
3D Object Classification using Shape Distributions and Deep Learning

Melvin Low
Stanford University

mwlow@cs.stanford.edu

Abstract

This paper shows that the Absolute Angle shape distri-
bution (AAD) feature can be used with deep learning to
achieve appreciable performance on the 3D object classifi-
cation problem. The generic shape distribution feature was
first introduced in 2002, and represents an object as a distri-
bution sampled from a shape function that measures global
geometric properties. AAD and similar distributions have
several desirable properties as a feature: they are easy to
compute, robust to similarity transformations such as trans-
lation and rotation, and are insensitive to small perturba-
tions in the object resulting from noise and tesselation. Cur-
rent state-of-the-art algorithms for 3D object classification
largely require voxelization or multiple 2D renderings of
each object. These approaches provide good accuracy but
lack the aforementioned benefits of shape distributions. The
result of this paper–80% test accuracy on ShapeNetCore
with a seven-layer convolutional neural network–suggests
that AAD might be considered as a way to augment exist-
ing techniques, given its simplicity, efficiency, yet surprising
performance.

1. Introduction
The 3D object classification problem is a familiar one in

computer vision that has been the focus of much previous
research. Like image classification, it has many applica-
tions, such as in the medical and manufacturing industries
where volumetric images or 3D models are prevalent. To
date the problem has not been adequately solved.

A survey of recent attempts to tackle the problem reveals
a tendency toward deep learning models. Examples include
MVCNN, VoxNet, and 3D ShapeNets. These models are at
the forefront, showing high performance and achieving over
90% classification accurary on certain benchmark dataset.
Most of them approach the problem by converting each ob-
ject into voxels or multiple image renderings, and then per-
forming convolutions over the processed data.

Before the resurgence of deep learning during the last
couple years, effort was focused on inventing more descrip-

tive features for 3D objects. In 2002, Osada et al. [7] intro-
duced one such feature, the shape distribution. It aimed to
describe a mesh through a distribution of values calculated
between points sampled from the surface of the mesh. Its
original form, D2, was a univariate distribution of pairwise
distances. Researchers have since then created other ones.
The one used in this paper is the AAD feature, proposed by
Ohbuchi et al. [5] in 2005, that describes a bivariate joint
over pairwise distances and angles.

These shape distributions are notable for two reasons.
First, they are easy and quick to construct, as they only re-
quire sampling from the surface of the mesh. Second, they
are robust: minor perturbations in the mesh resulting from
noise or tesselation do not greatly affect the feature, and
similarity transformations such as rotation and scaling do
not affect it at all. In constrast, voxels and image slices,
the standard data format used in current deep learning mod-
els, are not as efficient to compute and are not invariant to
transformations such as rotation.

As shape distributions were introduced a decade ago,
they were evaluated with more simple classifiers such as
nearest neighbor and support vector machines. Results were
ordinary and not exceptional. This paper demonstrates,
however, that the full potential of shape distributions for
object classification was never realized. More sophisticated
classification models such neural networks can boost their
performance to suprising levels.

In this paper, several different neural networks were
trained to classify objects from the ShapeNetCore dataset,
which consists of 41313 models belonging to 55 different
classes. The models were not axis-aligned. Each model
was converted into a discretized AAD distribution of reso-
lution 128x16, which was then used as input to the neural
networks. Several of the networks achieved 80% testing ac-
curacy; the simplest one had seven weight layers and was
trained in two hours.

2. Related Work
Neural networks are currently the most common ap-

proach toward 3D object classification. As a result, there
are many such models. Some of these include: Multi-

4321



view CNN (MVCNN) [8], 3D ShapeNets [10], and VoxNet
[4]. Most of these models capitalize on methods that have
worked well for 2D image classification. For example,
MVCNN, the top performing model at this time, renders
each object from multiple different views and runs a neural
network on each view, reducing the 3D problem into mul-
tiple 2D ones. Both 3D ShapeNets and Voxnet convolve
3D filters over voxel data, which can be seen as a natural
extension of 2D filters over image pixel data.

Spatial transformer networks, described by Jaderberg et
al. [2], are notable because they provide the capability to
spatially transform and manipulate geometries within the
network. This is especially relevant to 3D object classifica-
tion because input models may not be axis-aligned.

Shape distributions have seen sparse mention in recent
literature. They were first introduced by Osada et al. [7] [6]
around 2001 or 2002. Obuchi et al. [5] introduced enhanced
versions three years later, including the AAD distribution
used in this paper. A smattering of research has been done
on ensembles [9]. As far as I know, this is the first work that
uses shape distributions as input to a neural network.

Two benchmark datasets commonly used are ModelNet
[10] (created for use with the 3D ShapeNets model) and
ShapeNet [1]. ShapeNet is currently running a large-scale
3D shape retrieval contest, which may be of interest. The
dataset used in this paper is the one provided for this contest.

