
CHILDNet: Curiosity-driven Human-In-the-Loop Deep Network

Byungwoo Kang
Stanford University

Department of Physics
bkang@stanford.edu

Hyun Sik Kim
Stanford University

Department of Electrical Engineering
hsik@stanford.edu

Donsuk Lee
Stanford University

Department of Computer Science
donlee90@stanford.edu

Abstract

While deep learning has been remarkably successful in
the domain of computer vision, most of its success so far
has relied on large-scale training data that are human-
annotated. With the goal of reducing the enormous cost
associated with compiling such large-scale dataset in mind,
we develop an actively learning model that can incremen-
tally learn new visual objects. The main novelty of our
model is to have separate vision and Reinforcement Learn-
ing (RL) modules. The vision module extracts relevant
features in such a way that allows few-shot learning, and
the RL module makes decisions whether to request a label
or make a prediction based on the features extracted from
the vision module. Our model outperforms the model pro-
posed in [11] by achieving a higher prediction accuracy
with fewer label requests on the same test setting as theirs.

1. Introduction
Many of the most successful deep learning models in

the domain of computer vision are trained on large-scale
datasets in a strongly supervised fashion. As such large-
scale datasets are often labelled by humans, which may be
rather expensive, it is desirable to have an actively learning
agent that can learn on its own by exploring and interacting
with its environment.

Based on this motivation, we develop an actively learn-
ing model that can incrementally learn new visual objects.
Our model continuously discovers new object classes, re-
quest their labels, and learn to recognize them. For simplic-
ity, we focus on training on single-object image datasets,
such as Omniglot. Our model sequentially receive a stream
of images one by one and learn to make a prediction if it is

confident that the image is in a class already seen, or request
a label otherwise.

To build our model, we combine ideas from the siamese
network [5], iCaRL [8], and active one-shot learning [11].
Our model consists of vision and Reinforcement Learn-
ing (RL) modules.The vision module trained in the siamese
fashion extracts relevant features from the input image and
keeps track of class prototypes in a manner inspired by [8].
The RL module inspired by [11] makes decisions whether
to make a prediction or request a label based on the new
image’s feature vector and the stored class prototypes. The
vision module then either makes a prediction or requests a
label, according to the decision made by the RL module.

Our main contribution is twofold. First, our model serves
as a proof of concept that an RL module can find a reason-
ably good policy regarding whether to make a prediction or
request a label based on high-level features from a vision
module. Second, to the best of our knowledge, our model
is the first neural network model to incrementally learn an
arbitrary number of classes while requesting class labels for
examples that they are uncertain about. Moreover, for a
fixed number of classes, our model outperforms the model
proposed in [11] by achieving a higher prediction accuracy
while requiring fewer label annotations.

2. Related Work
Since image streams that our model is expected to en-

counter are likely to have only few examples per class, our
vision module needs to be able to do few-shot learning.
Some notable previous proposals to tackle few-shot learn-
ing include the siamese network [5], memory-augmented
neural network, [9], matching network [10], and model-
agnostic meta-learning [2]. For simplicity, we use the
siamese network as our vision module. In addition, since
it classifies images by a nearest-neighbor algorithm in the

1

learned metric space, it is particularly suitable for incremen-
tal learning. However, we expect our general strategy to be
applicable to more sophisticated models designed for few-
shot learning including the ones mentioned above.

On the other hand, our vision module needs to encounter
and learn an increasing number of classes over time. This
type of learning problem, called ‘incremental learning’ has
been addressed in previous works including notably [6, 8].
We find the approach of [8] particularly appealing, because
it uses a nearest-neighbor algorithm in the final feature
space for classification of images as in the siamese network.
Although their problem setting differs from ours in that all
instances from each class are consecutively arranged in the
image stream, we take inspiration from their idea to use the
average of the feature vectors for each class as class proto-
types.

Finally, our model needs to be able to decide when to
make a prediction and request a label, based on its current
knowledge. A problem setting very similar to ours is ad-
dressed by [11], which also partly inspired this project. The
only difference from our problem setting is that their image
stream contains only a fixed number of classes. Also, unlike
our model where the vision and RL modules are separate, in
their model, a single LSTM plays the role of both modules
simultaneously. More precisely, their LSTM approximates
the optimal action-value function where the state is the con-
catenation of a new image flattened into a vector with the
previously requested label (if no label is requested, a zero
vector is concatenated) and the action is either the predicted
label or label request. We instead use the policy gradient
method as explained more in details below.

3. Approach
Our goal is to build a learning system, realized by a neu-

ral network, that incrementally learns to recognize new im-
age classes from a continuous unlabelled image stream. To
achieve this goal, it has to decide whether a given image be-
longs to a class it has never seen before, and if so, request
an external annotator (e.g. human experts, or crowdwork-
ers) to provide a label for it. On the other hand, if it decides
that the given image belongs to the learned classes, it makes
a prediction. This setting can be thought of as a combina-
tion of the two well-known learning problems: online active
learning [7] and incremental learning [8].

