
Clustering And Querying Images From Unknown Classes Using Metric Learning

Chinmayee Shah
Electrical Engineering, Stanford University

http://web.stanford.edu/˜chshah/

chshah@stanford.edu

Abstract

Recently, deep learning has been successfully used
to learn meaningful embeddings for image data. Such
learned embeddings have various applications including
fine grained visual classification, with many classes and
only a few images per class, face recognition, and retriev-
ing similar images using a distance-based similarity met-
ric. In this project, we use a triplet network to discrmi-
natively train a network to learn embeddings for images,
and evaluate clustering and image retrieval, on a set of un-
known classes, that are not used during training. We ob-
serve that by postponing the construction of triplets to af-
ter the network, that is, by constructing triplets in the fea-
ture space rather than the image space, we can take bet-
ter advantage of large batches and hard examples. An-
other advantage of such an approach is that it removes
the sensitivity on hard mining. We observe that with mul-
tiple clusters per class, we can better capture intra-class
variance. We evaluate these approaches on CUB-200-2011
birds data-set, and report F1 score and NMI for cluster-
ing. Our code is available at https://github.com/
schinmayee/metric-learning, and is included in
the supplementary material as well.

1. Introduction
A semantically useful similarity or distance metric can

be useful for many real world tasks, such as finding prod-
ucts similar to a given product, finding images such as flow-
ers or birds similar to a queried image, clustering uncatego-
rized Flickr photographs using a network trained on a lim-
ited, labeled data-set, or even querying photographs such as
those of a particular dog, a place, or a person, from photo
albums such as Google or Facebook photographs. Metrics
such as Euclidean distance and cosine similarity do not per-
form well on raw pixels of images. Recent end-to-end ap-
proaches [17, 3, 16, 22] approach the problem of learning a
similarity/distance metric by discrminatively training a net-
work to learn embeddings so that similar images are close

to each other, and images from different classes are far, in
this feature space. Such features are shown to outperform
manually crafted features such as SIFT, and various binary
descriptors [9, 19].

Given these learned features, a classification problem
can be reduced to a K-nearest neighbors problem, using
distance between the features as a measure similarity. This
can particularly useful when all categories are not available
during training, but a few labeled images, such as labeled
photographs of a particular dog, a specie of bird, a product
or a place, might be available. A query for images similar
to a given image can retrieve K candidate images that are
closest to the query image. Similar images can be grouped
using K-means clustering over this feature space.

Conventional image classification methods perform
poorly in extreme classification problems, with large num-
ber of classes, few images per class, and a large intra-class
variance and low inter-class variance. The two major chal-
lenges in this setting are the linear dependences of mod-
els and algorithms on the number of classes, and the small
number of examples per class available during training. Re-
cent works such as [13, 17, 8, 12, 2] discrminatively train
neural networks to directly learn a mapping function from
an input image to a lower dimensional embedding. They
use triplets consisting of an anchor image, a positive im-
age that belongs to the same class as anchor, and a nega-
tive image from a different class. The loss is designed to
increase the distance between anchor and negative, and re-
duce the distance between anchor and positive, so that im-
ages from similar classes group together in the learned fea-
ture space. Conventional triplet based approaches such as
the ones in [13, 17] however are very sensitive to methods
used for hard mining, and can produce disappointing results
in our experience. Moreover, they are hard to train because
of small batch sizes imposed by memory limits, resulting in
diverging gradients.

Motivated by [16, 2, 12], in this project, we use batch-
hard triplets — we forward a batch of images with a
few randomly sampled classes and a few images per class
through the network to compute embeddings, and then take

1

http://web.stanford.edu/~chshah/
https://github.com/schinmayee/metric-learning
https://github.com/schinmayee/metric-learning

add contributions from all possible triplets, with a non-zero
loss, at the output. This makes the learning process more
efficient as each batch includes tens of thousands of triplets,
more stable due to the large batch size, and also removes
the sensitivity on hard mining.

