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Abstract

State-of-the-art object detection methods are in two ma-
jor groups: region proposal based methods like Faster R-
CNN [11], and regression based methods like YOLO [10].
In this work, we focus on improving the region proposal part
of Faster R-CNN by introducing iterative region proposal
refinement and LSTM region proposal refinement. An iter-
ative region proposal refinement can iteratively refine re-
gion proposal based on previous output, and an LSTM re-
gion proposal refinement is of similar structure but added
an LSTM layer to carry hidden information between differ-
ent iterations. We trained and tested our model on PAS-
CAL VOC 2007 dataset, improved the mean average preci-
sion (mAP) from 0.6702 to 0.6774. Experiments also show
that our method can iteratively improve the detection results
along multiple refinements.

1. Introduction
Object detection is a computer vision task that aims to

detect instances of semantic objects of certain classes in dig-
ital images (and videos). Given an image, object detection
system detects what objects are in it and where they locate.
It plays an important role in face detection, self-driving cars,
video surveillance and many other applications.

Recent years, deep Convolutional Neural Network
(CNN) bring significant improvement to object detection
task over traditional methods [6, 12]. CNN based object de-
tection algorithms can be divided into two major categories:
region proposal based algorithm like R-CNN [4], Fast R-
CNN [3], and Faster R-CNN [11], and regression based al-
gorithm like YOLO [10] and SSD [7]. In this project, we
investigate the region proposal based detection algorithm
and try to refine region proposals for multiple iterations.

More specifically, our goal is to improve the performance
of Faster R-CNN [11].

Inspired by RefineNet [9] and LSTM [5], we propose
methods to get better region proposals through multiple-
iteration refinement, and tested our method on PASCAL
VOC 2007 dataset [2].

2. Related Work
2.1. Region Proposal Based Algorithms

The most representative region proposal based mode is
Faster R-CNN [11], which originates from R-CNN [4], and
fast R-CNN [3].

R-CNN. Region-based Convolutional Neural Network,
or R-CNN, was proposed not long after the emergence of
CNN and it greatly improved the detection performance in
terms of mean average precision (mAP) compared to mod-
els without deep CNNs [4]. The system consists of three
parts. The first part generates region proposals using se-
lective search [14]. The second part is feature extraction
through CNN, in each proposed region. The third part is
classification by SVMs. Although R-CNN is an innovative
and effective model, it has many defects: ad hoc training
objectives, expensive training both in space and time, and
worst, long detection time [3, 11].

Fast R-CNN. Fast R-CNN builds on the work of R-CNN
and improves training and testing speed while increasing
the detection accuracy [3]. The speed-up comes from shar-
ing CNN computation among all region proposals. In Fast
R-CNN, an image is put into a CNN to create a convolu-
tion feature map first and then an Region of Interest (RoI)
pooling layer extracts a feature vector for each region pro-
posal [3]. The feature vectors are fed into fully-connected
layers and finally the model produces softmax class prob-
ability estimates and bounding boxes for each detected ob-
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jects. Fast R-CNN significantly reduces training and testing
time, but the region proposals are still made by traditional
methods [3], which costs a long time for pre-processing.

Faster R-CNN. To solve the bottleneck problem of
region proposals in Fast R-CNN, Faster R-CNN is pro-
posed, which makes region proposals by neural network in-
stead [11]. It is composed of two modules. The first mod-
ule is a Region Proposal Network(RPN), which proposes
regions for the second module, Fast R-CNN detector, to in-
spect. In RPN module, a small network slides over the con-
volution feature map with multiple anchors at each sliding-
window location. The RPN outputs a bounding boxes (re-
gion proposals) and predicted class as Fast R-CNN module
does. A four-step alternating training is adopted to share
features for both modules [11].

2.2. Regression Based Algorithms

YOLO and SSD. You Only Look Once (YOLO) reframe
the detection problem as a regression problem, so as Single
Shot MultiBox Detector (SSD), and they do not have re-
gion proposals involved [10, 7]. Instead, they are based on
pre-defined grid and use a CNN to simultaneously predicts
bounding boxes and class confidence, making it extremely
fast compared to methods based on region proposals [10, 7].

2.3. Iterative Refinement

As reported in RefineNet [9], iterative refinement on
the proposed regions can significantly improve the mAP of
the detection result. RefineNet is based on ZF Net [16]
and achieved close performance to Faster R-CNN, while
running ten times faster. Inspired by the paper, we pro-
pose iterative refinement based on Fast R-CNN and adding
LSTM [5] to it, achieved further improvement on its perfor-
mance in object detecting task.

