
Using Convolutional Neural Network for the Tiny ImageNet Challenge

Jason Ting
Stanford University
jmting@stanford.edu

Abstract

In this project we work on creating a model to classify
images for the Tiny ImageNet challenge. We use Convo-
lutional Neural Networks trained on GPUs to classify im-
ages in the Tiny ImageNet data set to correctly identify the
images to the labels as well as possible. We train multi-
ple deep models to classify images on the test data set and
explore using ensemble techniques to improve the test set
classification accuracy.

1. Introduction
The goal of this project is to build a classifier for the

Tiny ImageNet data set to accurately classify images to their
label. This data set is a distinct subset of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) data
set, which consists of 200 different categories. In general,
we expect that similar techniques that work effectively on
the ILSVRC data set would also work effectively on the
Tiny ImageNet data set, so we plan to train and use similar
effective models and apply techniques that were successful
on ILSVRC in recent years for the Tiny ImageNet data set.

We approach problem through utilizing GPU as our pri-
mary computation device so that we can rapidly iterate
and train different neural network designs for the scale and
scope of this project.

1.1. Tiny ImageNet Challenge

The ImageNet [1] challenge (ILSVRC) is well-known
image classification and localization benchmark for large
scale data sets that has been held for six years. The ILSVRC
is an image data set organized according to the WordNet
hierarchy. The data set consists of 1000 different cate-
gories for image classification. The ILSVRC has a total
of 1,200,000 labeled images in the training set and 150,000
labeled images in the validation and test set.

The Tiny ImageNet data set is a distinct subset of the
ILSVRC data set with 200 different categories out of the
entire 1000 categories from ILSVRC. The images are given
in the JPEG format. Each image label has 500 training im-

ages (a total of 100,000), 50 validation images (a total of
10,000), and 50 test images (a total of 10,000). The test im-
ages are unlabeled, and bounding boxes indicating where
the label is located in the image are provided for the train-
ing and validation images only, although we do not use this
information to perform localized classification. The classi-
fier’s accuracy is defined as the percent of the test images
which are correctly classified through uploading the labels
for all of the test images produced by the classifier on the
evaluation server leader board.

1.2. The Data Set

The current best model achieves an error rate of 3.57%
[2] using a deep convolutional neural network. The Tiny
ImageNet challenge is a simpler version of this problem, so
ideally it should be possible to train a model that performs
better than the best model from ILSVRC. However, the
original pictures from the ImageNet data set are 482x418
pixel with an average object scale of 17.0%. Since the Tiny
ImageNet data set pictures are 64x64 pixels, 13.3% pixels
are removed from the original images to make the pictures
a square, and then these pictures are shrunk by a factor of
6.5. This transformation alongside with how the labels are
associated with the images leads to potential problems for
training the model, where some example images can be seen
in Figure 1.

In Figure 1(a) and Figure1(e), the label is difficult to
classify by human inspection in the image since the original
image was shrunk and the labeled object is scaled down in
the image. In Figure 1(b) and Figure1(f), the labeled ob-
ject is cropped out of the image. In Figure 1(c) and 1(g)
the image label is based on the background scenery, which
is different from most other images in the data set where
the labels are a object in the foreground. In Figure1(d) and
Figure1(h), the images are distinctively different from the
other images with their respective label. Because of these
problems, the models trained on the Tiny ImageNet data set
do not perform as well as the top model from the ImageNet
challenge.

1

(a) Yorkshire Terrier (b) Bow Tie (c) Bathtub (d) Banana

(e) Scorpion (f) Sunglasses (g) Umbrella (h) Comic Book

Figure 1: Some examples of images in the data set that are difficult to classify in the data set and potentially hurt the model.
The features that makes these images challenging to classify is the object scaling in (a) and (e), the cropping out of crucial
information in (b), (f), the image label based from the background scenery in (c), (g), and images distinctively different from
other images with the same label in (d), (h).

2. Background

The ILSVRC has been held for the past six years, pro-
ducing a variety of different models and techniques to clas-
sify images. In 2012, the best model Super-Vision used
Convolutional Neural Network with 60 million paramters
and introduced dropout to win the ImageNet challenge,
which established the basic structure of Convolutional Neu-
ral Network. The Visual Geometry Group (VGG) published
a paper explaining and analyzing this network [3]. In 2014
GoogLeNet achieved a 6.7% error rate for classifying im-
ages [4]. They introduce a multi-scale idea with intuitions
gained from the Hebbian principle and used a 22 layer depth
convolutional neural network. They acheived this depth
through dimension reduction layers. By 2015 the ResNet
model achieveda 3.57% error rate. This model reformulated
the layers as learning residual functions with reference to
the layer inputs, instead of learning unreferenced functions
and used a 152 layer depth Convolutional Neural Network
[2].