Formally, we have an image data stream X =
{x1, x2, ...} with their corresponding class labels given by
Y = {y1, y2, ...}, which are only revealed upon requests.
A requested label is supplied before proceeding to the next
image in the stream. We also emphasize that yi’s are not
necessarily distinct from each other. The number of dis-
tinct class labels may increase over time, as an instance of
a new class may appear at any time. Ideally, our neural net-
work has to request a label for every new class it encounters

and makes prefect predictions for images belonging to the
learned classes. Therefore, as training progresses, we ex-
pect that label request percentage will increase for the first
instance of a class while decreasing for later instances. Sim-
ilarly, we expect prediction accuracy to increase for later in-
stances of a class. In other words, our network should have
a sense of what it knows and does not know, and ask for
information about novel examples.

Since our network has to learn from images presented
in a sequence, and since the images from each object class
are randomly and sparsely distributed in the sequence, it
needs to be able to do few-shot learning. That is, from the
first instance of a particular class, it needs to extract enough
relevant features so that it can make an accurate prediction
next time it sees an instance of that class. At the same time,
the number of the object classes to classify is not fixed, but
increases as the network sees more images. In other words,
the network needs to be an incremental classifier. Moreover,
it should decide whether a given image belongs to a class it
has already seen or a new class. Based on this decision, it
either makes a prediction or request a label. To build such
a network, we combine three different ideas proposed be-
fore: siamese network [5], iCaRL [8], and active one-shot
learning [11].

The siamese network is trained to perform verification
task, the goal of which is to decide whether a given pair
of images belong to the same or different classes. It tells
whether image pairs are from the same class or not by ex-
tracting feature vectors through a convolutional network
and then measuring the pair’s similarity by a learned sim-
ilarity metric. It turns out that the siamese network, trained
only for verification task, also excels at few-shot learning.
When adapted for the few-shot learning task, it classifies
an image by measuring how similar its feature vector is to
the stored features vectors whose class identities are known.
The class of the image is then predicted to be the class iden-
tity of the most similar stored feature vector. Since this
nearest-neighbor approach can work regardless of the num-
ber of the stored feature vectors, it is also suitable for in-
cremental learning. Given the necessity of few-shot and in-
cremental learning in our problem setting, the siamese net-
work is therefore a natural choice for the vision module in
our network.

Figure 1 illustrates the detailed architecture of our vision
module. Specifically, it extracts feature vectors through four
identical convolutional modules each of which consists of
a 3 × 3 convolutions with 64 filters, batch normalization,
a ReLU nonlinearity, and 2 × 2 max-pooling. Then, for
a given pair of images, we take the absolute element-wise
difference between their flattened feature vectors, and apply
an affine transformation and sigmoid function on the differ-
ence vector to get the probability of the pair belonging to
the same class.

2

Figure 1: Our vision module’s architecture

Figure 2: A schematic view of our entire model.

For classification task, the vision module needs to keep
and update the sets of representative feature vectors for the
learned classes, which we refer to as ‘class prototypes’. A
nice algorithm is proposed in [8] to systematically manage
such class prototypes. Although we do not exactly follow
the iCaRL algorithm proposed in [8] due to differences in
details of the problem setting, we take inspiration from their
general idea and use the running average of feature vectors
encountered so far for each learned class as the class pro-
totype for that class. More details on updating class proto-
types are illustrated in Algorithm 1.

Finally, inspired by the idea of active one-shot learning
[11], we introduce a Reinforcement Learning (RL) module
to make decisions whether to make a prediction or request

a label. Our main novelty is to use separate vision and RL
modules and train the RL module using the policy gradient
method. A schematic description of the two modules inter-
acting with each other is given in Figure 2. The input to the
RL module is the concatenation of the new image feature
vector and the nearest mean. In principle, we could con-
catenate this with other running means further away, but we
found that the RL module performs well enough with just
the nearest running mean. Intuitively, the RL module has to
decide to make a prediction if the new image feature vec-
tor is close enough to the nearest running mean, and request
a label otherwise. If it decides to request a label, the new
image’s feature vector is used to update (or create, in case
it belongs to a genuinely new class) the running mean cor-

3

Algorithm 1 UPDATECLASSPROTOTYPE

input y // class label
input ϕy ∈ Rd // feature of an instance of class y
require P = {pc}Cc=1 // class mean of known classes
require λ // decay rate

if y ∈ {1, ..., C} then
py ← (1− λ)py + λϕy

else
py ← ϕy
P ← P ∪ {py}

end if

responding to its class. We give the RL module a positive
reward for a correction prediction, a negative reward for an
incorrect prediction, and a small negative reward for a la-
bel request, because in practice label annotations by crowd-
workers are expensive. The decision made by the RL mod-
ule is sent to the vision module, which either makes a pre-
diction or requests a label as dictated by the RL module.
The reward signal is finally sent to the RL module based on
the correctness of the prediction in case the vision module
makes a prediction. Otherwise, a fixed reward for a label
request is sent to the RL module.

