
Invasive Species Detection

Christy Dennison Charles Hale
{cdenn,cphalepk}@stanford.edu

Stanford University

Abstract

Invasive species can cause devastation for native
species. It is crucial that invasive species can be quickly
and accurately identified so they can be removed. A Kaggle
competition aims to find the best software-based solution
for detecting invasive hydrangea in a forest environment.
We experimented with several variations of transfer learn-
ing, input preprocessing, and input resizing to explore how
best to apply CNNs to solve this problem. We found an en-
semble of modified ResNet and VGG models achieves up to
99.36% accuracy on the test set.

1. Introduction

With unprecedented levels of global human activity,
many plant species have found new homes in foreign lands.
These plants, unchecked by natural competitors, can be
detrimental to their foreign environments, and are therefore
labeled “invasive species”[9]. In order to curb the damage
caused by invasive plants, it is imperative that non-experts
be able to identify and report them so that they may be re-
moved swiftly. Ecologists are hosting a Kaggle competition
to see if computers can accurately identify invasive species
in photos. We found that this problem is very tractable with
deep convolutional neural networks (CNNs), as introduced
in [17].

2. Background

The Kaggle competition “Invasive Species Monitoring”
to detect invasive hydrangea seeks to advance software that
can quickly identify invasive species in a forest scene image
[3]. The dataset has images that either contain hydrangea
in them or do not, which makes this a binary classification
problem. Submissions to Kaggle must give a probability
that the invasive species is in the image for each image in the
test set. We entered this competition using an application of
Convolutional Neural Networks. Our goal was to get as far
up the leaderboard for this competition as possible.

2.1. Competition Evaluation

The competition’s loss function is the area under the
ROC curve, so we wanted our submission scores to di-
rectly correspond to actual probabilities or overall confi-
dence. Softmax loss was the most appropriate loss function
for this problem, since we wanted to push our predictions
as close to 0 or 1 as possible.

2.2. Dataset

The Kaggle dataset has 2295 training images (which we
split 80/20 for training and validation) and 1531 test im-
ages. All images are 866x1154 pixels in size. A typical
training image can be seen in figure 1. About two-thirds
of the training set are positives, and most of the positive
images have full-frame hydrangea bushes, like in the typi-
cal image. There are also a significant number of images
that have only small portions of the image occupied by hy-
drangeas, sometimes without their flowers. The negative
images are mostly forest scenes without hydrangea, as can
be seen in figure 2. Occasionally they contain other features
such as lakes, horses, sheds, or people.

Figure 1: Typical positive training image

2.3. Previous Work

The literature yields ubiquitous examples of using CNNs
for binary classification problems similar to this one.
Many papers experiment with several popular architec-

1



Figure 2: Typical negative training image

tures and compare their performance on their particu-
lar dataset. For instance, [16] used ResNet[12] and a
standard deep convolutional network for classification of
brain MRI data and saw almost no difference between
the two. [10] used simple 3-layer CNN architectures,
Conv/ReLU[21]/Norm[14]/Pool, for determining the age of
a face (if age is greater or less than k), and found using
CNNs for binary classification to be very effective. [20]
used a single layer for binary classification, and achieved
reasonable results given the depth of the network with aver-
aging ensembles and transfer learning.

However, we recognized that binary model performance
may heavily depend on the particular idiosyncrasies of our
problem and dataset. We sought to investigate previous
work specifically involving plants. We found most other
plant classification problems, such as in [22], [7], and [18],
involve full-frame photos of the plant leaf with the back-
ground removed, rather than in a natural environment. One
paper that investigated classifying plants in their natural
environment used ResNets of various depths[27], but the
plants were usually always in full-frame. Our dataset con-
tains many images where hydrangeas only appear at the
margins or are occluded. Few papers feature a need for clas-
sification without regional detection, so the literature on this
subject is limited.

Additionally, we reviewed the discussion section of the
competition’s page on Kaggle and found that not much
had been said about this particular dataset or methods used
for good performance, as the competition is still ongoing.
However, some had claimed they were able to get up to 98%
accuracy using simple transfer learning with VGGNet.

Furthermore, we reviewed other binary classification
challenges on Kaggle. We found the interview with the win-
ner of the “Cats vs Dogs” competition[26] to be particularly
insightful. Most top performers on Kaggle use large model
ensembles that simply average the results of each model’s
prediction. We replicated this approach for our best results.