In the spirit of general metric learning where the task is
to learn a generic concept of distance, we divide our data-
set into disjoint classes — 100 for training and validation,
and 100 for testing. We use the same number of classes in
training and test set, as in [16] and over the same data-set,
CUB-200-2011 [21], but note that our train/test split could
still be different, due to differences in the list of classes used
for training and testing. We compute F1 and NMI metrics
to evaluate clustering, and accuracy and Recall@K to eval-
uate image retrieval. This allows us to directly compare our
results with state-of-the-art methods already published.

The fine grained visual classification work in [8] ob-
serves that with extreme number of classes, the intra-class
variation can be large, so that sometimes, images from
the same class might be farther than images from differ-
ent classes. It proposes learning manifolds rather than clus-
ters, to account for intra-class variation. While we do not
learn key points for clusters, as that makes little sense when
classes for train and test data are disjoint, we evaluate clus-
tering with multiple clusters per class. We find that when
multiple cluster per class are used to drive model selection,
clustering and querying scores for the resulting model are
higher. We also evaluate a local positive sampling method,
that restricts sampling of positive images within a batch to
a neighborhood around an anchor point, rather than all pos-
itive pairs, when generating triplets at train time, as men-
tioned in [8]

2. Related Work
Siamese networks applied to signature verification

showed the ability of neural networks to learn a compact
embedding [5]. OASIS [6] and local distance learning [10]
learn fine-grained image similarity ranking models using
hand-crafted features, that are not deep-learning based. Re-
cent approaches such as [17, 3, 16, 22] approach the prob-
lem of learning a distance metric by discrminatively training
a neural network. Such features are shown to outperform
manually crafted features [3] such as SIFT, and various bi-
nary descriptors [9, 19].

Deep metric learning can be broadly divided into con-
trastive loss based methods, triplet networks, and ap-
proaches that go beyond triplets such as quadruplets, or
even batch-wise loss. Contrastive embedding is trained on
paired data and tries to minimize the distance between pairs
of examples with same class label, while penalizing exam-
ples with different class labels that are closer than a margin
m [11]. Triplet embedding is trained on triplets of data with
an anchor point, a positive that belongs to the same class,

and a negative that belongs to a different class [23, 13].
Triplet networks use a loss over triplets to push the anchor
and positive close, and penalize triplets where the distance
between anchor and negative is less than the distance be-
tween anchor and positive, plus a margin m. Contrastive
embedding has been used before for learning visual simi-
larity for products [4]. Triplet networks have been used for
face verification, person re-identification, patch matching,
for learning similarity between images and for fine-grained
visual categorization [17, 18, 22, 8, 3].

A naive triplet-based approach does not perform well
due to zero loss from easy examples where the negatives are
far from anchor. Various methods to perform hard mining
or semi-hard mining are discussed in [17, 8]. [3] tries to re-
duce dependence on, and cost of hard mining by proposing
in-triplet hard examples where they flip anchor and positive
if the loss from the resulting new triplet is larger.

More recent works use quadruplets [7] or even a loss
over the entire batch [16], to improve the network stability
and accuracies. Other approaches [2, 12] propose comput-
ing all hard triplets and taking their loss contribution, within
a batch of images, rather than a batch of triplets, input to a
network. We found that such batch global approaches pro-
vide a significant improvement over the conventional triplet
network, and reduce dependence on hard mining, giving
better results inspite of more expensive batches.

3. Dataset

We present results for CUB-200-2011 birds data-
set [21], that has also been used for evaluation by previous
works [8, 16]. The data-set has 200 species of birds with a
total if 11,788 images across all species. Similar to [8], we
divide the data-set into disjoint classes for training and test-
ing. We utilize the bounding box information in the data-set
to crop the images, and rescale the images to a fixed size as
expected by the network.

4. Approach Overview

We use a neural network to map images to features of
size 64. We use a triplet-based loss function over these fea-
tures, to discriminatively train the network, that is, to push
images from the same class closer, and images from dif-
ferent classes further apart. For validation, we compute the
embeddings for all images in the validation set, and perform
a K-means clustering. For final evaluation, we choose the
model that gives highest clustering accuracy on validation
data. For retrieving images similar to query images from
test set, we compute the distance to all images in test set,
and retrieve the images that are closest to the query image.

