

 1

Abstract

In this project, we applied the current convolutional

neural network based image classification, and cluster
algorithm to automation of Smart TV UI performance
testing. Applications such as YouTube specify upper
bounds for launch and page transition time that device
manufacturers need to meet, and this performance test is
currently done manually. Although measuring page
transition time is a relatively trivial task for humans, the
fact that application displays different texts and images
each time (due to its recommendation system) precludes
simple solutions such as pixel comparison. We show that
the convolutional neural networks can successfully classify
different page types and propose a highly generalizable
pipeline for the UI performance test automation.

1. Introduction
Smart TV applications such as YouTube and Netflix have
performance requirements. YouTube certification program
specifies requirements regarding UI performance for OEM
providers, system integrators and smart TV vendors that
wish to ship their devices with YouTube application.
Among those requirements is page transition performance,
which refers to the time the transition between different
types of pages (Guide, Menu, Settings etc.) takes. The
YouTube certification program provides upper bounds
needed to be met for different types of page transition.
Although measuring page transition time seems like a
trivial task for human eyes, it is currently measured
manually, and the goal of this project is the automation of
this performance testing procedure using current computer
vision techniques.

Deep learning based visual recognition algorithms such as
Convolutional Neural Network can be used to recognize
different pages and measure application's launch time and
page loading time.

To automate the measurement of page transition, we
retrieve an image at each time step and run image
classification algorithm to determine whether the
YouTube application has transitioned from displaying one
type of page to another. For image retrieval and collection,
we will use BlackMagic image capture card. The outcome
is a program that automatically measures the page
transition performance.

Intuitively, the evaluation metric should measure how
accurately the program classifies the transition and
pinpoints the time of transition, which allows us to
measure the page transition performance and ultimately
automate the testing procedure. Note that this is not the
same as the classification rate (accuracy) of the neural
network for collection of screenshots. Unfortunately,
currently there is no automated and accurate method for
measuring how accurately the automated tester measures
the page transition other than visually and heuristically
checking the measurements by running a demo program.

2. Related Work
Although the project itself has a very specific application,
the core engineering task is a fairly standard image
classification. Thus, we plan to review literatures on
important neural network architectures that have come out
in recent years. Starting from the convolutional neural
network architecture used in ImageNet competition by
Alex Krizhevsky et al. [1], we reviewed Inception
architectures [2, 3], and ResNet [4] to name a few.

Regarding the YouTube certification program for devices,
we refer to “YouTube TV HTML5 Technical
Requirements 2017” [9], which specifies different test and
criteria needed to be performed and met.

Automated Smart TV UI Performance Testing with Visual Recognition

Peng (Peter) Li

Stanford University
peter888@stanford.edu

Shim-Young (Ricky) Lee
Stanford University

sylee1@stanford.edu

 2

3. Methods
Overview of the pipeline. The pipeline for the automated
performance testing can be divided into mainly two
stages: 1) data gathering and model training and 2)
multiple measurements and final decision. First, the we
gather the image data for training by taking screenshots
over many launches of the application. Once the images
are labeled, we train a classifier.

In the test run, the automated testing program will retrieve
an image at each time step as the YouTube application
launches and runs, and an image classification algorithm
determines what type of page the application is currently
displaying. The program measures the page transition
times based on the list of classification output. The
measurement is repeated many times and the final statistic
and the decision is given.

3.1 Image Classification
The final program needs to perform image classification at
each time step, and the classifiers were trained to classify
5 different page types (𝑦 ∈ ℝ!).

3.1.1 Convolutional Neural Networks
Model Architecture. We tested two convolutional neural
network architectures, Inception-v3 classifier [3] provided
by the latest version of TensorFlow, and a simple
convolutional neural network architecture resembling the
model by Alex Krizhevsky et al. [1] Since the amount of
data was small, the Inception-v3 was trained with transfer
learning. The simple convolutional neural network used
one convolution layer with a 4×4 filter and a single fully
connected layer. The cross-entropy loss was used as a loss
function. The idea was to build the simplest architecture
possible to reduce the number of parameters and the
classification speed.

3.1.2 Non-Neural Network Classifiers
To provide a benchmark for convolutional neural
networks, we also tested simpler classifiers, which are
linear classifier with the softmax, Support Vector Machine
(SVM) and k-nearest neighbors (k-NN).

3.2 Page Transition Time Measurement
Once the classifier is trained, new screenshots are gathered
over multiple launches of the application. The classifier
classifies these test images, and gives a series of classifier
outputs for each launch. To get an accurate measurement
of the page transition time, we summarize the statistic
with a confidence interval.

Figure 1. Histogram of application launch time.