3. Method
3.1. Faster R-CNN and Motivation

One of the state-of-the-art object detection models is
Faster R-CNN [11]. The architecture of Faster R-CNN is
shown in Figure 1. Given an image, we first employ a pre-
trained deep convolutional neural network, such as VGG
[13], to extract feature maps from it. Then, they use a Re-
gion Proposal Network (RPN), which consists of two con-
volutional layers, to detect the regions that might contain
object in the feature maps (image). Then the network em-
ploy a RoI pooling layer [3] to crop and resize the the fea-
ture maps according to these region proposals. The new
feature maps of each region are then used for classification
and finer bounding box regression through three fully con-
nected layers.

One issue of this Faster R-CNN architecture is that the
region proposals output from RPN are not very accurate.

Figure 1. Architecture of Faster R-CNN. (This figure is from the
original paper [11].)

This is due to RPN using some hard coded anchors with
fixed scales and aspects to guess the potential regions. Al-
though RPN also has a bounding box regression part, it only
aims to give general boxes that may contain any kind of ob-
jects. Without class specific knowledge, these boxes won’t
be very accurate. We argue that the error of classification
and final bounding box regression might be partly caused by
error of proposed region. Suppose we can have finer region
proposals, the accuracy of classification and final bounding
box regression may be further improved.

3.2. Iterative Region Proposal Refinement Model

A nature better region proposal will be the regressed
bounding box since it is designed to refine the rough region
output by RPN using class specific knowledge encoded in
the network. Since regressed bounding box is one of the
outputs of the whole Faster R-CNN network, we cannot use
it as our region proposal at the beginning. However, once
we get the finer bounding box, we can start another round
of classification and bounding box regression, using the re-
gressed bounding box in previous round as the region pro-
posals in the new round. This process can keep going for
several iterations. In this iterative way, we can refine the re-
gion proposals again and again and might get a better result
after each iteration.

The model of Faster R-CNN with iterative region pro-
posal refinement is shown in Figure 2. In the first iteration,
it’s exactly the same as Faster R-CNN: extract feature maps
from image by VGG, pass them to RPN to get region pro-
posals, employ RoI pooling layer to crop and resize new
feature maps for each proposal, and use a three-layer fully
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connected network to get the final class scores and bound-
ing box regression for each class.

After the first iteration, for each proposed region, we se-
lect the regressed bounding box with the maximum class
score as the region proposal in the second iteration. And
the rest of second iteration is the same as the first iteration:
we use RoI pooling layer to crop and resize feature maps for
each proposal, classify and regress the bounding box using
new feature maps. Note that for the input of RoI pooling
layer, we reuse the feature maps in first iteration and there is
no need for recalculation. Also, we reuse parameters of the
three-layer fully connected network in different iterations.
After the second iteration, we can repeat the same process
for the third iteration, and so on. Figure 2 is a demonstration
of iteration number = 3.

Our iterative refinement model can be represented by the
following equations. For the feature maps extraction and
each initial RPN region proposal, we have

f = V GG(image)

RP1 = RPN(f)

Then suppose we set iteration number = T , then for each
iteration i, the model can be represented as

for i =1, 2, ...T,

ri = RoIPooling(f,RPi)

scoresi, boxesi = FC3(ri)

RPi+1 = boxesi,argmaxj∈{0...C} scoresij

lossi = losscross−entropy(scoresi, ci)

+ λ[ci 6= bg]losssmoothL1
(boxesi, bi)

where FC3 denotes the three-layer fully connected net-
work, C denotes the number of classes, ci denotes the class
label for the proposed region RPi , bi denotes the ground
truth bounding box of object in this region, [ci 6= bg] = 1
if the region is not a background and contains object, other-
wise [ci 6= bg] = 0, and λ is the weight parameter to balance
classification loss and bounding box regression loss.

During training, for the classification, we use softmax-
cross entropy loss, and for the bounding box regression, we
use smooth L1 norm loss [3]. We will get a lossi in each
iteration. The final loss will be the sum of all iterations (loss
from RPN might also be added to the final loss). And in test
time, we use the scores and bounding boxes from the last
iteration as the final output:

loss
final

=

T∑
i=1

lossi

output = scores
T
, boxes

T

Figure 2. Architecture of Faster R-CNN with iterative region pro-
posal refinement.

Figure 3. Architecture of Faster R-CNN with LSTM region pro-
posal refinement.

Note that above are the equations for only one region
proposal. If RPN yields K region proposals at the very be-
ginning, we will do the same thing for each proposal, and
average loss

final
of all K proposals as the final loss.