2

Figure 1. A conventional triplet network feeds in triplets of images
at input, and uses the loss over these input triplets to train. A batch
with B images only has B

3
triplets.

5. Triplet Based Approach
There are several approaches to modeling loss for met-

ric learning. We focus on the more recent triplet-based ap-
proach, as used in many recent works [8, 12, 13, 3, 17]. A
triplet consists of 3 images, an anchor image (a), a positive
image (p) that belongs to the same class as a, and a negative
(n) that belongs to a different class. The basic idea is to map
the images a, p and n to features fa, fp and fn, so that fa
and fp are closer than fa and fn. We normalize the features
fa, fp and fn, similar to [8, 22], before computing the dis-
tances. Let dap denote the distance between normalized an-
chor and positive features, and dan denote the distance be-
tween normalized anchor and negative features, computed
using L2 distance. That is, dap = || fa

||fa||2 −
fp
||fp||2 ||2, and

dan = || fa
||fa||2 −

fn
||fn||2 ||2.

5.1. Conventional Triplet Approach

A conventional triplet based approach as presented
in [13, 17, 8], samples triplets at input. Figure 1 illustrates
this. This is also the first approach we tried. A batch of
triplets of size B

3 consists of B images, as each triplet has 3
images. These images are forwarded through the same net-
work, to compute embeddings, and then generate the triplet
loss. This triplet loss is finally back-propagated through the
network for training.

There are various ways to compute triplet loss. We ex-
perimented with the following loss functions for the con-
ventional triplet approach (loss is averaged, in the standard
manner, over all triplet samples):

• Hinge Loss: The most commonly used loss func-
tion uses hinge loss, with a hyper-parameter, margin,
m [17, 23, 13]. The loss function is expressed as:

L(a, p, n) = max(0, dap − dan + m)

There are also variations that use squared distances in-
stead, to compute the hinge loss, as follows:

L(a, p, n) = max(0, d2ap − d2an + m)

In our experiments, the first version outperformed the
second one with squared terms.

• Ratio Loss: A recent work that uses triplet loss for
determining similar image patches [3] proposes a ra-
tio loss, to interpret closeness of features. The idea is
similar to a logistic function — the loss is always non-
zero, so that all triplets contribute to some learning for
the network. We experimented with a variation, the
following loss function:

L(a, p, n) = (
edap

edap + edan
)2 − (

edan

edap + edan
)2

The total loss for the network, over all B
3 triplets input to the

network, T , is then computed as 3
B × Σ(a,p,n)∈TL(a, p, n)

This loss is back-propagated to update network parameters.
A naive approach with randomly sampled triplets from

training set however, performs poorly. We implemented on-
line hard-mining to improve the clustering accuracy — we
do this by sampling hard negative examples while train-
ing, within each batch, and then regenerating all triplets
every few epochs. The regenerated triplets use a mix of
these hard examples, and new random examples, so that
we get new negatives. For hard negatives, our first ap-
proach was to sample anchor-negative pairs with the least
distance, within each batch, add those to a pool of hard neg-
atives, and use these when regenerating triplets. We also
implemented semi-hard mining, similar to the idea in [17],
where we sample anchor-negative pairs with dan < dap,
instead of anchor-negative pairs with the least separation,
in an attempt to make the loss more stable, and converge
to better optimal solutions. Since the final objective is to
achieve good K-means clustering and query results, we ex-
perimented with a third strategy for hard-mining, where we
use examples that are misclassified with K-means cluster-
ing, as hard negatives.

Finally, we also implemented in-triplet hard mining, by
flipping anchor and positive if the resulting loss is larger, as
suggested in [3]. However, we found in-triplet hard mining
to not be very useful as either the examples are too easy
with random mining, or the constructed triplet generates a
good loss with hard mining.