The figure 1 shows the distribution of launch time, which
we approximate with a normal distribution. After
obtaining n measurements, a confidence interval (90% or
95%) based on the mean and the standard deviation
calculated from those measurements was obtained.

The decision rule for the performance test is arbitrary,
because it is a criterion set by the testers (for example,
YouTube). Of the simplest decision rules are the rules
based on the mean, median or the maximum of the
transition time:

 𝑓 𝑥 = 𝕀 𝑥 < 𝛾 (1)

 𝑓 𝑥 = 𝕀 𝑥 < 𝛾 (2)

 𝑓 𝑥 = 𝕀 max(𝑥) < 𝛾 (3)

If we use the first two rules, however, roughly 50% of the
transition times in practice will be greater than the
reported value used for decision. Given that the
measurement of the page transition time has previously
been done manually with a stopwatch, these criteria are
still acceptable, but the previously stated characteristic of
these rules might not be attractive enough especially when
the statistic is barely smaller than the requirement 𝛾.

The third criterion is the most rigorous, and the simplest.
It is the best choice if the testers demand that all runs of
the application must achieve a page transition time less
than the requirement.

The decision rule we propose is whether the upper bound
of the confidence interval is less than the specified
transition time.

 3

 𝒇 𝒙 = 𝕀 𝒙 + 𝒕∗ 𝒔

𝒏
< 𝜸 (4)

 𝒔 = 𝒙!𝒙 𝟐

𝒏!𝟏
 (5)

This criterion is more conservative than the mean or the
median based rule, and is more resistant to the outliers in
the right tail of the distribution. This, of course, is not an
intrinsically desirable quality of a decision rule; if the
tester requires that the page transition time should be less
than the specified time in all circumstances, the maximum
criterion is more appropriate.

One advantage of this rule is that it gives a rough (though
not statistically correct) heuristic that the probability that
the true mean is greater than the obtain upper bound is
about 2.5% or 5% (if the confidence level is 95% or 90%).
Also, the rigor of the test can be controlled with the
confidence level, which is a parameter.

4. Dataset and Features

4.1 Dataset Description

When the YouTube application launches, it sequentially
displays 5 different page, namely, White Screen, Logo,
Spin Loading, Text Loaded, and Image Loaded. White
Screen and Logo pages are static pages, lacking dynamic
elements. Spin Loading page only has a spinning wheel in
the center of the screen.

Shown below are typical images for YouTube application.
The pages of class White Screen, Logo, Spin Loading are
not shown. The labeled YouTube screenshots can be
found in: https://goo.gl/QGJ3i3.

Figure 2. Image of type “Text Loaded”. The text may change for
different launches, making simple pixel comparison methods
difficult.

Figure 3. Image of type “Image Loaded”. Again, video
thumbnails and text may change for different launches.

4.2 Data Acquisition and Labeling
For image retrieval and collection, we used Decklink
image capture card from BlackMagic [10]. The image
resolution was 720P, captured at a frame rate of 60Hz,
capturing 60 screenshots per second. The images were
labeled in a semi-automated fashion: since the pages are
shown sequentially, we used the average launch time and
the average durations for which each page is displayed to
roughly divide and save the images in subfolders. Then
each folder was manually checked to move the wrongly
assigned images to the correct folders.

Each class has over 400 images, and the dataset contains a
little more than 4000 labeled images in total. To gather
this dataset, the application was launched more than 1000
times, which took about 5 hours. Since the size of each
class is proportional to how long the application displays
that page, there was a class imbalance in training and test
data. We did not address this issue, mainly because the
result obtained with this raw dataset was sufficiently good.

The size of the dataset is quite small compared to a typical
dataset size for training of neural networks, but the result
suggests that the current size is sufficient especially
because the in-class variability of the images is very small
and each class was sufficiently different from the other
classes. The number of training samples needed depends
on the model choice. The number of training samples can
be increased or decreased flexibly since the tester has a
complete control over the size of the dataset.

Labeling with K-Means Clustering. In addition to the
original dataset, for which the labeling needed some
manual correction, a dataset labeled with k-means
clustering was gathered, taking advantage of the fact that
our image data has a low in-class variability. The idea was
to test the possibility of a full automation of the data
labeling process.

 4

Instead of manually sorting and labeling the images, we
clustered the dataset into 5 clusters using k-means
clustering. Since clustering algorithm assigns the class
label arbitrarily, Bayer-Moore majority vote algorithm
[11] was used to find the right permutation of class labels
that matches labeling of the test data. However, this is
only necessary for the testing of clustering performance.