The astute reader might wonder whether we can instead
use a classifier trained in the standard supervised way to do
the decision-making. There are two main reasons why we
believe our RL module is superior to the supervised classi-
fier. First, as we show below, if we use reinforcement learn-
ing, it is easy to trade off prediction accuracy with reduced
label requests by varying the value of the reward for a label
request. For example, if the reward becomes more negative,
it means that label requests are penalized more and therefore
at the expense of less accurate predictions, the RL module
can reduce the cost of label requests. On the other hand, if
it becomes less negative, at the cost of more label requests,
the RL module can make more accurate predictions. This
kind of trade-off seems difficult to accomplish in the stan-
dard supervised setting. Second, there could be situations
where the confidence level of the decision made by the su-
pervised classifier is not high enough that it would be more
beneficial in the long run to request a label to update the
running means of the class feature vectors. The RL mod-
ule can potentially deal with these situations better, because
it takes an action that will be most beneficial in the long
run, as evaluated by the sum of discounted future rewards.
Thus, it will request a label for an image that it marginally
believes to belong to one of the learned classes, if such an
action leads to more accurate knowledge about the image’s
class and is therefore more advantageous in the long run.

Our combined network is trained as follows. First,
we train the vision module on verification task. Once it
achieves good performance on one-shot learning, we freeze

Algorithm 2 TRAINCHILDNet

input D = {(x0, y0), ..., (xT , yT)}
require ϕ : χ→ Rd // Feature extractor
require W : R1×d // Weight vectors in the final layer of

siamese network
require P = {pc}Cc=1 // Class mean of known classes
require πθ : R2d → {0, 1}
require Rinc, Rcor, Rreq

for t = 0, . . . , T do
C∗ ← argmaxcW |ϕ(xt)− pc|
st ← (ϕ(xt), pC∗)
at ← argmaxa∈{0,1}πθ(st, a)
if at = 0 then

if C∗ = yt then
rt ← Rcor

else
rt ← Rinc

end if
else
rt ← Rreq
UPDATECLASSPROTOTYPE(ϕ(xt), yt)

end if
end for
θ ← θ + α∇θ(πθ(st, at))vt // update RL agent

its parameters and use it as a fixed feature extractor. Then,
using features provided by the vision module, the RL mod-
ule is trained by the policy gradient method. More details
can found in Algorithm 2.

4. Experiment

Figure 4: Examples from the Omniglot dateset

4.1. Dataset

We use the Omniglot dataset [1] to train and evaluate
our model. Omniglot contains 20 hand-drawn examples for
each of 1,623 characters from 50 different alphabets. It is
especially suitable for one or few shot classification task,

4

Figure 3: Left: Change of label request percentage over the training episodes for the 1st, 2nd, and 5th instances of all classes.
Right: Change of prediction accuracy over the training episodes for the 1st, 2nd, and 5th instances of all classes. The top row
corresponds to the case of Rinc = −1, and the bottom row to Rinc = −10.

since it has a relatively small number of examples per class
and a larger number of classes. In our experiments, we ran-
domly split the Omniglot dataset into 800 training classes,
400 validation classes and 423 test classes. The images are
downsampled to 28 x 28 and converted into grayscale.

4.2. Training of the vision module

For verification task, we prepare roughly the same num-
ber of same and different pairs. To form the set of same
pairs, we sample all possible example pairs for each class in
the training set. This results in 152, 000 = (10× 19)× 800
same pairs in total. On the other hand, there are vastly more
possible different pairs than the same pairs, because there
are 319, 600 = 400× 799 distinct-class pairs, and for each
distinct-class pair, there are 400 = 20× 20 possible differ-
ent pairs. To ensure that we have roughly the same number
of same and different pairs and that we sample as many dif-
ferent distinct-class pairs as possible, we sample one ran-
dom different pair for each distinct-class pair to have total
319, 600 different pairs and duplicate each same pair to have

total 304, 000 = 2×152, 000 same pairs. Therefore, the to-
tal number of pair examples in the training set is 623, 600.
The validation and test sets are similarly prepared. During
training, each image is rotated by a random integer multiple
of 90 degrees. The random rotation is not applied at test
time. We compute the verification accuracy on the valida-
tion set after each training epoch, and select the model with
the highest accuracy to be used in the training of the RL
module.

