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Abstract

Deep metric learning has been demonstrated to be highly
effective in learning semantic representation and encoding
data information. People are able to do similarity measure-
ment for data, based on the embedding learned from metric
learning. At the same time, variational autoencoder (VAE)
has widely been used to approximate inference and proved
to have a good performance for directed probabilistic mod-
els. However, for traditional VAE, the data label or feature
information are intractable. Similarly, traditional represen-
tation learning approaches fail to represent many salient
aspects of the data. To this end, in this project, we propose
a novel structure to learn latent embedding in VAE by incor-
porating deep metric learning. The features are learned by
a triplet loss on the mean vectors of VAE in conjunction with
reconstruction loss of VAE. This approach, which we call
Triplet based Variational Autoencoder (TVAE), allows us
to capture more fine-grained information in the embedding.
Our model is first tested on MNIST data set. A high triplet
accuracy of around 95.60% is achieved while the VAE is
found to perform well at the same time. We further imple-
ment our structure on Zappos50k shoe dataset [32] to show
the efficacy of our method.

1. Introduction

Learning semantic similarity between pairs of images is
a core part of visual competence and learning. Functions
such as Euclidean distances, Mahalanobis distance, cosine
similarity are commonly used for measuring similarity dis-
tances. When applied on raw complex input datasets di-
rectly, these functions usually provide poor measure of sim-
ilarity. But if applied on proper embedding of the input data,
these functions result in superior metric for similarity mea-
surement and reduces many learning problems to simpler
problems. For example, given a proper image embedding
and similarity measurement function, an image classifica-
tion task would simply reduce to a generic nearest neigh-
bor problem. Traditionally, such image embeddings were

learned as a part of larger classification task. But this ap-
proach has various practical limitations for several scenar-
ios. In extreme classification problems [8, 2] where the
number of possible categories is very large or possibly un-
known, conventional classification learning approaches are
essentially useless since the availability of training exam-
ples for each class becomes scarce, if not totally unavail-
able. Hence, a new line of approach, namely metric learn-
ing [27, 23, 13] has gained much popularity for its ability to
learn image embedding directly using the concept of rela-
tive distances rather than relying on specific category infor-
mation. This way, it is able to learn a metric space where
nearest neighbor based methods would naturally give supe-
rior performance due to the higher quality representation of
input images in the learned embedding space.

On the other hand, Variational autoencoder has attracted
much attention recently because of its ability to do efficient
inference. A probabilistic model is learned with latent vari-
ables [17, 25]. VAE is considered as a powerful method in
unsupervised learning, which is highly expressive with its
stochastic variables. Recent advance in deep neural work
has enabled VAE to achieve desirable performance. Despite
its ability in model expression, the latent embedding space
learned in VAE lacks many salient aspects of the original
data.

In this project, we designed a new architecture moti-
vated from metric learning and VAE, which is capable of
two tasks at the same time - learning image representations
with fine-grained information and doing stochastic infer-
ence. As a proof of concept, we first implement our idea
on the MNIST data [3]. Along with VAE and metric loss
of desireable order, we achieve about 95.60% metric ac-
curacy. We further implement our structure on Zappos50k
shoe dataset [32] to show the efficacy of our method.

2. Related Work

2.1. Variational Autoencoder (VAE)

A VAE consists of two networks. The first one, an en-
coder network, allows us to encode an image x to a latent
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Figure 1: Model overview. As input a triplet of digit images (7,7,5) is given to three identical encoder networks. The mean
latent vectors of three input images are used to calculate the triplet loss and the reconstructed images by the identical decoders
are used to calculate the reconstruction error.

vector z = Encoder(x) ⇠ q(z|x). The second one, a de-
coder network is used to decode the latent vector z back to
an image x̄ = Decoder(z) ⇠ p(x|z). To regularize the en-
coder, the VAE imposes a prior over the latent distribution
p(z). Usually the prior is set to independent unit Gaussian
distribution. The VAE loss consists of two parts: the recon-
struction loss and the KL Divergence loss. The reconstruc-
tion loss L

rec

is the negative expected log-likelihood of the
observations in x. And the KL-Divergence loss L

KL

char-
acterizes the distance between the distribution q(z|x) and
the unit Gaussian distribution. VAE models are trained by
optimizing the sum of the reconstruction loss and the KL
divergence loss using gradient descent.

