth
from layer 1 to layer 7 that is telling. Figure 4 shows
visualizations of some of the filters from layer 7, and
these visualizations demonstrate that the results are
not good. Much stronger visualizations would be
expected from a reasonably performing model, but
from these two figures the progression shows that the
weights are not yet being trained well enough as the
filters do not show any strong improvement.

As mentioned earlier, the results provided from
model 1 are from the training instances in which
the optimizer Adam is used for training. While this
provided good learning rates in the early epochs, it
did not necessarily lead to great learning rates over-
all. Between the two optimizers selected (Adam
and SGD with momentum) to investigate Adam per-

Figure 4: Visualization of a few filters from the sev-
enth layer in Model 1.

formed significantly better than SGD on all mod-
els. This is most likely due to the fact that Adam
was able to learn more quickly by taking larger steps
(i.e. larger learning rates), which was seen as a bet-
ter result in the first 200 epochs. Although Adam
did perform better, overall with more training time
and more epochs that expectation is that SGD would
perform better over the long run since it would be
able to fine tune a little more than Adam. However
for the purposes of this project, Adam vastly outper-
formed SGD, as SGD failed to learn in some training
instances of the models.

Given the results of this project, it is apparent that
one of the key reasons the models underperformed
with respect to the validation and training sets is
due to the fact that all models were trained from
scratch, there was no pre- training involved including
the weight initializations. This served to show that
training a model from scratch is a difficult thing to
do, which helps explain why many models use pre-
trained weights to help speed up the training process.

5



6 Conclusion

Overall the results found from the three models were
disappointing as they all underperformed on the val-
idation and test sets. While two of the models were
able to achieve reasonable accuracies on the train-
ing sets, the visualization of the filters indicated that
the models were not trained well. Moving forward
there are a couple of ways to combat this: using pre-
trained weights to help the learning rate achieve bet-
ter accuracies by learning on the loss for the models
or allowing for much longer training time since the
models are being trained from scratch. In addition,
this project demonstrated that performing well on the
training set is not difficult to accomplish even with a
bad model, and the validation and test sets are neces-
sary to truly evaluate the performance of the model.

Even with good training accuracies there are many
problems that persist in image classification; some of
the things that make image classification a difficult
problem include the scaling of images, size of the
item being classified in contrast with the rest of the
image, noisy images, distorted images, resolution of
the photos, and many more. While this dataset has
a good number of training items, these challenges
can still persist across the validation and test sets.
While the results from this project did not prove to
be competitive in the Tiny ImageNet Challenge, this
project highlighted the difficulty of training models
from scratch, and indicated that training requires sig-
nificantly more time before reasonable performance
can be seen on the validation and test sets.

References

[1] Chollet, Franois. Keras, GitHub 2015. GitHub
repository, https://github.com/fchollet/keras.

[2] Chollet, Franois. How Convolutional Networks
See the World, 30 January, 2016. The Keras

Blog, http://blog.keras.io/how-convolutional-
neural-networks-see-the-world.html.

[3] K. He, X. Zhang, S. Ren, and J. Sun Spatial
Pyramid Pooling in Deep Convolutional Net-
works for Visual Recognition, arXiv preprint
arXiv:1409.4729, 2014.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey
E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks, University of
Toronto.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. Imagenet
large scale visual recognition challenge, arXiv
preprint arXiv:1409.0575, 2014.

[6] Simonyan, Karen and Andrew Zisserman. Go-
ing Deeper with Convolutions, arXiv preprint
arXiv:1409.1556, 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabi-
novich. Very Deep Convolutional Networks for
Large-Scale Image Recognition, arXiv preprint
arXiv:1409.4842, 2014.

6