Even though the ResNet achieved the best performance
of ILSVRC, the 152 layer Convolutional Neural Network
took 2-3 weeks of training on 8 GPU machines, so training
a model similar to the ResNet is unfeasible for this project
because of resources constraint. Because of this, we plan
to utilize the learning techniques mainly from VGG and
GoogleLeNet, as well as other models, to develop our own

Convolutional Neural Network that is available for the scale
of our data and hardware.

3. Implementation

In this section we describe the packages used and the op-
timization algorithm used for creating and coding the con-
volutional neural network in details.

3.1. Theano

Theano is a library that allows users to define, op-
timize, and evaluate mathematical expressions involving
multi-dimensional arrays efficiently [5]. Theano combines
aspects of a computer algebra system (CAS) with aspects
of an optimizing compiler. It can also generate customized
C code for many mathematical operations, which can attain
speeds rivaling hand-crafted C implementations for prob-
lems involving large amounts of data. Furthermore, Theano
has transparent use of a GPU that supports CuDNN and CN-
Mem.

For the this project we use Keras, a minimalist, highly
modular neural networks library that that runs on top of
Theano [6], using the NIVDIA Tesla C2070 in order to
speed up training the convolutional neural networks.

Name Architecture Test Acc.
M1 IMG→ ConvReLU(F5-16)→ MaxPool→ ConvReLU(F3-16)→ MaxPool→

ConvReLU(F3-32)→MaxPool→ FCReLU(256)→ FC(200)
23.8%

M2 IMG→ ConvReLU(F5-32)→ ConvReLU(F5-32)→ MaxPool→ ConvReLU(F3-64)→
ConvReLU(F3-64)→MaxPool→ FCReLU(256)→ FC(200)

28.6%

M3 IMG→ ConvReLU(F5-32)→ ConvReLU(F5-32)→ MaxPool→ ConvReLU(F3-64)→
MaxPool→ ConvReLU(F3-128)→MaxPool→ FCReLU(256)→ FC(200)

34.2%

M4 IMG→ ConvReLU(F5-32)→ ConvReLU(F5-32)→ MaxPool→ ConvReLU(F3-64)→
ConvReLU(F3-64)→ MaxPool→ ConvReLU(F3-64)→ ConvReLU(F3-128)→ Max-
Pool→ FCReLU(256)→ FC(200)

39.3%

Table 1: The 4 convolutional neural networks and their respective test accuracy. The number of parameters are given for each
layer. For example, FC(200) means a fully connected layer with 200 neurons, while ConvReLU(FX-Y) is a conv-ReLU layer
Y filters of size X.

3.2. Optimization Algorithm

Training the convolutional neural network is done
through minimizing the softmax loss function, denoted by
L. The optimization algorithms used for training are based
on stochastic gradient descent (SGD). SGD updates the
model parameters W through moving in the direction op-
posite of the gradient is denoted by the following update
equation:

W ←W − η∇WL

where η is the learning rate hyperparamter. Using the mo-
mentum update helps the Neural Network models achieve
better convergence rates, where the parameter vector builds
up velocity in any direction that has consistent gradient. It
updates using the momentum variable µ which acts similar
to the coefficient of friction. We use the Nesterov Momen-
tum update rule in Theano when training the convolutional
neural network.

4. Technical Approach
In this section we describe the neural network designs

and techniques for the how we built neural network models
for the Tiny ImageNet classification in detail.

4.1. Network Architecture

We trained 4 Convolutional Neural Networks that varies
its filter and depth. These Convolutional Neural Networks
architectures are described in detail in Table 1. Network M1
is the simplest architecture with three convolutional layers
and one fully connected one. Network M2 has 4 convolu-
tional layers, with each layer having an extra convolutional
layers than M1 and larger size. The purpose of M1 and
M2 is the get an idea of the hyperparamter ranges to use
and generally architectures that perform decently on the test
data set. Network M3 is the network that we used to com-
bine the aspects of M1 and M2 and generate data for the
study of ensemble methods. It is 4 layers deep and is larger

than M2. We wanted a model that performs well and is
also relatively fast to train in order to perform the ensem-
ble method. Network M4 is the network that we used to
achieve the highest test accuracy. This is the deepest net-
work with the highest number of filters. Compared to M3,
it has more and larger filters with the pooling layers are in
different places.