4.3. Training of the RL module

We generally follow the experiment steps in [11] with
some modifications. Each training episode consists of
30 images sampled randomly from 10 randomly sampled
classes. We vary the number of classes per episode during
the test time to demonstrate that our model is capable of in-
cremental learning. Specifically, each test episode consists
of all the images from N randomly sampled classes, where
N ∈ {3, 10, 20, 40} . Note that in [11] three randomly se-
lected classes are used per episode at both the training and

5

test time.
Throughout our experiment, we set the discount factor

γ = 0.5. The rewards for a correct prediction and a label
request, Rcor and Rreq , are fixed to 1 and −0.05, respec-
tively, while the reward for an incorrect prediction Rinc is
varied among three different values {−1,−5,−10} to see
the aforementioned trade-off. The RL module is optimized
using the Adam optimizer [4] with the default hyperparam-
eters and learning rate η = 10−4. The total number of train-
ing episodes is 20, 000, and the parameters are updated after
each episode.

4.4. Results

For every 50 training episodes, we count the number of
label requests nreq , correct predictions ncor, and incorrect
predictions ninc for the 1st, 2nd and 5th instances of all
classes. The label request percentage and prediction accu-
racy plotted in Figure 3 is defined as nreq/(ncor + ninc +
nreq) and ncor/(ncor + ninc + nreq), respectively. As
shown in the left two plots of Figure 3, our model learns to
make more label requests for the first instances and fewer
for the later instances. Furthermore, as shown in the right
two plots of the same figure, prediction accuracy is higher
for later instances than early instances. These results taken
together suggest that our model incrementally learns new
image classes while requesting labels for instances it is un-
certain about.

Accuracy (%) Requests (%)
Supervised 93.4 100

Ours (Rinc = −1) 87.7 17.0
Ours (Rinc = −1) 92.1 24.1
Ours (Rinc = −1) 93.2 26.3

Table 1: Trading Accuracy for Requests

Trading off prediction accuracy with reduced label re-
quests. By varying the value of Rinc, we are able to
trade off prediction accuracy with reduced label requests.
We present how prediction accuracy and label request fre-
quency change with the value of Rinc in Table 1. As ex-
pected, as Rinc becomes more negative, incorrect predic-
tions are more severely penalized, and consequently the RL
module learns to improve its prediction accuracy by mak-
ing more label requests. Also, our model achieves nearly
the same task performance as the fully supervised control
model, which updates its class prototypes using all the ex-
amples in the episode before classification, with signifi-
cantly less information about the class labels.

Varying the number of classes. While our model is
trained with only 10 classes per episode, it performs rea-

Accuracy (%) Requests (%)
Number of classes = 3 96.4 16.7

Number of classes = 10 87.7 17.0
Number of classes = 20 77.1 17.2
Number of classes = 40 64.9 16.7

Table 2: Varying number of classes

sonably well even for larger numbers of classes per episode,
indicating that it can flexibly deal with varying numbers of
classes. Table 2 summarizes our model’s performance for
different numbers of classes per episode (Rinc = −1).

5. Conclusion
In this project, we presented a model that can learn to

recognize new classes online using as few examples as pos-
sible. We formulate the online active learning as a rein-
forcement learning problem. Our results demonstrate that
the RL module learns to request labels only when it is un-
certain about its prediction. Further, our model can adapt to
class-incremental settings, in which the number of classes
increases over time.

In future work, we first plan to evaluate our approach
on more complex image datasets such as ImageNet. For
this, we may need a more powerful visual feature extractor,
such as ResNet [3], and more sophisticated one-shot learn-
ing approach such as Matching Network [10]. Finally, our
ultimate goal is to build an ever-expanding dataset collector
with humans in the loop, which continuously crawls images
on the web, discover new visual concepts and ask for labels
to human annotators. We are planning to scale up our model
and employ it on the social media platforms such as Insta-
gram.

References
[1] S. Ager. Omniglot - writing systems and languages of the

world. Inwww.omniglot.com, 2015.
[2] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. ICML, 2017.
[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CVPR, 2016.
[4] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. ICLR, 2015.
[5] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural

networks for one-shot image recognition. ICML, 2015.
[6] Z. Li and D. Hoiem. Learning without forgetting. European

Conference on Computer Vision, 2016.
[7] E. Lughofer. Single-pass active learning with conflict and

ignorance. Evolving Systems, 2012.
[8] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl:

Incremental classifier and representation learning. CVPR,
2017.

6

In www.omniglot.com

[9] A. Santoro, S. Bartunov, M. Botvinick, and D. Wier-
stra. One-shot learning with memory-augmented neural net-
works. ICML, 2016.

[10] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and
D. Wierstra. Matching networks for one shot learning. NIPS,
2016.

[11] M. Woodward and C. Finn. Active one-shot learning. Work-
shop on Deep Reinforcement Learning, NIPS, 2016.

7