L
vae

= L
rec

+ L
KL

, (1)

where
L
KL

= KL[q(z|x)||p(z)] (2)

L
rec

= �E
q(z|x)[logp(x|z)] (3)

VAE has been widely used in recent unsupervised learn-
ing researches as a highly expressive model. Different ap-
proaches are used to generate the variational distributions,
such as Gaussian processes [29], importance weighted ap-
proach [5] and a combination with auxiliary generative
models [21]. Much progress has been achieved in recent
research to increase the expression ability in VAE and en-
hance the learning process, including approaches like ex-
tension to semi-supervised learning [16], introducing multi-
scale structural-similarity score [26], adding novel regular-
ization [19], implementing deep feature consistency [11],

and combining VAE with generative adversarial network
[24].

2.2. Deep Metric Learning

Siamese networks for signature verification [4] first
showed the possible usage of neural network for compact
embedding learning. Recent work on metric learning using
neural network are heavily based on various CNN architec-
tures that are trained using triplet [23, 10], pairwise [7, 9] or
quadruplet constraints [6]. In this approach, CNN is trained
to learn an embedding for images that would capture the
semantic similarity among images. Apart from triplet and
pairwise loss, there are also approaches that use quadratic
loss [13] and lifted structured embeddings [23]. Deep met-
ric learning approaches have recently been used in various
vision related problems such as face recognition and verifi-
cation [27], style matching, image retrieval [31] and product
design [1].

3. Methods

In this section we first provide background on triplet loss
and then we introduce our method for combining VAE and
triplet-based metric learning along with feature perceptual
loss. Our proposed hybrid model is motivated as a way to
improve VAE, so that it can learn latent representation en-
riched with more fine-grained information.

3.1. Triplet-based Variational Autoencoder.

The triplet based variational autoencoder framework is
illustrated in Fig. 1. In each iteration of training, the input
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triplet (x, x
p

, x

n

) is sampled from the training set in such
a way that the anchor x is more similar to the positive x

p

than the negative x

n

. Then the triplet of three images are
fed into encoder network simultaneously to get their mean
latent embedding f(x), f(x

p

) and f(x

n

). We then define a
loss function L

triplet

(·) over triplets to model the similarity
structure over the images. We use triplet loss same as the
one described in Wang et al. [31]. The triplet loss can be
expressed as

L
triplet

(x

a

, x

p

, x

n

) = max{0, D(x

a

, x

p

)�D(x

a

, x

n

)+m},
(4)

where D(x

i

, x

j

) = ||f(x
i

)� f(x

j

)||2 is the Euclidean dis-
tance between the mean latent vector of images x

i

and x

j

.
Here m is a hyper-parameter that controls the distance mar-
gin in the latent embedding. This triplet loss function will
produce a non-zero penalty of D(x

a

, x

p

)�D(x

a

, x

n

)+m

if the Euclidean distance between x

a

and x

n

is not more
than the Euclidean distance between x

a

and x

p

plus margin
m in the latent space.

Figure 2: The Triplet Loss encourages to minimize the dis-
tance between the anchor and the positive maximize the dis-
tance between the anchor and the negative.

While various sampling strategies are proposed, such as
random sampling, hard mining and semi-hard mining [27]
for training triplet loss based deep metric learning models,
in our case such approach would alter the real distribution
of the data and would negatively affect the training of VAE.
Thus, in our project, we used random sampling for con-
structing training triplets. We performed this by first ran-
domly sampling an anchor and a positive image from a class
and then randomly sampling a negative image from a differ-
ent class.

To ensure that we have a good representation of every
class in the set of triplets, we construct an equal number of
triplets per class, with an image from the class being the
anchor point.

3.2. Variational Autoencoder Network Architecture

We construct both our encoder and decoder based on
deep CNN like VGGNet [28] and AlexNet [18]. In the en-
coder network, we use 4 convolutional layers with 4 x 4 ker-
nels a fixed stride of 2. We use a batch normalization layer
and a LeakyReLU activation layer after each convolutional

(a) Plain VAE

(b) Triplet based VAE

Figure 3: t-SNE projection for the latent mean vector for
the MNIST dataset.

layer. Finally, two fully-connected output layers are added
to the encoder: one for mean and the other for variance of
the latent embedding. As explained in [17], the mean and
the variance is then used to compute the KL divergence loss
and sample latent embedding z. In the case of decoder, we
use 4 convolutional layers with 3 x 3 kernels and fixed stride
of 1. For upsampling, we use nearest neighbor method by
a scale of 2. Like in encoder, we use batch normalization
layer and LeakyReLU activation layer after each convolu-
tion layer.

3.3. Perceptual Loss with Triplet Loss

Based on ideas in [14], [12], we replace pixel-to-pixel
VAE reconstruction loss with a feature perceptual loss. In
this case, we input both the original image x and the re-
constructed image x̄ through pre-trained 16-layer VGG net-
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Figure 4: Autoencoder network architecture.

work [28]. We then use the squared Euclidean distance be-
tween the output of the lth layer of the VGG net as the VAE
loss. This loss function is less sensitive to actual pixel value
compared to pixel-to-pixel L2 loss.

Thus our final loss function for an input triplet is given
by:

L
total

= ↵L
KL

+ �

lX

i

Ll

total

+ �L
triplet

(5)

4. Experiments

We focus our experiments on preservation of the seman-
tic structure in the learned latent embedding and image gen-
eration ability compared to traditional VAE.

4.1. Datasets

For our project, we perform experiments on two different
datasets. First for proof of concept, we use MNIST dataset
which includes 10 classes of hand-written digits (60000
training images and 10000 test data) [20]. The individual
images are of size 28 by 28 pixels.

We then test our proposed structure on a more compli-
cated dataset - the Zappos50k shoe dataset [32]. The dataset
contains 50000 images of individual shoes each one richly
annotated. We resize the images from 136 by 102 pixels
to 128 by 128 pixels. For the purpose of this project, we
focus into shoe characteristics based on the height of the
heels (numerical measurement from 0 to 5 inches). We also
performed experiments based on other characteristics: the
types of the shoes, the suggested gender of the shoes. But

due to time constraint of the course and limited computing
resource, we were not able to finish training models based
on those characteristics and thus omit those results in this
report.

4.2. Baseline model and Proposed Model

Plain VAE with Perceptual Loss: For our baseline, we
trained a plain VAE without using any triplet loss. For re-
construction loss, we used perceptual loss as explained in
section 3.3 in the case of Zappos dataset.

Triplet-based Variational Autoencoder: Our proposed
architecture is illustrated in Fig. 1. The input images are
first fed through an encoder network. Mean vector and stan-
dard deviation vector are learned. Then the two vectors are
combined as a sampled latent vector and pass through a de-
coder network. For MNIST, we adopted a simple network
structure with two fully connected layers as encoder and
decoder and used pixel-to-pixel L2 distance loss function
as reconstruction loss. The dimension of the mean vector
and the are both 20. For the Zappos50k shoe dataset, we
adopted a network as illustrated in Fig. 5.

4.3. Training Details

For the MNIST dataset, the model was trained for 10
epochs.

For the Zappos dataset, we train the model with a mini-
batch size of 64 and optimize using ADAM [15] with learn-
ing rate 5E-5, �1 = 0.1, �2 = 0.001. For experiment using
the Zappos dataset, we use latent embedding dimension of
100. In equation 5, we set ↵ = 1, � = 0.5 and � = 10. In
each mini-batch, we sample triplets uniformly. Each model
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Figure 5: Comparison of reconstructed images from the MNIST dataset. The first row is the input images from the MNIST
test set. The second row is the reconstructed images generates by the plain VAE. The third row is the reconstructed images
generated by the TVAE.

is trained for 8 epochs, each epoch consisting 50,000 unique
triplets. Even though for similar networks in relevant liter-
ature, it’s suggested that the model should be trained for
at least 100 epoch with unique triplet as much as possible
(in the order of 100K), we had to limit ourselves to only
8 epochs with each having only 50K unique triplets, due
to time constraint and limited computational resource. We
then run the model snapshot with the best validation perfor-
mance on the test set.

4.4. Visual Exploration of the Learned Latent Space

We visually explore the learned embedding distribution
for the mean vector. Fig.3 shows the two dimensional pro-
jection of 20-dimensional learned latent embedding of the
MNIST dataset. We used t-SNE [22] for creating the two
dimensional projection image.Here we use different colors
to stand for different digit classes. For instance, images with
digit 1 are plotted in green color. With an additional triplet
loss term, the clusters are more compactly clustered in the
mean vectors, as shown in Fig. 3b. On the other hand, with-
out the added triplet loss, the image clusters are less com-
pact and seem to spreading out in the spatial space as seen
in Fig. 3a. In this case, we also observe that images from
one class are more likely to be divided into more than one
cluster and images from different classes encounter more
mixing issues.

4.5. Results on Triplet Prediction

In order to evaluate the structure quality of the learned
latent embedding, we analyze learned latent embedding of
unseen triplets. We calculate triplet accuracy which is de-
fined by the percentage of triplets that incur a loss of zero in
Eq.4. First we train our model using training triplets. Then
once the training is done, for each triplet x

a

, x

p

, x

n

in the
test set, we evaluate whether the distance between x

a

and
x

p

is smaller than the distance between x

a

and x

n

by the
distance margin. Clearly a random guessing would yield an
error rate of 50% due to the task’s binary nature.

From Fig. 6, we see that after 10 epochs of training on
the MNIST data the network learning converges and the

plain VAE learns latent space that obtains triplet accuracy
of only 75.08%. On the other hand, triplet loss based VAE
achieves 95.6% triplet accuracy. From Table. 1, we see that
VAE loss for plain VAE and TVAE is in the same order. But
on top of achieving lower VAE loss, the TVAE were able to
learn latent vector space that would also preserve the rela-
tive distance metric.

In the case of, Zappos shoe dataset, we observe that the

(a) Triplet loss

(b) VAE loss

Figure 6: VAE loss and Triplet loss learning curve for
TVAE with MNIST dataset.
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Table 1: Triplet Accuracy and VAE Perceptual Loss

Model VAE Loss Triplet Accuracy
MNIST Plain VAE 104.66 75.08%
(10 epochs) Triplet VAE 110.34 95.6%

Zappos Plain VAE 0.5966 53.66%
(8 epochs) Triplet VAE 0.6204 73.8%

TVAE starts with test triplet accuracy of around 50%, al-
most a random guessing, but with each epoch it steadily
increases. By the 8

th epoch it achieves test triplet accuracy
of around 75%. On the other hand, the test triplet accuracy
in plain VAE always stays around 50% even after several
epochs of learning. This validates that the plain VAE, while
might be able to get latent embedding good enough for fu-
ture reconstruction of the input image, it fails to capture
salient features like relative distance metric in it’s learned
latent embedding. Whereas, in the case of TVAE, we are
able to get almost same VAE reconstruction error compared
to plain VAE while incorporating more salient features in
the learned latent embedding. Here, we emphasize that the
learning curve for Zappos dataset in Table 1, is based on
less than 10 epochs of learning since we were constrained
by time and computing resource within the time-line of our
course CS231N. But based on other relevant literature, the
training for triplet based models should be done for at least
50 epochs after which it starts to give much stronger result.

5. Conclusion and Future Work

Triplet based Variational Autoencoders (TVAEs) provide
a new set of tools for learning latent embedding that lever-
age both traditional VAE and deep metric learning tech-
niques. By incorporating triplet constraint in the learning
process, TVAEs can learn interpretable latent representa-
tion that preserves semantic structure of the original dataset.
Our method provides an initial framework for learning la-
tent embedding that would be able to encode various no-
tions of similarity. We demonstrate that TVAEs achieve per-
ceptual reconstruction loss almost as same as the traditional
VAE while encoding more semantic structural information
in the latent embedding.

For future work, we would first like to run more exper-
iments on larger datasets like Zappos and train CNN bases
TVAEs for larger number of epochs which we were not
able to do here due to time and computational resource con-
straints. We would also like to see how our approach per-
forms for different notions of similarity in the dataset and
explore further if we can incorporate ideas as in Conditional
Similarity Network [30] in our framework.

Figure 7: Triplet accuracy learning curve for TVAE and
plain VAE with Zappos shoe dataset. We see that even
within the first 8 epochs, the triplet accuracy for validation
triplet set in TVAE steadily increases while in the case of
plain VAE it always stays around 50% which is same as
random guessing. We emphasize that this image is based
on only 8 epochs.
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