4.2. Nonlinearities

There are several nonlinear activation functions that can
be used used as the output layer of each convolutional
neural network layer, such as the sigmoid function and
the tanh function. The most commonly used function in
modern convolutional neural networks is the rectified lin-
ear unit, or ReLU, which computes the function f(x) =
max (0, x). Another activation function is Leaky ReLU,
which addresses the problem where a large gradient up-
dates the weights such that the neuron will never activate
on any datapoint again. This function computes the equa-
tion f(x) = 1(x < 0)(αx) + 1(x >= 0)(x) where α is a
small constant.

We experimented with the activation functions through
comparing the performance of different activation functions
on the same neural network architectures. Leaky ReLU and
tanh had negligible impact in the model performance com-
pared to the ReLU activation function, so ReLU is used for
all the models for this project.

4.3. Data Augmentation

We used some image preprocessing techniques to im-
prove training the convolutional neural networks. We used
mean subtraction, which involves subtracting the mean
across every individual feature in the data, and normaliza-
tion, which normalizes the data dimensions so that they are
of approximately the same scale. Moreover another method
includes mirroring, which flip images horizontally, for the
training images, which helped improve the test accuracy of

Figure 2: Training and Validation Loss of M4 vs. Epoch
while training the model

the models.

4.4. Regularization

Because deep convolutional neural networks have a lot
of parameters, there are several ways of controlling the ca-
pacity of the model to prevent it from overfitting. We used
L2 regularization, which penalizes the squared magnitude
of all parameters directly in the objective by adding the term
λ||W ||22 to the loss function to each layer, where λ is the
hyperparameter that determines the regularization strength
and ||W ||22 is the L2-norm of the weights of the layer. We
used λ values between 10−5 and 10−2 for the various net-
works.

Another regularization technique we used alongside
L2 regularization in the models is dropout regularization.
While training, dropout is implemented by only keeping a
neuron active with some probability p or setting it to 0 other-
wise. For all the neural network models we used a dropout
later with p values between 0.4-0.6 for all the fully con-
nected layer except for the last layer.

5. Implementation
This section discusses the parameters and performance

of the deepest and best performing model M4 in greater de-
tail.

5.1. Training

We selected the parameters of training M4 through
cross validation centered around standard effective hyper-
parameters for convolutional neural networks. We trained
M4 using a regularization strength of λ = 10−3, dropout of
p = 0.5 for each layer for a total of 150 epoch. The learn-
ing rate was initialized to 0.01 and multiplied by 0.85 every
10 epoch to decay the learning rate over time. The µ in the
momentum was set to 0.9. Using the these hyperparamters

Figure 3: Training and Validation Accuracy of M4 vs.
Epoch while training the model

Figure 4: Visualization of the first layer of the convolutional
neural network M4. The first-layer weights are very nice
and smooth with noticable patterns, indicating nicely con-
verged network.

M4 achieved a test accuracy of 39.3%. The improvement
of the model’s loss value and accuracy over each epoch are
shown in figure 2 and 3 respectively.

5.2. Visualization

Figure 4 shows the visualization of the first layer of M4.
The weights are useful to visualize because well-trained
networks usually display nice and smooth filters without
any noisy patterns. Noisy patterns can indicate that the net-
work that may not have been trained for long enough, or

possibly a very low regularization strength that may have
led to overfitting.

5.3. Predicting Image Classes

We can use the trained convolutional neural network to
measure the accuracy of each class separately. Since we
have 50 images for each class, we can compute the frac-
tion of the classes for each image that are classified cor-
rectly by M4. The class with the lowest accuracy is the
class ”wooden spoon” with an accuracy of 2% and the class
with the highest accuracy can is the class ”school bus” with
an accuracy of 86%. Some examples of the images with
the label ”school bus” and images with the label ”wooden
spoon” can be visualized in Figure 5 and Figure 6 respec-
tively.

The model’s performance for the classes suggests some
important image properties that the model uses to classify
the images. The scale of the image is important for accu-
rately predicting the class of the image. In the ”school bus”
class, the labeled object takes up the majority of the image,
whereas the ”wooden spoon” class the labeled object con-
sists of a spectrum of different sizes, where the ”wooden
spoon” is not necessarily in the forefront of the image. Fur-
thermore, the convolutional neural network relies heavily
on the color composition of the image. The ”school bus”
class has images composed of the similar yellow color for
most of the images, whereas the ”wooden spoon” class has
a variety of different colors that make up the images. More-
over, a property that makes it hard for the classifier to pre-
dict the right class is the shape of the object. For example
in Figure 6 in the ”wooden spoon” class, the shapes of the
spoon in each picture vary greatly from each other, which
makes the images in the class very different from each other,
whereas in the ”school bus” class in Figure 5 the school bus
is usually rectangular.