3. Method
3.1. Baseline

To have a baseline for which we could compare how
well we should expect our later models to reasonably per-
form, we trained a 3-layer convolutional neural net, using
BatchNorm[14], ReLU[21], Max Pooling, and Dropout[25]
with the following architecture:

[CONV-BatchNorm-ReLU-Pool]*3 ->
Affine-BatchNorm-ReLU-Dropout-Affine

3.2. Transfer Learning

Since the dataset is relatively small (2295 training im-
ages is not enough to train a good model), we also used
transfer learning against a set of pre-trained models, focus-
ing on ResNets[12] and VGGNets[24] of various sizes that
were pre-trained on ImageNet[8]. There is a range of meth-
ods that can be used to apply these pre-trained models to a
new dataset.

The first step is always replacing the last fully-connected
layer; this is necessary to output the classes of the new in-
puts. In our case, we replaced the last fully-connected layer
with a final dimension of 2, with 0 meaning “invasive not
present” and 1 meaning “invasive present”.

Additionally, we explored a range of methods for retrain-
ing the adjusted models to our dataset, including:

• Train the last layer only

• Train the first and last layers only

• Train the entire network

We tried all of these methods in our experiments.

3.3. Image Size

The primary challenge we had to overcome when using
pre-trained models was adapting the input images’ size. The
standard pre-trained ResNet and VGG available in PyTorch
require images of size 224x224x3 pixels. With the train-
ing and validation images in our dataset having 866x1154x3
pixels, we had to explore different approaches for resizing
them to fit into the pre-trained models.

3.3.1 Resizing Approaches

We experimented with all of the following methods for re-
sizing dataset images to fit into our pre-trained models:

• Insert a convolutional layer at the beginning such that
we scale the input down to size 224x224.

• Crop the input randomly to a square size (866x866),
then rescale using Lanczos interpolation[23] to
224x224.

2



• Insert a Spatial Pyramid Max Pool[11] layer at begin-
ning as a form of preprocessing to scale the image to
224x224.

• Resize the input image to 224x224 using Lanczos in-
terpolation.

3.4. Preprocessing methods

We experimented with the following ways of preprocess-
ing the image pixels:

• Normalize the input images with the means and stan-
dard deviations from ImageNet

• Normalize the input images with the means and stan-
dard deviations from the dataset itself

Source R G B
Dataset Mean 0.4249 0.4764 0.3832
Dataset Std Dev 0.0819 0.0810 0.1059
ImageNet Mean 0.485 0.456 0.406
ImageNet Std Dev 0.229 0.224 0.225

Table 1: Means and Standard Deviations

As can be seen in table 1, the dataset means are relatively
close to the ImageNet means compared to the standard devi-
ations. The difference between the standard deviations can
be attributed to the fact that our dataset images are mostly
green and brown (trunks, ground), unlike ImageNet, which
has a wide range of images from 1000 different classes.

3.5. Evaluation

To evaluate the results of each of our experiments, we
compared accuracy against the validation and test sets and
examined ROC curves, since ROC curves are used for the
competition’s evaluation. We also inspected images that
were misclassified to evaluate the qualitative results. We
conducted experiments comparing each class of methods in-
dependently. For example, to test how we should train our
networks, we evaluated models’ performance after training
with each method, while keeping all other variables con-
stant (like how we resize or preprocess the inputs). Simi-
larly, when comparing the performance of our various pro-
posed preprocessing methods, we trained each of the net-
works the same way, etc.

Of all the methods we tried, once a method was shown
to be best, we moved forward with the other experiments
using that best method and did not try every combination of
methods due to limited time and computational resources.

4. Experiments
All code used for these results is available publicly at [2].

Code for saliency maps, fooling images, training code, and
other code can be accredited in part to [1].

We used an assortment of ResNet and VGG pre-trained
models with results reported in table 2 for ResNet18, table
3 for other models, and table 4 for ensembles. We discuss
these results below. Note that there are few test accuracies
listed because Kaggle limits the number of submissions per
day to 3, so we did not submit until we believed the submis-
sion could do better than our previous submission.

All ResNet pre-trained models were trained for 2-5
epochs depending on what produced the most accurate re-
sults; overfitting must be occurring after the 2nd-5th epoch
to explain the lower validation accuracies. For VGG, 5
epochs produced the most accurate results on the validation
set. All training used the Adam[15] optimizer. We tuned
the hyperparameters of the networks on a case by case ba-
sis based on validation results after 1 training epoch. Most
learning rates were around 10−4. The regularization con-
stant (weight decay) for most models was around 10−2.7.

4.1. Simple Model

The simple model produced a 60% accuracy on the vali-
dation set within 2 epochs training on the training data, af-
ter which its validation accuracy did not climb. Without a
larger dataset, it was difficult to see how we could achieve
better performance with this model. This was clearly not
good enough to enter into the competition, where the top
ten entries are 0.99 AUROC or higher. We concluded we
had to use transfer learning to make any reasonable entry
into this competition.

4.1.1 Learning Method Results

Training only the first and last layers of a modified pre-
trained ResNet18 performed better than our simple base-
line model, with 92.94% accuracy on the validation set.
Training only the last layer proved to be ineffective, scor-
ing at only 87.11% accuracy on the validation set. Given
that the worst entire-network-trained model scored 95.44%,
we abandoned all other techniques in favor of retraining the
entire network for the rest of our experiments.

4.1.2 Resizing

4.1.2.1 Convolutional Layer

We used a number of different methods for resizing the
dataset images. We first tried replacing the first layer
with a convolutional layer whose output dimensions were
224x224x3: Our original input size was 866x1154x3 so we
first cropped the images to size 866x1120x3, and then sent

3



Figure 3: Randomly cropped difficult image with original.
Note the hydrangea bush is almost completely excluded by
the random crop.

them through a convolutional layer with 3 filters with size
5x7 at a stride of 4x5 and padding of 13x3.

Replacing this first layer with this downsizing convo-
lutional layer had unimpressive results, at best scoring
90.21% accuracy on the validation set. We concluded that
the first layer of a pre-trained network has vital informa-
tion for the rest of the downstream filters. We simply do
not have enough data to train this first layer effectively, and
so replacing this first layer can only yield poor results. We
replaced only the last layer for the rest of our experiments.

4.1.2.2 Random Cropping

A standard approach to resizing is simply to crop the image
to a square and then scale down to the desired size. This
technique preserves the aspect ratio. To keep the cropping
as equal as possible, we used random cropping. However,
the downside of cropping is that important information at
the boundaries of the image can be lost. We found that
this was especially the case for some of the more difficult
images in this dataset, where 25% of the image was being
eliminated by cropping. Additionally, several of the trickier
training and validation images had the bulk of the image’s
hydrangeas in that last quarter of the picture, for instance, in
figure 3, which almost completely excludes the hydrangeas.

Furthermore, the positive images generally do not fea-
ture hydrangeas in a consistent region. Many images fea-
ture Hydrangeas on the edges, or shifted to one side, etc.
Additionally, some plants may be occluded with a random
horse blocking half the image, etc., so the network did not
get a perspective of the hydrangeas that was consistent.

With an accuracy of 96.81%, this cropping technique
performed better than changing the first layer into a down-
sizing convolutional layer, but results were wildly inconsis-
tent between runs, with a standard deviation of 1.4, com-
pared to 0.97 with the scaling technique.

The saliency maps of the incorrectly classified results in
figure 4 were as expected. They showed the networks were
correctly focusing on the Hydrangea flowers, but simply

Figure 4: Random cropping false negative with saliency
map

were not confident enough to give the correct score. The
cropped image just barely missed where the bulk of the hy-
drangeas were in the image (see original in figure 5), leading
to a false negative.

Figure 5: Original image from random cropping from fig. 4

4.1.2.3 Spatial Pyramid Max Pool

Another resizing approach we experimented with was us-
ing a Spatial Pyramid Max Pool[11] layer at the beginning.
Pooling layers typically appear in the middle of network ar-
chitectures as a way to reduce memory cost and focus only
on the largest signals. Using a pooling layer at the begin-
ning of a network is usually ill-advised since the raw sig-
nals from an image are the pixel values corresponding to
the color in the image, and color can be a bad signal for
classification, especially in our test set where the majority
of the pixels from the dataset are green. However, the Spa-
tial Pyramid Max Pool layer has the advantage of perform-
ing pooling and resizing, which is great for CNNs where
datasets have dynamically sized inputs; this pooling layer is
needed before any fixed-size input layer.

As a preprocessing layer, Spatial Pyramid Max Pooling
layer amounts to simply resizing the input using maxing
rather than interpolation. In our experiments, it performed
better than random cropping at 97.27%, but there was likely
room for improvement when we knew that the pooling layer

4



Figure 6: Spatial Pyramid Max Pooling false negative with
saliency map

was not used as intended: our inputs do not have dynamic
sizes. Interestingly, this method produced no false positives
in the best case, which no other model achieved except for
the best ensemble.

The saliency maps for using Spatial Pyramid Max Pool-
ing (in figure 6) were interesting.

Compared to those for random cropping, these maps
look nearly blank. The signals that come across are much
more subdued. We suppose that the pooling layer kills a
lot of important information. Therefore, by the time the re-
duced image is processed at the end of the network, there
are very weak signals to work with. The focus is still cor-
rectly placed on the hydrangea bush, but it is harder to see.

4.1.2.4 Lanczos Scaling

Lanczos[23] scaling is a technique for downsizing images
that is not as fast as other techniques, but preserves quality
very well[5]. We scaled the images directly down to size
224x224, essentially “squishing” the images. The mean run
using this technique produced 98.18% accuracy on the vali-
dation set, which was the best performance we encountered
among techniques for resizing our inputs. We used Lanczos
scaling for the rest of the experiments.

Notably, the same image in figure 6 that the Spatial Pyra-
mid Max Pooling model misclassified was also misclas-
sified by our model using this scaling method. However,
comparing the saliency maps, we see this model is focusing
on the wrong part of the image in figure 7. The difference
could be explained by the pooling layer pooling a specific
bright color that corresponds to the leaves of the hydrangea
(the leaves of the hydrangea bush appear to be brighter than
other leaves in the image), but we are not exactly sure.

4.1.3 Preprocessing Methods

As can be seen in rows 3-12 of table 2, all types of normal-
ization preprocessing performed worse in all cases except
for random scaling than simply having no normalization.
Using the dataset’s means and standard deviations tended

Figure 7: Lanczos false negative with saliency map

to perform better than using ImageNet’s. This may be be-
cause the ImageNet normalization introduces an unhelpful
bias. We found these results especially surprising since the
pre-trained models were all originally trained with this pre-
processing.

4.1.4 Other Methods

4.1.4.1 Change Validation Set Size

We were using an 80/20 split for our training and valida-
tion sets from the training set that was provided by Kag-
gle, but we were able to get better results when our models
had more information. We decided to try changing the ra-
tio to 90/10. This improved the validation score slightly
from 98.18% to 98.23%, and improved the test score from
98.54% to 98.79%. However, when all of the models were
re-trained on this split, we got worse results for validation
and test, as can be seen in table 3 and 4. Note that the val-
idation accuracies are not completely comparable since the
validation set is now cut in half, but notably all ResNets ex-
cept ResNet18 got 4 incorrect in the 90/10 validation set,
but ResNet101 and ResNet152 only got 3 incorrect in the
80/20 split; VGG13 got 2 fewer incorrect and ResNet18 got
none incorrect in the 90/10 split. The final ensembled sub-
mission to Kaggle gave us AUROC of 99.2%, which was
greater than our validation accuracy of 98%. Since our test
and validation accuracies were not wildly lower than train-
ing accuracies, we know our models were not overfitting.
Instead, we believe that this did not end up improving our
score because using the 90/10 split gave us a validation set
that was too small to give us an accurate estimate for gener-
alization error. As a result, our hyperparameters were cho-
sen sub-optimally and did not give us the benefit of having
the extra training data.

4.1.4.2 Train on Errors

Given the better results from changing the validation set, we
explored how we could get better performance by adding

5



some supervision to how we split the training and valida-
tion set. We tried a somewhat unconventional approach
where we trained the model with the incorrectly classified
training or validation images again, as can be seen in the
last two rows of table 2. Training again with the incorrect
training images decreased the accuracy against the valida-
tion set, most likely because we started to overfit. Train-
ing with the validation images improved both validation and
test accuracy by more than a whole percentage point, from
98.18% to 99.23%, which makes sense given that we are
obtaining more information about the set we were validat-
ing against. However, other nets, such as ResNet34 and
ResNet50, did not gain in validation accuracy from this ex-
tra training, while ResNet18, ResNet101, and ResNet152
did.

4.1.5 Ensembling

We used Resnet18 for all of our experiments. Since we then
knew what approximately produced the best results, i.e., re-
training the whole network, using Lanczos interpolation to
resize inputs with no input normalization on a 80/20 percent
split between training and validation sets, we were able to
quickly replicate good results using other models. As such,
we trained ResNet34, ResNet50, ResNet101, ResNet152,
and VGG13 models, with accuracy results in table 3. (We
attempted training SqueezeNet[13] as well, but even with
extensive hyperparameter tuning, we were not able to get
over 97% accuracy on the validation set, so SqueezeNet was
abandoned.) The main goal with creating these other mod-
els was for use in an ensemble. Results for the ensemble are
available in table 4. We tried three methods for combining
the results of the outputs from the different ensembles.

4.1.5.1 Max Probability

The first method for combining the results from the mod-
els in the ensemble was to take the maximum probability.
Whichever of the models was most confident, we would
trust that model with the result. However, this technique
saw a near percentage point difference between the vali-
dation results and test results. This is most likely because
while a model may be highly confident, that reason for con-
fidence may not be correct, and the different models may be
less confident but the consensus between these others can
be more meaningful and correct. To measure the consensus
between these models, we tried averaging.

4.1.5.2 Average Probability

Instead of taking the maximum result, we averaged the out-
put probabilities from each model for each image. This
gave us by far the best test accuracy, despite sub-optimal
validation accuracy. The deviation between the validation

accuracies and test accuracies for maxing and averaging
may be because picking the most certain model can incur
much more loss when all or one of the models is confidently
wrong. These penalties end up outweighing the small per-
formance increase seen where the models were right.

4.1.5.3 Average Probability with Exponential Weight-
ing

One problem with averaging the probability scores is that
models that had lower validation accuracy scores were still
weighted as much as those that had higher scores. What
we actually have with a set of well-performing models is a
class of experts. By creating an ensemble, we are trying to
find the best way to combine each model’s opinion in a way
that gives us the best performance. The theory of compe-
tition between a class of experts is a well developed field
of statistics[4], particularly in non-Bayesian statistical De-
cision Theory. This theory suggests that when making se-
quential decisions, we should weight each “expert” (model)
according to how correct it was for a particular timestep.
For our specific problem, this translates to weighing the
probability scores for each of our models in proportion to
the model’s validation set error, as seen in [4]. These meth-
ods are usually used for online learning and weighting of
experts, where we see how each of our experts perform over
time, e.g., following the stock market. Since we only have
two epochs that we care about (accuracy on the validation
set and accuracy on the test set), we only have 1 timestep
of exponential weighting. In simple words, we weight the
scores given by each model according to the negative expo-
nentiation of its error rate:

wm = e−error ratem (1)

pimage =

∑M
m=1 wmscorem∑M

m=1 wm

(2)

where M is the number of models in the ensemble.
While this approach increased our validation accuracy

for the ResNet/VGG ensemble in table 4, our test accuracy
decreased, suggesting that our greater “experts” were not as
strong on the test set as the validation set, relative to their
peers. This result is not terribly surprising considering the
performance of exponential weighting only enjoys optimal
theoretical guarantees as t → ∞. Additionally, validation
set error can only be thought of as an estimate of the true
expert’s performance, since it comes from a small sampling
of the overall class of images we care about, so theory might
also require that n be large.

4.2. Best Approach

By far, the VGG and ResNet ensemble using averaged
probabilities performed the best, and brought us up to 5th

6



place on the leaderboard, from 12th with the ResNet ensem-
ble, and 21st from the best ResNet model. Our ROC curve
is impressive, almost a straight horizontal line in figure 8.

Figure 8: Ensemble ROC Curve

When looking at each of these models, it is interesting to
note that each mostly got a different set of images incorrect,
so averaging these results means that these individual losses
don’t equate to a loss for the whole.

4.2.1 Saliency Maps

As can be seen in figure 9, the image that the ensemble in-
correctly classified as a negative is a tough image to classify,
with the flowers far in the background, unlike many of the
other images that have the hydrangea flowers in full-frame
(see figure 1). The saliency map for one of the models that
got the image incorrect (ResNet101 in this case, but there
were others) shows that the model is again focusing on the
correct spot, but it as a whole the ensemble is not confident
enough to classify this image as a positive.

As can be seen in figure 10, the image that the ensemble
incorrectly classified as a positive is also tough image to
classify. The saliency map for one of the models that got
the image incorrect (again ResNet101 in this case, but there
were others) shows that the model is focusing on a spot that
has bunched flowers, and the bright spot in the saliency map
shows the confidence that this model (and others) have.

Figure 9: Ensemble false negative with saliency map

Figure 10: Ensemble false positive with saliency map

4.2.2 Fooling Images

We “fool” the network by using gradient ascent to mod-
ify the image to be classified as the correct class. In figure
11 we can see that the background flowers are emphasized,
even visibly in the fooled photo. In figure 12, we can see
that the white flowers are also changed, likely deempha-
sized, even visibly in the photo, and the surroundings are
emphasized, likely to draw attention away from the flowers.

Figure 11: Ensemble fooling false negative to positive

Figure 12: Ensemble fooling false positive to negative

4.3. SSD Attempt

Based on the errors made by our best model ensemble,
we had reason to believe an attention-based model may be
best for this problem. Most errors were due to hydrangea
flowers that were far in the background, as in figure 9, so
we thought that a model with the ability to zoom in on im-
portant regions and classify them at a more reliable scale
could be key to tackling these edge cases. SSD [19] was
implemented based on [6]. We attempted to work this code
into our problem again using transfer learning. However,
procuring the training data required us to manually label

7



images by drawing bounding boxes around the flowers. We
found that we had insufficient time to make a training set
with meaningful size to train a reliable SSD model. In a
future attempt, Mechanical Turk could be used to speed up
this process.

5. Conclusion
By analyzing the false negatives and positives of our net-

work, we conclude that hydrangea detection is very reliably
and accurately solved using transfer learning with a CNN
ensemble and Lanczos scaling for input resizing. However,
this method is less reliable for photos where hydrangea are
far in the background or are at a small scale. We believe
that an attention-based model with a larger dataset would
be able to overcome these limitations.

6. Thanks
A special thanks is warranted specifically to Timnit and

Leo for their help on this project, but also the entire course
faculty and staff for creating such a fun and interesting
class. This class was exceptionally well-run and has made
us excited for the future of ML. Thank you for helping us
learn such a critical path for the future!

ResNet18 Model Setup Val Test
Insert conv layer for scaling 90.21
Insert conv layer for scaling, only
change first and last 92.94

Random crop w/o norm. 96.81
Random crop w/ ImageNet norm 95.44
Random crop w/ dataset norm 97.72
Spatial Pyramidal Pooling w/o
norm. 98.18

Spatial Pyramidal Pooling w/ Ima-
geNet norm 97.27

Spatial Pyramidal Pooling w/
dataset norm 97.72

Lanczos Scaling w/o norm. 98.18 98.54
Lanczos Scaling w/ ImageNet norm 97.49
Lanczos Scaling w/ dataset norm 97.49
Lanczos Scaling w/o norm., 90/10 98.23 98.79
Lanczos Scaling w/o norm., change
only last layer 87.11

Lanczos Scaling w/o norm., plus
train on training errors 97.95

Lanczos Scaling w/o norm., plus
train on validation errors 99.32 98.81

Table 2: ResNet Variations

Other Models Setup (w/o norm) Val Test
ResNet18 Lanczos Scaling, 90/10 100.00
ResNet34 Lanczos Scaling, 90/10 98.00
ResNet50 Lanczos Scaling, 90/10 98.00
ResNet101 Lanczos Scaling, 90/10 98.00
ResNet152 Lanczos Scaling, 90/10 98.00
VGG13 Lanczos Scaling, 90/10 97.50
ResNet18 Lanczos Scaling (prev.) 99.32
ResNet34 Lanczos Scaling 99.09
ResNet50 Lanczos Scaling 99.09
ResNet101 Lanczos Scaling 99.32
ResNet152 Lanczos Scaling 99.32
VGG13 Lanczos Scaling 98.17

Table 3: Other Pre-Trained Models

Ensemble Model Setup Val Test
ResNet (18, 34, 50, 101, 152), max 99.54 98.33
ResNet (18, 34, 50, 101, 152), ave. 99.32 99.16
VGG13 + ResNet (18, 34, 50, 101,
152), max 99.77 98.39

VGG13 + ResNet (18, 101), ave. 99.32
VGG13 + ResNet (18, 101, 152),
ave. 99.54 99.24

VGG13 + ResNet (18), ave. 99.77 99.20
VGG13 + ResNet (18), ave., 90/10 99.50 98.93
VGG13 + ResNet (18, 152), ave. 99.77 99.20
VGG13 + ResNet (18, 34, 50, 101,
152), ave., error weighting, 90/10 100.00 99.20

VGG13 + ResNet (18, 34, 50, 101,
152), ave., 90/10 98.00 99.23

VGG13 + ResNet (18, 34, 50, 101,
152), ave., error weighting 99.77 99.32

VGG13 + ResNet (18, 34, 50, 101,
152), ave. 99.54 99.36

Table 4: Ensembles

8



References
[1] CS231N assignments. cs231n.github.io. Accessed:

2017-06-10.
[2] Github cs231n-final. https://github.com/

cs231n-2017/cs231n-final. Accessed: 2017-
06-10.

[3] Kaggle invasive species monitor-
ing. https://www.kaggle.com/c/
invasive-species-monitoring. Accessed:
2017-05-15.

[4] MIT 9.520 online learning. http://www.mit.edu/

˜9.520/spring08/Classes/online_learning_
2008.pdf. Accessed: 2017-06-11.

[5] Pillow filters comparison table. http://pillow.
readthedocs.io/en/4.1.x/handbook/
concepts.html#concept-filters. Accessed:
2017-06-01.

[6] SSD pytorch. https://github.com/amdegroot/
ssd.pytorch. Accessed: 2017-06-10.

[7] I. Çugu, E. Sener, Ç. Erciyes, B. Balci, E. Akin, I. Önal, and
A. O. Akyüz. Treelogy: A novel tree classifier utilizing deep
and hand-crafted representations. CoRR, abs/1701.08291,
2017.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[9] V. T. Eviner and C. V. Hawkes. The effects of plant-soil feed-
backs on invasive plants: mechanisms and potential manage-
ment options. In S. R. L. Monaco, T. A., editor, Invasive
plant ecology and management: linking processes to prac-
tice., chapter 7, page 122. 2012.

[10] J. F. J. Z. Hao Liu, Jiwen Lu. Group-aware deep feature
learning for facial age estimation. 2016.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition.
CoRR, abs/1406.4729, 2014.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[13] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[16] S. Korolev, A. Safiullin, M. Belyaev, and Y. Dodonova.
Residual and plain convolutional neural networks for 3d
brain MRI classification. CoRR, abs/1701.06643, 2017.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural Com-
put., 1(4):541–551, Dec. 1989.

[18] S. H. Lee, C. S. Chan, P. Wilkin, and P. Remagnino. Deep-
plant: Plant identification with convolutional neural net-
works. CoRR, abs/1506.08425, 2015.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,
C. Fu, and A. C. Berg. SSD: single shot multibox detector.
CoRR, abs/1512.02325, 2015.

[20] S. Mehri. On binary classification with single-layer convo-
lutional neural networks. CoRR, abs/1509.03891, 2015.

[21] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In J. Frnkranz and T. Joachims,
editors, Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814. Omnipress,
2010.

[22] A. K. Reyes, J. C. Caicedo, and J. E. Camargo. Fine-tuning
deep convolutional networks for plant recognition. In CLEF,
2015.

[23] J. Rissanen. Solution of linear equations with hankel and
toeplitz matrices. Numerische Mathematik, 22(5):361–366,
1974.

[24] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

[26] K. Team. Dogs vs. cats redux playground competition, 3rd
place interview: Marco lugo. April 2017.

[27] G. W. Yu Sun, Yuan Liu and H. Zhang. Deep learning for
plant identification in natural environment.

9

cs231n.github.io
https://github.com/cs231n-2017/cs231n-final
https://github.com/cs231n-2017/cs231n-final
https://www.kaggle.com/c/invasive-species-monitoring
https://www.kaggle.com/c/invasive-species-monitoring
http://www.mit.edu/~9.520/spring08/Classes/online_learning_2008.pdf
http://www.mit.edu/~9.520/spring08/Classes/online_learning_2008.pdf
http://www.mit.edu/~9.520/spring08/Classes/online_learning_2008.pdf
http://pillow.readthedocs.io/en/4.1.x/handbook/concepts.html#concept-filters
http://pillow.readthedocs.io/en/4.1.x/handbook/concepts.html#concept-filters
http://pillow.readthedocs.io/en/4.1.x/handbook/concepts.html#concept-filters
https://github.com/amdegroot/ssd.pytorch
https://github.com/amdegroot/ssd.pytorch