In our experiments, we found that hinge loss outper-
formed ratio loss. We found hard mining to be useful,
over random samples, but accuracies with all hard nega-
tive sampling approaches to be comparable. This might
also be because our network itself was very unstable with
the conventional triplet based approach — the small batch

3

Figure 2. Batch hard approach selects all hard triplets from all
combinations of triplets within a batch.

sizes imposed by GPU memory limit causes diverging gra-
dients and the loss to oscillate a lot, preventing the network
from learning anything useful and converging well (recall
each batch with B images only has B

3 triplets). We ex-
perimented with a lot of different hyper-parameters, loss
functions, and sampling strategies, but found this to be a
significant problem, due to the small batch size. It is pos-
sible to address this problem by forward propagating multi-
ple batches to compute loss and then back propagating the
net loss. However, the result is still very inefficient. Very
recent works [16, 12, 2] have also described this problem,
and proposed efficient solutions to ameliorate this problem.
Our next approach, batch hard, is motivated by these.

5.2. Batch-Hard Approach

Motivated by [16, 12, 2], we tried a different approach
to constructing triplets. Figure 2 illustrates the idea. In
this approach, instead of feeding in triplets of images at
the input, we construct a batch of size B, with C ran-
domly selected classes, and B

C randomly sampled images
per class. These images are forwarded through the net-
work to compute B embeddings. We then loop over all
possible anchor, positive, negative triplets in each batch, se-
lect all hard triplets that have anchor-negative separation
less than anchor-positive plus a margin m (that is, filter out
triplets which would not contribute to loss and only reduce
the gradient magnitude during back-propagation), compute
the total loss, and back-propagate this loss. For an input
batch I of size B, let S = {(a, p, n)|a, p, n ∈ I, Cp =
Ca, Cn 6= Ca, dan < dap+m}. Here, Ci denotes class of i.
Then the total loss equals 1

|S| ×ΣSL(a, p, n). This method

generates O(B3

C) triplets in every batch, much larger than
B
3 (O((B

C)2 × C) positive-anchor pairs, O(B) triplets per
positive-anchor pair). With this approach, we found that it
was easier to train the network, and the accuracies that we
got were much higher than ones with conventional triplet
networks.

In addition to the hinge loss and ratio loss described in
the conventional triplet section, we also tried a soft loss for
the batch-hard approach. Inspired by [12, 16], we designed

this loss function as follows:

L(a, p, n) = dap + log(em−dan + em−dpn)

Here, m is a hyper-parameter, and dpn is the distance be-
tween positive and negative, dpn = || fp

||fp||2 −
fn
||fn||2 ||2. The

idea is to also use contributions from the positive-negative
pair within a triplet. We found the results comparable to
hinge loss, but not much better. However, we think it is
possible to get better results with more hyper-parameter tun-
ing. Similar to conventional network, we got best results for
simple hinge loss with distances, compared to the one with
squared distances.

5.3. Local Positive Sampling

Inspired by [8, 18], which propose local sampling, to ac-
count for intra-class variance, we tried local positive sam-
pling for constructing triplets. In this approach, instead of
looking at all anchor, positive, negative combinations within
a batch, we consider only those where the anchor-positive
distance is within 60 percentile of all anchor-positive pairs
for that anchor. The motivation is to exclude very hard ex-
amples, and to try to map images to extended manifolds in
the feature space, rather than spheres, to account for intra-
class variance. Local positive sampling works better when
we use K-means clustering with multiple clusters per class.
However, we did not see significant improvements with lo-
cal positive sampling, and hypothesize that this might be
due to robustness of the batch hard approach. Note that
the works [8, 18] that proposed learning manifolds used the
conventional triplet architecture.

6. Evaluating Clustering and Querying
Once we have a trained network, we cluster images from

test data, using K-means. Such clustering is useful for
grouping similar images. We also generate random queries,
and retrieve images closest to the query image. This sec-
tion describes how we implement and evaluate clustering
and image retrieval.

6.1. K-Means Clustering Over Learned Features

We use the trained network to compute embeddings for
all images in test data. We then initialize K-Means with
number of centroids equal to the number of classes in test
data, similar to [16]. Once we have the images clustered,
we label each cluster with the class of the most frequently
occurring class in that cluster, as explained in [15]. The
accuracy or purity of clustering is then defined as the ratio
of the sum of number of points that belong to a class C
and are also in a cluster labeled C, to the total number of
points [15].

We also compute normalized mutual information,
NMI [16, 15] Consider set of clusters Ω = {ω1, . . . , ωk},

4

and ground truth classes C = {c1, . . . , ck}, where wi indi-
cates the examples with cluster assignment i, and ci indi-
cates examples with class i.

NMI(Ω, C) =
2I(Ω, C)

H(Ω) + H(C)

Here, I indicates mutual information, and H is entropy. Fi-
nally, we also compute the F1 score, the harmonic mean
of precision and recall, with precision and recall computed
using number of true negatives and positives, and false neg-
atives and positives, as described in [15], and also [16].

6.2. Intra-Class Variation With Multiple Clusters

It has been shown that for fine-grained classes, there is
often very high intra-class variation [8]. To account for the
variation, we also compute K-means clusters with multiple
clusters per class. For model selection, we experimented
with the model with the highest clustering accuracy when
using 3 clusters per class. On test data with N classes,
we experimented with K-means clustering with 3N clus-
ters. This not only yields better accuracies and F1 score for
clustering, but also better accuracies for queries.

6.3. Querying Using K Nearest Neighbors

We randomly select a few images from each class in test
data, to query. For each query image, we compute the dis-
tance in feature space, to all the remaining images in test
data, and return images that are closest to the queried image.
We report Recall@K, as presented in [16], and explained
in [14], for various choices of K, the number of result im-
ages returned. Recall@K assigns a score of 1 for if a result
with K images contains at least one correct result, that is,
an image that is the same class as the queried image. The
score is then averaged over all queries. We also evaluate
accuracy, the fraction of results that are the same class as
queried image, averaged over all queries.

7. Implementation Details
We implemented the discussed methods using Python

2.7 and PyTorch [1]. We tested our implementation on
custom networks with a few convolutional, batch normal-
ization, pooling and fully connected layers, trained from
scratch, and on several existing pretrained networks. We
got best results training a Inception V3 [20] that was pre-
trained on ImageNet. For Inception V3, we resize images to
299×299, as expected by the network. We replaced the final
fully connected layer for classification in Inception V3 with
a fully connected layer mapping to an output of size 64, to
compute features of size 64. We also performed L2 normal-
ization on features, similar to that in [8, 22]. We used Adam
optimizer, and scaled down the learning rate for all but the
final layer, to improve the learning speed, without disturb-
ing the lower-most layers. The complete code with scripts

Figure 3. PCA visualization for 4 random classes from test set,
with the 2 most significant components — markers with different
colors and shapes denote different classes.

is available at https://github.com/schinmayee/
metric-learning, and is also included in the supple-
mentary material, with a README.md with details. The
supplementary material also includes logs used to generate
results presented in this report.

8. Experiments And Results
Figure 3 shows a 2D plot of 2 most significant compo-

nents of computed embeddings of size 64, for 4 randomly
selected classes in the test data. As expected, points that
belong to the same class tend to group together. However,
there is sometimes significant variation within a class, as
mentioned in [8], and seen from the spread of points. The
following sections evaluate clustering and image retrieval,
on the same lines as [16]. We used a batch size of 64 im-
ages, with 4 classes per batch, and 16 images per class, for
the batch hard approach. We trained our network for a total
of 1000 iterations (batches) or less, which was just a few
hours with a single GPU, and got impressive results.

8.1. Clustering

F1 Score NMI
Hinge Loss, 1 Cluster 0.17 0.35
Hinge Loss, 3 Clusters 0.24 0.39
Hinge Loss, 3 Clusters, Local 0.21 0.35
Square Hinge Loss, 1 Cluster 0.12 0.25
Square Hinge Loss, 3 Clusters 0.17 0.28
Square Hinge Loss, 3 Clusters, Local 0.16 0.28
Soft Loss, 1 Cluster 0.15 0.31
Soft Loss, 3 Clusters 0.21 0.35
Soft Loss, 3 Clusters, Local 0.21 0.35

Table 1. Results on test data, for different loss functions, number
of clusters per class, and sampling, for batch hard approach.

Table 1 gives the F1 score and NMI for 3 loss functions
— hinge loss, hinge loss with squared distances, and soft

5

https://github.com/schinmayee/metric-learning
https://github.com/schinmayee/metric-learning

Figure 4. Recall@K score on test split.

Figure 5. Accuracy for queried results vs. K, the number of re-
turned images, on test split.

loss. Results for one cluster per class and three clusters per
class are provided. For the three clusters per class case,
we use three clusters per class for validation as well as fi-
nal evaluation on test data. For the case with three clus-
ters per class, we also provide the results for local positive
sampling, where triplets include only those positive-anchor
pairs which are within 60 percentile of all possible positive-
anchor pairs. We get the highest F1 score for hinge loss —
0.17 when using 1 cluster per class, and 0.24, when using
3 clusters per class. These are much higher than the maxi-
mum score of 0.1 that we were able to get with conventional
triplet approach. [16] has reported a score of 0.12 for con-
trastive loss, 0.16 for triplet loss, and around 0.2 for their
proposed lifted structured loss, which are to our knowledge,
state-of-the-art results published on the same data-set, and
with a similar train/test split.

Figure 6. An image query gives one correct result, highlighted in
green. Incorrect results are highlighted in red.

Figure 7. An image query returns results that are all correct!

Figure 8. An image query returns 2 correct results. Incorrect re-
sults are highlighted in red.

8.2. Query Results

Similar to [16], Figure 4 gives Recall@K. K here is the
number of images retrieved. These numbers are within a
range of 0.2 from numbers for all different methods reported
in [16]. Additionally, we computed the accuracy of query
results — the fraction of correct results retrieved (images

6

from the same class as query image). The accuracy of re-
turned results drops with increase in K, indicating that as
we expand the sphere around a query image, we tend to get
more examples from other classes, which are close enough
to the query image. This result agrees with the hypothe-
sis in [8] that intra-class variance is often higher than inter-
class variance. Finally, note that when we select the best
model based on accuracy with K-means clustering with 3
clusters per class (on train/validation data), we get better
Recall@K and accuracy scores, again indicating that it is
useful to capture intra-class variance with multiple clusters
per class.

Figures 6, 7 and 8 present some query results. The im-
age in the top left corner in each case is the queried image.
Correct results, that is, returned images that are from the
same class as queried image, are highlighted in green, and
incorrect images, that are images from a different class, are
highlighted in red.

9. Conclusions and Discussion
Batch hard triplet approach significantly outperforms

conventional triplet approaches, even when conventional
approaches use hard mining. Batch hard approaches have
more stable networks, and converge much faster than con-
ventional approaches.

However, the accuracies for queried results even with
batch hard approach, on test split (unknown classes) is only
10% to 20%, which still has a lot of room for improvement.
One of the challenges with fine-grained classes and clus-
tering and querying images from unknown classes is the
high intra-class variance and low inter-class variance. To
account for the variance, we experimented with local pos-
itive sampling and clustering with more than 1 cluster per
class. While we did not see huge improvements with local
positive sampling for batch hard approach, we did notice an
improvement in accuracy when we use clustering accuracy
for 3 clusters per class to drive the model selection, vs. 1
cluster per class.

One important issue with training triplet networks, that
we noticed, is that clustering and querying accuracy can
improve with extended training, even if the loss does not
change much, as the network continues to learn from hard
triplets, pushing hard negatives apart. This was also re-
ported in [12], which recommends to continue training
triplet networks even if the loss flattens.

We think it should be possible to design new sampling
methods or loss functions, or add a classification loss using
cluster centroids obtained using K-means clustering, to the
total loss term, to drive the network to learn embeddings
that map to extended manifolds rather than spheres, and
capture intra-class variance, similar to [8], even for batch
hard networks. It does not make sense to learn centroids or
key points, as proposed in [8], since classes from test data

are not known at training time. Computing cluster centroids
however is expensive, and that limits how frequently we can
update these centroids for the classification loss term.