3.3. LSTM Region Proposal Refinement Model

One issue of the iterative refinement model is the gradi-
ent of loss can not be backpropagated from the later itera-
tion to the earlier iterations. Since the error of classifica-
tion and bounding box regression of later iteration might be
caused by errors of earlier iterations, we hope those earlier
errors can also be corrected by gradient backpropagation.
However, this cannot be done by iterative refinement model
since RoI layer cannot backpropagate the gradient to the re-
gion proposal coordinates. This is because RoI layer uses
these coordinates to crop the feature maps, but the ”crop”
operation is not differentiable with respect to coordinates.
As a result, in Figure 2 the gradient of each loss in iterative
model can only be propagated downward (yellow arrows)
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but cannot be propagated to the left (green arrows).
Inspired by Reccurrent Neural Network (RNN), which

can pass useful information to later time steps and also
propagate the gradient backward to the previous time steps,
we propose a LSTM region proposal refinement model,
where LSTM is one of RNN models [5]. The architecture of
our model is shown in Figure 3. The different between iter-
ative and LSTM refinement models is that we add a LSTM
layer right before the final fully connected (output) layer,
and pass the hidden states of LSTM to the next iteration
(blue arrows). As a result, if the iteration number = T , then
in each iteration i, the equations become

for i =1, 2, ...T,

ri = RoIPooling(f,RoIi)

ai = FC2(ri)

hi = LSTM(hi−1, ai)

scoresi, boxesi = FC(hi)

RoIi+1 = boxesi,argmaxj∈{0...C} scoresij

lossi = losscross−entropy(scoresi, ci)

+ λ[ci 6= bg]losssmoothL1
(boxesi, bi)

where hi is the hidden state of LSTM at iteration i, and
the input of the LSTM layer is hi−1, the hidden state of
previous iteration, and ai, the output of two-layer fully con-
nected network in current iteration. The rest of this model
is the same as iterative refinement model.

One benefit of adding a LSTM layer is that the hidden
state of previous iteration can contain information that is
useful to improve classification and bounding box regres-
sion results in current iteration. Another benefit is that we
can now backpropagate the gradient of loss from the later
iterations to the earlier ones (through the blue arrows in Fig-
ure 3), since LSTM is differentiable with respect to the pre-
vious hidden state. As a result, if the error of prediction
in current iteration comes from the errors of previous iter-
ations, LSTM gives it a chance to correct those errors by
gradient backpropagation.

Actually, this is an unusual use of LSTM/RNN model.
RNNs are more often used in sequential input data such as
text, audio and video. The hidden state of RNN was proved
to have the ability to capture the temporal information of
data at previous time steps. Since the meaning of current
frame in sequential data is often related to the frames previ-
ous to it, RNN makes a great success in encoding features
of sequential data.

Although our data is image, which is not sequential
data, but the way we refine the region proposals and make
progress step by step also contains temporal information.
We can see the iterations as multiple guesses. In each iter-
ation, we look into the guessed region of the image and get
some information that is useful to decide a better guess next

time. This way of sequential processing of non-sequential
data is often called attention or glimpse model, which has
been used in both multiple object detection [1] and question
answering [15]. In the paper [15], they also use a LSTM to
refine the answer span for a question for multiple times.

4. Experiment
We implemented our models based on a PyTorch imple-

mentation of Faster R-CNN [8] and trained our iterative re-
finement model and LSTM refinement model on VOC 2007
train and validation set, and tested our models on VOC 2007
test set. We use mean average precision (mAP), which is
widely used for object detection task, as the metric to eval-
uate our model.

4.1. Test Results

The overall results is shown in Table 1. We found that
most models with refinement perform better than the origi-
nal Faster R-CNN model, which shows that region proposal
refinement can improve the detection results. As we explore
more different hyper-parameters, we found that the itera-
tive refinement in general performs better than the LSTM
refinement. The best model of iterative refinement gives
0.6774 mAP and the best of LSTM model gives 0.6743
mAP, compared to 0.6702 mAP of the original Faster R-
CNN that we trained. We also notice that to train a better
refinement model, the learning rate should start from a rela-
tive small value. In addition, training that includes loss from
RPN gives slightly better results over those do not. As for
the number of iterations of the refinement, training with 3
iterations and testing with 3 iterations achieves best perfor-
mance, suggesting that the iteration number is not the larger
the better.

The detailed test results of our best iterative refinement
and LSTM refinement is in Table 2. The iterative refinement
and LSTM refinement have close performance over many
classes, and both gives better AP than the original model in
most of the categories.

4.2. Visualization

To better understand our iterative refinement model and
to analyze its pros and cons, we visualize some object de-
tection results in Figure 4, where refinement with iteration
1, 2 and 3 are shown in bounding box with color orange,
yellow and green respectively.