3. Methods
There were three main components: (1) creating the

AAD shape distributions; (2) normalizing and augmenting
the data; (3) training and evaluating neural networks.

3.1. AAD Shape Distribution

The AAD shape distribution is described in detail in
Ohbuchi et al. [5]. In addition, Osada et al. [7] provides
detailed information on sampling methods needed to pro-
duce the distributions. A brief overview of these methods is
provided in this section, as well as the specific instantiation
of their parameters used in this experiment.

In order to construct the AAD feature for a given object,
K points are first sampled from its surface. This is done by
selecting K faces at random, where each face is weighted
by its surface area. Then, a point is randomly sampled from
each face. For a triangular face with vertices (A,B,C), the
point P can be calculed by generating two random numbers
between 0 and 1, r1 and r2, and evaluating the following
equation [7]:

P = (1−
√
r1)A+

√
r1(1− r2)B +

√
r1r2C

Then, N pairs of points are randomly selected among
the K points generated in the previous step. For each pair
of points (a, b), two values are calculated: v1 = ‖a − b‖

Figure 1: Visualization of AAD shape distributions for 5
objects in ShapeNetCore belonging to different classes.

and v2 =
∣∣n(a)Tn(b)∣∣, where n(x) is the normal vector

of the face where the point x resides. The first is thus Eu-
clidean distance. The second is the absolute value of the
cosine angle between the faces from which the points were
sampled. These two values form a single sample, (v1, v2),
from a joint distribution between distances and angles.

The final step is to create the AAD distribution itself
from the N samples. This is done by finding the minimum
and maximium of the samples in each of the two dimen-
sions, discretizing the ranges into (b1, b2) bins, and then
putting each sample into the bin in which it belongs. The
count of each bin is divided by N to ensure that the result
sums to 1 and is thus a valid probability distribution.

In this paper, K = 104, N = 106, b1 = 128, and
b2 = 16. Large (probably unnecessarily large, although this
was not thoroughly tested) values were chosen forK andN
to emphasize accuracy over performance. For comparison,
Ohbuchi et al. [5] has K = 2(10)3, N = (K)(K − 1)/2,
b1 = 64, and b2 = 8. Ohbuchi et al. computes (v1, v2) for
every pair of the K points sampled from the object.

Regardless of the large parameters, the calculation of the
AAD feature for each object took under half a second on a
modern cpu. A visualization of the distributions for several
objects is shown in Figure 1.

3.2. Data Augmentation and Normalization

The dataset was augmented by randomly scaling each
object four times before the creation of AAD shape distribu-
tions. Each dimension of each object was separately scaled
by a value chosen uniformly at random from the interval
[0.75, 1.25]. Random rotation was not performed because

4322



Table 1: Three neural network architectures tested. All con-
volutional layers are followed by batch normalization, and
all activations are Relu. In addition, dropout of 0.50 fol-
lows the first two FC layers. Note: there was an error in the
poster report. The 3-layer net is actually model C, a 7-layer
net.

Neural Network Configuration
A B C

input = (128, 16)
conv3-64 conv3-64 conv3-128
conv3-64 conv3-64 maxpool2x1

maxpool2x1 maxpool2x1 conv3-256
conv3-128 conv3-128 maxpool2x1
conv3-128 conv3-128 conv3-512

maxpool2x1 maxpool2x1 maxpool2x1
conv3-256 conv3-256 conv3-512
conv3-256 conv3-256 maxpool2x2
conv3-256 conv3-256 FC-2048

maxpool2x1 conv3-256 FC-2048
conv3-512 maxpool2x1 FC-55
conv3-512 conv3-512 soft-max
conv3-512 conv3-512

maxpool2x2 conv3-512
conv3-512 conv3-512
conv3-512 maxpool2x2
conv3-512 conv3-512
FC-4096 conv3-512
FC-4096 conv3-512

FC-55 conv3-512
soft-max FC-4096

FC-4096
FC-55

soft-max

the AAD feature is inherently invariant to rotation.
The training data, consisting of the generated AAD fea-

tures, was then mean centered and set to have standard de-
viation of 1 in each bin. Note that the resulting features are
no longer valid probability distributions.

3.3. Architecture

Several different neural network were trained on the
AAD features. Three of these are shown in Table 1. Models
A and B are VGG-16 and VGG-19 with modified pooling
layers (to account for the input features being of reduced
size). Model C reduces the feature size quickly through al-
ternating convolutional and pooling layers, and then con-
tains dense layers like the others. Batch normalization was
used after every convolutional layer, and dropout of 0.50
was added after the first two FC layers in each model. All

(a) An airplane. (b) A bench.

(c) An keyboard. (d) A chair.

Figure 2: Four models from ShapeNetCore. They are not
axis-aligned.

activations are Relu.

3.4. Training

The networks were implemented in Keras, and training
was performed on a NVIDIA 980Ti graphics card with a
batch size of 128. The optimizor chosen was Adam [3],
which was initialized with β1 = 0.9, β2 = 0.999, and ε =
10−8. The learning rate α was set initially to 0.001 and
reduced by a factor of 10 each time validation loss seemed
to stopped decreasing, a total of two times for each model.
Finally, regularization on the FC layers was set to 0.005 and
cross validation with a split size of 0.10 was used.

4. Dataset

At the time this experiment was being conducted, the
ShapeNet team at Stanford University was running a large-
scale 3D shape retrieval contest. For the contest, they re-
leased a subset of their dataset, ShapeNetCore, which con-
tained about 51300 models belonging to 55 common cate-
gories. The dataset was split into training, validation, and
test sets with proportions 70%, 10%, and 20%. True labels
were given for the training and validation sets but not for
the test set. As a result, this experiment discarded the pro-
vided test set and replaced it with the validation set. Cross-
validation was thus used on the training set in lieu of a sep-
arate validation set.

The class labels in ShapeNet are very long. One such la-

4323



Figure 3: Histograms of fscore, precision, and recall over
the test set. The red line in each figure denotes the mean.

bel is: “bag,traveling bag,travelling bag,grip,suitcase.” For
brevity and also because of some formatting issues, I have
manually reduced each of these labels as best as I could.
For example, I have changed the label mentioned above to
simply “bag.”

Four models from the dataset are shown in Figure 2.

5. Results and Analysis
All three models were able to achieve at least 80% ac-

curacy on the test set and 0.65 mean accuracy precision
(mAP). Training loss was consistently lower than valida-
tion loss with all models despite strong regularization, sug-
gesting that there was some overfitting. As a result, it is
possible that model A, the simplest model, could have been
simplified further without sacrificing performance. The re-
sults that follow are from model A; the other two models
achieved similar results.

5.1. Microstatistics

Precision, recall, and fscore for each of the 55 classes
are given in Table 2, and Figure 3 displays the histograms

Table 2: Results by class, sorted by fscore.

Class Label Precision Recall Fscore Support
bicycle 1 1 1 6
car 0.997 1 0.998 353
plane 0.950 1 0.974 405
guitar 0.974 0.95 0.962 80
laptop 0.92 1 0.958 46
rifle 0.952 0.940 0.946 237
bus 0.927 0.946 0.936 94
motorbike 0.891 0.970 0.929 34
chair 0.903 0.907 0.905 678
skateboard 1 0.8 0.888 15
knife 0.883 0.883 0.883 43
table 0.815 0.916 0.863 843
vessel 0.801 0.917 0.855 194
train 0.888 0.820 0.853 39
sofa 0.814 0.861 0.837 317
bathtub 0.891 0.776 0.830 85
bowl 0.761 0.888 0.820 18
handgun 0.729 0.870 0.794 31
faucet 0.769 0.8 0.784 75
lamp 0.765 0.745 0.755 232
phone 0.709 0.790 0.747 105
mug 0.727 0.727 0.727 22
display 0.745 0.697 0.720 109
bottle 0.815 0.62 0.704 50
can 0.666 0.727 0.695 11
helmet 0.565 0.812 0.666 16
pillow 0.833 0.555 0.666 9
bed 0.857 0.521 0.648 23
washer 0.6 0.705 0.648 17
bench 0.824 0.519 0.637 181
keyboard 0.5 0.857 0.631 7
cabinet 0.564 0.700 0.625 157
projectile 0.625 0.555 0.588 9
microwave 0.562 0.6 0.580 15
jar 0.581 0.542 0.561 59
speaker 0.652 0.468 0.545 160
earphone 0.5 0.571 0.533 7
piano 0.611 0.458 0.523 24
trash bin 0.515 0.5 0.507 34
birdhouse 0.6 0.428 0.5 7
bookshelf 0.469 0.511 0.489 45
dishwasher 0.384 0.555 0.454 9
printer 0.466 0.437 0.451 16
tower 0.32 0.615 0.421 13
clock 0.479 0.353 0.407 65
mailbox 0.6 0.3 0.4 10
file cabinet 0.666 0.2 0.307 30
stove 0.333 0.272 0.3 22
bag 0.333 0.25 0.285 8
cap 0.5 0.2 0.285 5
basket 0.333 0.181 0.235 11
remote control 0.25 0.166 0.2 6
pot 0.171 0.1 0.126 60
camera 0 0 0 11
microphone 0 0 0 7

4324



of these values. A normalized confusion matrix can addi-
tionally be found in Figure 4, at the end of this report.

The classifier performed extremely well on several
classes but very poorly on others. This difference in per-
formance might be explained by the fact that the AAD
distribution intuitively captures holistic depth and volume
information, which are fairly distinctive for some classes
and not so much for others. For example, bicycles, cars,
planes, and guitars–classes with the highest fscore–all have
easily distinguishable shapes. On the other hand, baskets
and pots and trash bins–classes with low fscores–all have
the same general shape: an open receptable that is (most
likely) curved around the perimeter. Corroborating this the-
ory, one common mistake the classifer made was to label
remote controls as phones. Both of these classes are box-
like objects with buttons, so it would make sense that the
AAD distribution feature could not do a good job distigu-
ishing between them.

5.2. Macrostatistics

80.72% accuracy on the test set was achieved with
0.655 mAP. For comparison, initial results from the on-
going ShapeNet retrieval contest show the best two per-
formers, Bai GIFT and SU MVCNN, attaining 0.730 and
0.662 mAP on a similar dataset (they evaluated their al-
gorithms on the competition test set, which was discarded
in this project–see Section 4). One interesting thing to
note is that both of these competition algorithms performed
better on axis-aligned models, getting mAP of 0.740 and
0.817 respectively. However, since AAD shape distribu-
tions are rotation invariant, the model presented in this pa-
per would still achieve the same performance, 0.655 mAP,
on axis-aligned models–which should theoretically be an
easier task.

5.3. Discussion and Future Work

The performance of the AAD shape distribution suggests
that it might be a good choice for a feature when the goal is
to classify objects that have distinctive shapes and volumes,
such as planes and cars. On the other hand, for classes that
have more subtle differences, such as different types of cars,
the AAD shape distribution won’t do as well.

Regardless, because of the ease of computing the AAD
shape distribution, the feature might be considered as an
simple way to boost the performance of existing models,
although this needs to be tested and is a good candidate for
future research.

It is entirely possible that as much performance has been
squeezed out of the 128x16 resolution AAD features as pos-
sible. This is suggested by the fact that models with a lot
of layers could not improve upon the result attained by the
simple 7-layer one. Future work may involve increasing the
resolution of the AAD feature to see if it addresses this is-

sue.

6. Conclusion
This paper introduces a new model for classifying 3D

objects using the AAD shape distribution. It shows that,
using a 7-layer net, 80% classification accuracy can be at-
tained on ShapeNetCore, a benchmark dataset. While this
result is not state-of-the-art, the simplicity of the model as
well as other nice properties of AAD–its invariance to rota-
tion, ease of calculation–make for an interesting discussion.

References
[1] CHANG, A. X., FUNKHOUSER, T., GUIBAS, L.,

HANRAHAN, P., HUANG, Q., LI, Z., SAVARESE,
S., SAVVA, M., SONG, S., SU, H., XIAO, J., YI,
L., AND YU, F. ShapeNet: An Information-Rich
3D Model Repository. Tech. Rep. arXiv:1512.03012
[cs.GR], Stanford University — Princeton University
— Toyota Technological Institute at Chicago, 2015.

[2] JADERBERG, M., SIMONYAN, K., ZISSERMAN, A.,
AND KAVUKCUOGLU, K. Spatial transformer net-
works. In Advances in Neural Information Process-
ing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 2017–2025.

[3] KINGMA, D., AND BA, J. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[4] MATURANA, D., AND SCHERER, S. Voxnet: A
3d convolutional neural network for real-time object
recognition. In Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on (2015),
IEEE, pp. 922–928.

[5] OHBUCHI, R., MINAMITANI, T., AND TAKEI, T.
Shape-similarity search of 3d models by using en-
hanced shape functions. International Journal of
Computer Applications in Technology 23, 2-4 (2005),
70–85.

[6] OSADA, R., FUNKHOUSER, T., CHAZELLE, B.,
AND DOBKIN, D. Matching 3d models with shape
distributions. In Shape Modeling and Applications,
SMI 2001 International Conference on. (2001), IEEE,
pp. 154–166.

[7] OSADA, R., FUNKHOUSER, T., CHAZELLE, B.,
AND DOBKIN, D. Shape distributions. ACM Trans-
actions on Graphics (TOG) 21, 4 (2002), 807–832.

[8] SU, H., MAJI, S., KALOGERAKIS, E., AND
LEARNED-MILLER, E. G. Multi-view convolutional

4325



neural networks for 3d shape recognition. In Proc.
ICCV (2015).

[9] WOHLKINGER, W., AND VINCZE, M. Ensemble
of shape functions for 3d object classification. In
Robotics and Biomimetics (ROBIO), 2011 IEEE Inter-
national Conference on (2011), IEEE, pp. 2987–2992.

[10] WU, Z., SONG, S., KHOSLA, A., YU, F., ZHANG,
L., TANG, X., AND XIAO, J. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition (2015), pp. 1912–1920.

4326



Figure 4: Normalized conflusion matrix.

4327