Another interesting area of future work would be ex-
ploring other batch global loss functions, rather than pairs,
triplets or quadruplets within a batch. Batch hard triplets al-
ready outperform conventional triplets, and if we are paying
the cost of going over all O(B3

C) triplets within a batch, we
think it should be possible to design alternative loss func-
tions over the entire batch that perform better. It may even
be possible to design more efficient batch global loss for-
mulations, using matrix operations. This is the idea behind
lifted structured loss [16], and we think exploring alterna-
tives is an interesting future direction. Even though forward
and backward propagation for each batch becomes more ex-
pensive in these cases, networks converge with far fewer
iterations, making these approaches more appealing than
conventional contrastive or triplet approaches.

References
[1] http://pytorch.org/.
[2] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. Openface:

A general-purpose face recognition library with mobile ap-
plications. Technical report, Technical report, CMU-CS-16-
118, CMU School of Computer Science, 2016.

[3] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk. Learning
local feature descriptors with triplets and shallow convolu-
tional neural networks. In BMVC, volume 1, page 3, 2016.

[4] S. Bell and K. Bala. Learning visual similarity for product
design with convolutional neural networks. ACM Transac-
tions on Graphics (TOG), 34(4):98, 2015.

[5] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah.
Signature verification using a” siamese” time delay neural
network. In Advances in Neural Information Processing Sys-
tems, pages 737–744, 1994.

[6] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale
online learning of image similarity through ranking. Journal
of Machine Learning Research, 11(Mar):1109–1135, 2010.

[7] W. Chen, X. Chen, J. Zhang, and K. Huang. Beyond triplet
loss: a deep quadruplet network for person re-identification.
arXiv preprint arXiv:1704.01719, 2017.

[8] Y. Cui, F. Zhou, Y. Lin, and S. Belongie. Fine-grained cate-
gorization and dataset bootstrapping using deep metric learn-
ing with humans in the loop. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1153–1162, 2016.

[9] A. Dosovitskiy, P. Fischer, J. Springenberg, M. Riedmiller,
and T. Brox. Discriminative unsupervised feature learning
with exemplar convolutional neural networks, arxiv preprint.
arXiv preprint arXiv:1506.02753, 2015.

[10] A. Frome, Y. Singer, and J. Malik. Image retrieval and classi-
fication using local distance functions. In Advances in neural
information processing systems, pages 417–424, 2007.

[11] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduc-
tion by learning an invariant mapping. In Computer vision

7

http://pytorch.org/

and pattern recognition, 2006 IEEE computer society con-
ference on, volume 2, pages 1735–1742. IEEE, 2006.

[12] A. Hermans, L. Beyer, and B. Leibe. In defense of the
triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737, 2017.

[13] E. Hoffer and N. Ailon. Deep metric learning using triplet
network. In International Workshop on Similarity-Based
Pattern Recognition, pages 84–92. Springer, 2015.

[14] H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE transactions on pattern
analysis and machine intelligence, 33(1):117–128, 2011.

[15] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction
to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[16] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep
metric learning via lifted structured feature embedding. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4004–4012, 2016.

[17] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 815–823, 2015.

[18] H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z.
Li. Embedding deep metric for person re-identification: A
study against large variations. In European Conference on
Computer Vision, pages 732–748. Springer, 2016.

[19] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and
F. Moreno-Noguer. Discriminative learning of deep convolu-
tional feature point descriptors. In Proceedings of the IEEE
International Conference on Computer Vision, pages 118–
126, 2015.

[20] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[21] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The caltech-ucsd birds-200-2011 dataset. 2011.

[22] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image
similarity with deep ranking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1386–1393, 2014.

[23] K. Q. Weinberger and L. K. Saul. Distance metric learning
for large margin nearest neighbor classification. Journal of
Machine Learning Research, 10(Feb):207–244, 2009.

8