We can observe iterative improvement of the bounding
box predictions in some images. More concretely: 1) in im-
ages with single object where the original region proposal
only covers a part of the object: the refinement can usu-
ally enlarge the bounding box to cover the entire object, as
shown in 2A, 3A, 3B and 5A in Figure 4. 2) in images with
single object where the original region proposal is already
very good: the refinement usually makes minor changes to
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Figure 4. Visualization of iterative refinement model (Iteration 1, 2, and 3 are denoted by orange, yellow, and green)

model parameters mAP
train max iter test max iter includes RPN loss learning rate

original model - - - - 0.6702
iterative refinement 2 2 Y 0.0001 0.6580
iterative refinement 2 2 Y 0.00001 0.6707
iterative refinement 3 3 N 0.00001 0.6744
iterative refinement 3 2 Y 0.00001 0.6772
iterative refinement 3 3 Y 0.00001 0.6774
iterative refinement 3 4 Y 0.00001 0.6760
LSTM refinement 2 2 Y 0.0001 0.6582
LSTM refinement 3 2 Y 0.00001 0.6702
LSTM refinement 3 3 Y 0.00001 0.6596
LSTM refinement 4 2 Y 0.00001 0.6712
LSTM refinement 4 3 Y 0.00001 0.6723
LSTM refinement 7 2 Y 0.00001 0.6743
LSTM refinement 7 3 Y 0.00001 0.6557

Table 1. Overall results. Trained with 100K step, learning rate decay to 1/10 at 50K and 80K step. Size of each fully connected layer:
4096, hidden units number of LSTM: 1024.

model mAP areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
original model 0.6702 0.680 0.779 0.660 0.548 0.470 0.758 0.794 0.786 0.456 0.724 0.654 0.743 0.803 0.697 0.761 0.391 0.652 0.624 0.750 0.680

iterative refinement 0.6774 0.691 0.710 0.672 0.581 0.494 0.764 0.797 0.792 0.441 0.717 0.688 0.754 0.806 0.706 0.762 0.412 0.667 0.657 0.755 0.682
LSTM refinement 0.6743 0.700 0.773 0.678 0.515 0.478 0.768 0.789 0.775 0.470 0.715 0.670 0.753 0.807 0.745 0.755 0.368 0.659 0.646 0.758 0.665

Table 2. Test results of different models across different classes on VOC 2007

the bounding box, as shown in 2C. 3) in images with multi-
ple object where region proposal for some objects are too
large, iterative refinement can sometimes shrink it to the
correct size (as in 1A, 1B and 4A) and sometimes fail to
do so. 4) most importantly, iterative refinement can some-
times find objects that was not originally detected, as shown

in 1C (where the truck under the plane is not detected until
the third refinement iteration) and 3C (where the dog is not
detected until the second iteration).

5



Figure 5. Learning curve of Faster R-CNN with iterative region
proposal refinement (learning rate decay at 40K and 60K step).

Figure 6. Learning curve of Faster R-CNN with LSTM region pro-
posal refinement (learning rate decay at 40K and 60K step).

4.3. Discussion

RefineNet [9] applies a similar iterative refinement based
on ZF Net and reported significant improvement on mAP.
However, our iterative refinement and LSTM refinement did
not improve the mAP as large as expected, and we analyzed
the possible reasons in depth in this section.

Over-fitting issue
Figure 5 and Figure 6 are the learning curves for itera-

tive refinement and the LSTM refinement respectively. Both
learning curves show large gap between the learn and test
mAP, suggesting that the model may have over-fitting is-
sue. We tried larger drop-out rate and adding regularization,
but neither could bring down the gap while not decrease the
test mAP. However, we believe that our refinement method
will achieve better performance once the overfitting issue is
solved.

Iterative length is too short for LSTM
From Table 4.1 we see that iterative region proposal re-

finement works better than LSTM refinement, this may due
to that such iterative length (2-7) is too short for LSTM to
show its strength. Another comparison among LSTM re-
finement shows that training with larger number of itera-
tions can bring up the test mAP, which further suggests that

the iterative length may be too short for a LSTM.
Magnify both good and bad detections
Another reason contributes to the overall under-

performance is that our refinement model takes the predic-
tion of previous stage as input, therefore it will magnify
both good and bad predictions. More concretely, if the orig-
inal region proposal is reasonably good, then the refinement
part can refine the detection bounding box and improve the
detection accuracy. However, if the original region proposal
is bad (or totally wrong in some cases), then the refinement
model will further magnify the error, since the refinement
part is somewhat repeating the region proposal task and a
failure in the original task will lead to a failure in the subse-
quent tasks.

5. Conclusion

To conclude, we introduced two refinement methods, it-
erative and LSTM refinement, to Faster R-CNN model and
improve the performance of it from 0.6702 to 0.6774 mAP
in object detection task on PASCAL VOC 2007 dataset.

In the future, our methods can be further improved by
1) finding a method to make the RoI pooling layer able to
backpropagate gradient through different iterations, so that
we can further improve our iterative model; and 2) solving
the potential over-fitting issue.
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