6. Ensemble Method
This section discusses using ensemble methods, which

uses various methods to combine different models in or-
der to improve the performance of the neural networks. As
the number of models in the ensemble increases, the per-
formance typically monotonically improves, where the im-
provements are more dramatic with higher model variety in
the ensemble.

6.1. Using Model Ensemble

We form the model ensemble through using the top
models discovered during cross-validation. We used cross-
validation to determine the best hyperparameters, then pick
the top few models to form the ensemble. We used a set
different set of hyperparameters using the M3 architecture
to produce 6 models for the ensemble method. Because of
resource constraint we trained the model for 75 epoch.

Figure 5: Images from the class ”school bus.” The best con-
volutional neural network classifies images from this class
most accurately. Many the pictures in this class consists of
a shade of yellow, the color of the class, and has the labeled
object scaled largely in the image.

Figure 6: Images from the class ”wooden spoon.” The best
convolutional neural network classifies images from this
class least accurately. Many the pictures in this class con-
sists different colors, are scaled differently in the image,
have shapes that vastly differ, and usually consists of other
prominent subjects in the pictures.

A simple way to implement an ensemble of models is to
average the predicted probabilites for each model in the en-
semble. More precisely, suppose we have models k models
m1, . . . ,mk and we want to combine them into an ensem-

Figure 7: Validation accuracy of the ensemble model using
different combination of models.

ble. If p(x = yi | mj) is the probability that the input x is
classified as yi under model mj , then the enemble predicts

p(x = yi | {m1, . . . ,mk}) =
1

k

k∑
j=1

p(x = yi | mj)

6.2. Ensemble size vs Performance

Using the 6 variations of M3, we can form many differ-
ent ensembles of different sizes. For example, if we have n
models and we want to form an ensemble of k models, then
there are

(
n
k

)
possible ensembles that we can form, where(

n

k

)
=

n!

(n− k)!k!
We can use these different possible ensembles to study

the effect of ensemble size on ensemble performance. Fig-
ure 7 shows the performance of the validation set accuracy
of all possible ensembles. The ensemble model with k =
6 has 39.8% accuracy, which is better than the M4 perfor-
mance and achieved the highest accuracy..

7. Conclusion
This projects used convolutional neural networks for per-

forming image classification on the Tiny ImageNet data
set. We trained and tested the performance of several mod-
els M1-M4 which varies in degrees of complexity. We
trained M4 as our deepest and best performing model,
which achieved an accuracy of 39.3%. Furthermore we
used ensemble methods for the model M3 to improve the
overall test accuracy to get an accuracy of 39.8%. By the
end of the course we were ranked 7th on the course’s eval-
uation scoreboard.

Some ideas for further improvements in the performance
include fine tuning different parameters for all the models

and try out more models in the ensemble method. Given
the time and resources for the project parameter optimiza-
tion was limited. More importantly potential performance
boosts includes using convolutional neural networks with
deeper layers similar to the best performing models from
the ILSVR, but hardware resources was the biggest factor
of not training and utilizing deeper neural network mod-
els. As suggested earlier, images that are difficult for hu-
mans to label such as the images from Figure 1 can be re-
moved from the data set before training the models. More-
over more types of data augmentation can be implemented
such as color jittering and random cropping. The bound-
ing box of the labels indicating where the image is located
was not utilized in this project, so recurrent neural network
models can potentially be used or creating a filter to help
preprocess the image based on the area of the bounding box
such as image cropping can potentially be implemented to
improve the performance.

References
[1] “Imagenet.” http://www.image-net.org/. 1

[2] K. He, X. Zhang, S. Ren, and J. a. Sun, “Deep residual learn-
ing for image recognition,” arXiv preprint arXiv:1512.03385,
2015. 1, 2

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Return of the devil in the details: Delving deep into con-
volutional nets,” CoRR, vol. abs/1405.3531, 2014. 2

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, , and Rabinovich, “Going deeper
with convolutions,” IEEE, 2015. 2

[5] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfel-
low, A. Bergeron, N. Bouchard, and Y. Bengio, “Theano: new
features and speed improvements.” Deep Learning and Unsu-
pervised Feature Learning NIPS 2012 Workshop, 2012. 2

[6] F. Chollet, “Keras.” https://github.com/
fchollet/keras, 2015. 2

http://www.image-net.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras

