
Adaptive Hyperparameter Search for Regularization in Neural
Networks

Devin Lu
Stanford University

Department of Statistics
devinlu@stanford.edu

June 13, 2017

Abstract
In this paper, we consider the problem of whether we can
achieve comparable or better validation accuracy from
a regularization constant that varies during training than
from a fixed hyperparameter. Also, can we consider the
problem of developing a policy that can change the reg-
ularization parameter based on feedback from training
rather than using a fixed schedule.

1 Introduction
Traditionally, regularization constants and other hyperpa-
rameters are fixed for a model throughout training. Op-
timizing these hyperparameters is usually done through
splitting out a portion of the training data into an evalua-
tion set separate from the test data specifically for use in
hyperparameter optimization. The model is then trained
repeatedly using different hyperparameter settings and an
optimal choice is made from performance on the dev set.
The downside of this approach is that this is often very ex-
pensive, such as when training the model is expensive or
when data volume is large enough that training examples
cannot all be held in memory. These are issues that often
arise with neural networks. Here, we examine whether
using a regularization parameter that varies during train-
ing can accelerate the process of achieving a certain level
of accuracy or even achieve a model that performs better
than what is achieved the traditional hyperparameter op-
timization. We also examine the question of whether we

can develop a policy that determines changes in regular-
ization rather than using a fixed schedule.

2 Previous Work

The concept of an adaptive regularization parameter in a
different domain has been considered before in ”Adap-
tive regularization parameter adjustment for reconstruc-
tion problems” by Watzenig, et al (2004). In that paper,
they considered the field of reconstruction problems and
used an approach based on condition number.

3 Problem and Data

To examine the problem of adapative regularization, we
chose to try an image classificatin task.
We used the CIFAR-10 dataset. This dataset is 60,000
images each of which is 32 x 32. Each image is colored,
so with the three color channels each image consists of
32 x 32 x 3 = 3072 floating point values. Each image falls
into one of 10 classes. The dataset was split into a training
set consisting of 50,000 images and a test set consisting
of 10,000 images.
The total size of the dataset in memory is approximately
163MB.

1

4 Neural Network Comparison

4.1 Pull Down/Up Schedule

As a first test we implemented a feed forward neural
network. We tried using a schedule that started with
high regularization that gradually reduced. We compared
this against using any of the individual regularization
parameters in the schedule.

We implemented a two-layer neural network for the
classification task and compared using a ”pull-down”
regularization schedule (starting with a high regular-
ization and subsequently decreasing) and a ”pull-up”
regularization schedule (starting with a low regularization
schedule and subsequently increasing) vs using a fixed
regularization schedule.

Fig 1 shows the increase in accuracy from using a
varying schedule over using the best fixed regularization
parameter. To make the comparison fair, each comparison
model was trained for as many iterations in total as during
the varying schedule training.

To illustrate what we mean by this, suppose we used
a regularization schedule [3.0, 2.0, 1.0, 0.0], training the
neural net for 1000 iterations for each value. In total,
this means we trained the neural net for 4000 iterations.
To compare, we would then train four separate neural
networks, one each with regularization 3.0, 2.0, 1.0, and
0.0. We would train each of these for 4000 iterations.

Fig 1 shows the gain in accuracy for using a pull-down
regularization schedule over the best model found this
way using a constant regularization term. This is equiva-
lent to the gain from using a varying regularization sched-
ule over identifying the best constant regularization pa-
rameter with grid search and using that as the baseline.
This is effectively a speedup of a factor of n, where n is
the number of regularization parameters to search over.
Interestingly, we find that in addition to the speedup, we
can find an absolute performance gain by using the pull-
down schedule.

We found that a pull-down schedule generally worked
better than a pull-up schedule. Figure 2 shows general-
ization accuracy of a pull-up vs pull-down regularization

schedule as a function of the number of hidden units. This
was for a fixed 1000 iterations per constant.

4.2 Analysis

As shown in Figure 2, a pull down schedule (high
regularization to start and decreasing with time) generally
performed better than a pull up schedule (low regular-
ization to start and increasing with time). We suspect
this is because in the beginning of training, essentially all
training is overfitting since there is literally nothing else.
In other words, at the beginning of training, the model
will tend to overfit to the idiosyncrasies of the early
batches. If regularization is strong at this point, weights
will not get updated to fit the false positive signals that
exist simply because of the random distribution of the
initial batches. While it is theoretically possible to
eventually learn to ignore these false signals, it will take
longer to ”unlearn” rather than to simply not learn in
the first place, especially if learning rate decay is heavy.
Therefore, an early heavy regularization will prevent
more of these false starts when the model is most vulnera-
ble to it, resulting in faster convergence to better accuracy.

As can be seen in Figure 1, the varying regularization
schedule generally helped more as the number of hidden
units increased. We believe this is because as hidden unit
numbers increase, the complexity of the loss surface in-
creases exponentially. Thus it is likely there will be more
bad local minima that happen to exist because simply
because of the particularities of the training data. Since
changing regularization changes the loss surface, ”weak”
local minima are more likely to no longer become critical
points if regularization changes. Thus, the network will
probably escape these points, an effect that would be
pronounced with higher hidden units.

Finally, we observed that the gain from the varying reg-
ularization schedules tended to decrease as the iterations
per constant increased. This suggests to us that part of
the benefit in varying regularization schedules is in accel-
erating convergence to a certain accuracy, even if given
sufficient computational resources, a vanilla grid search
could eventually get to a similar performance.

2

Figure 1: Accuracy gain from a pull-down regularization schedule, as a function of the number of hidden units and
iterations per constant.

Figure 2: Difference in final generalization accuracy for a pull-down (Large to Small) vs pull-up (Small to Large)
schedule. Iteration number fixed at 1000.

3

5 Adaptive Regularization
In addition to using a fixed regularization schedule,
we also experimented with an adaptive regularization
parameter. In this approach, we would during training
continuously observe the training and validation accuracy
and use this as feedback for determining how to adjust
the regularization parameter. Specifically, if the training
accuracy is significantly higher than the validation ac-
curacy, we adjust the regularization constant up because
this indicates overfitting. If the training accuracy is very
close to or lower than the validation accuracy, we adjust
the regularization constant down.

We examined this approach both with our feed-forward
neural network we used in section 4 and with a three-layer
convolutional neural network. In Figure 3, we show the
results for the feed-forward neural net. In general, there
is a positive gain from using this adaptive method, but the
gain tends to decrease with the number of hidden units.

Figure 4 shows the results for a convolutional neural
network with fixed architecture as a function of the epoch
number. We see that the adaptive method usually gives a
gain, especially in the earlier epochs, but the gap tends to
close as the model trains for many iterations. Note how-
ever that the adaptive method reaches its final validation
accuracy earlier, while the fixed schedule tends to con-
tinue improving, eventually reaching roughly the same
level as the adaptively trained model. This is similar to
what we saw in Section 4, which suggested the varying
regularization schedules were speeding up convergence.

6 Nonconvex Regularization
Usually, `1 or `2 norm is used for regularization. The
reason is that `1 and `2 norms are both convex functions.

Convex functions are preferred in many machine learn-
ing applications because they have the property that there
is at most one locally optimal value, which coincides
with the global optimum, if it exists. Additionally, the
set of points achieving this optimal value is a connected,
convex set. Therefore any optimization method that
eventually converges to a local optimum (like stochastic

Figure 3: Accuracy gain over the feed-forward neural net-
work as a function of the number of hidden units.

Figure 4: Accuracy gain using an adaptive regularization
schedule over a fixed schedule for a three-layer convolu-
tional neural network.

gradient descent) also converges to a global optimum.
Convex functions are thus easy to optimize.

Many traditional machine learning algorithms, such
as logistic regression, are formulated with convex loss
functions for this reason. The space of convex functions
have the nice property that it is closed under addition,
so adding an `1 or `2 regularization term to a convex
loss term keeps the loss convex. If the regularization
term used a non-convex function, such as a loss of the
form `m for m < 1, there is no guarantee the resulting
loss function would be convex, and so there could exist
multiple local minima.

However, neural network losses are already highly non-

4

Figure 5: Loss of L1-regularization

convex. Therefore, the reason for restricting regulariza-
tion terms to `1 or `2 norms is already lost.

Therefore, we also experimented with using an ` 1
2

loss,

i.e., ||x|| 1
2
= |x| 12 . We expect this to have a sparsifying

effect on our weights. To see why, consider Figures 5-7.
Suppose a feature has weight w. Reducing any particu-
lar feature weight by δ in `1 regularization reduces the
regularization loss by a factor linear in δ. In `2 regular-
ization, d

dww
2 = 2w, so reducing a feature weight by

δ reduces the regularization loss by O(wδ). However,
in `frac12 regularization, d

dww
1
2 = 1

2
√
w

, so reducing
a feature weight by δ reduces the regularization loss by
O(δ√

w
) = O(1√

w
). Therefore, as w → 0, `2 regulariza-

tion rewards reducing w less and less, `1 keeps the reward
constant, and ` 1

2
rewards it more and more. Therefore,

we would expect that ` 1
2

regularization promotes sparsity
even more than `1.

However, we observed that using both a pull-up and
pull-down schedule harmed final accuracy with ` 1

2
reg-

ularization (Fig 8). Generally, the larger the number of
hidden units, the greater loss we encountered.

Figure 6: Loss of L2-regularization.

Figure 7: Loss of L 1
2 -regularization.

7 Conclusion
We completed a study on using a regularization param-
eter that changes over time instead of a fixed parameter.
We found that it can help in certain neural network
models, either by accelerating convergence to a particular
accuracy level or sometimes achieving an accuracy level
beyond what can be obtained by a grid search-based op-
timal hyperparameter selection over the same parameters
as used in the varying schedule. We also examined using
` 1

2
regularization and found a varying regularization

schedule tended to hurt performance.

Future work is needed to develop more sophisticated
feedback policies for adaptively changing the regulariza-
tion parameter and understanding why using ` 1

2
regular-

ization produced the opposite result to the typical `2 case.

5

Figure 8: Accuracy loss from a varying regularization schedule under ` 1
2

loss. Loss grows more severe with greater
number of hidden units.

6

8 References
Watzenig, et al (2004). ”Adaptive regularization parameter ad-
justment for reconstruction problems.” IEEE Transactions on
Magnetics. Volume 40, Issue 2, March 2004.

7