4.3 Pre-process Images
The original images are 3-channel images, but were
re-sized to 72×128 greyscale images.

Figure 4. Images after pre-processing.

5. Results
5.1 Classification Results
The table below summarizes the test accuracies of the
classification algorithms we tested.

Model Test Accuracy
k-NN 1.00
SVM 0.89
Softmax Linear 1.00
Simple-CNN 1.00
Inception V3 1.00
Table 1. the test accuracy of different classification algorithms.

The classification task was easy enough for most
classifiers we used; all classifiers except for the SVM
achieved 100% test time accuracies. This is not surprising
given our dataset since the in-class variability was very
low.

Linear classifier with softmax was the fastest classifier,
and for this YouTube dataset, was also the best classifier,
since it was the fastest classifier that achieved 100%
accuracy. Although the k-NN achieved 100% accuracy as
well, it was noticeably slower than the other classifiers,
since it has to search for the closest image each time.

Figure 5. Time (in seconds) taken to classify 500 images for
different models.

For the UI performance testing of applications that yield
similar in-class distribution of images, the linear classifier
with softmax is likely to perform very well in both
accuracy and speed. The launch time measurement falls
into this category, since many apps simply show a
sequence of static images when it launches.

If the in-class variability is large, and the images of
different classes are similar, the softmax as well as the
other non-convolutional neural network classifiers might
not be able to achieve 100% accuracy. Convolutional
neural networks, however, are much more powerful in
their classification capability and will likely be able to
achieve 100% accuracy on almost all kinds of UI page
transition, since the in-class variability and the similarity
between different image classes are inherently very
limited compared to the standard image classification
tasks such as ImageNet.

Figure 6. The training time loss converges very fast and well for
the simple CNN, with little effort put into model optimization
and hyperparameter search.

0	 50	 100	 150	

k-NN	

SVM	

Linear	

Incep4on	V3	

convNet	

Different Model Test Time

Test	Time	

 5

As expected, the training of the convolutional neural
network for this task was easy, and the loss converges
very fast with no complication. This is a very important
property, since we want to minimize the effort the testers
need to put in to the search of a convolutional neural
network architectures and a set of hyperparameters that
give 100% or close to 100% accuracy, so that even testers
with little to no knowledge of neural network and model
training can readily use the pipeline with minimal
instructions.

5.2 K-means Clustering for Data Labeling
Taking advantage of the fact that the in-class variability is
small and the classes are dissimilar enough, we also tested
a k-means clustering for labeling of the data, to test the
possibility of full automation of the data gathering
process.

To test the clustering performance, the original training
dataset (that we manually labeled) was clustered with
k-means clustering algorithm, and the accuracy was
measured by comparing it to the true label. The direct
application of clustering to the entire training dataset only
achieved about 80% accuracy, which is unusable for the
purpose of automatic labeling (and of course,
classification).

Figure 7. The plot of the class label assignment by k-means
clustering vs. sequential input images over multiple launches of
the application.

The unexpectedly low performance (given the dataset)
was due to the class imbalance. To address the imbalance
problem, centroids for each class were obtained from
clustering a small number of images evenly selected from
each class (and to do this we need a small but
hand-labeled data), and the rest of the data was labeled
using these centroids. Although this compromises the goal
of full automation, the k-means clustering achieved 95%
training time accuracy and 92% test time accuracy. The
figure 7 shows the class label assignment of a sequential

input images. The clear periodic pattern suggests that the
clustering can assign the labels reasonably well.

The simple convolutional neural network was trained with
this “imperfectly labeled” dataset, and achieved 96% test
accuracy on the original test set. With further optimization
of the clustering and measurement procedure, this data
labeling scheme can be used for a further automation of
the pipeline.

5.3 Minor Optimizations
To make the automated tester more resistant to the
classification error and ultimately the measurement error,
a few more ways to improve the tester were considered.

First, the system can easily incorporate the fact that the
different types of images always appear in the same order,
and ignore the misclassification when the classifier output
doesn’t match the expected possible output labels.

Also, we noticed that sometimes the misclassification
error (which is already a rare event) occurs because of the
garbage image captured probably due to an error in the
image capture device. Instead of simply taking an argmax
of the classifier outputs, the score, or the “probability” of
the classifier output and a threshold can be used to detect
these noises, since the output score of the neural networks
and the linear classifier with softmax will be relatively low
for these cases.

Figure 8. The screenshot of a demo of the automated tester.

 6

5.4 Overall Performance
Since there is no good way to accurately quantify how
well the program measures the time, we ran the automated
tester and visually checked that the time measurement is
consistent with the actual page transition, and the
automated tester does behave consistently, and never
failed to match the visual check we conducted.

6. Conclusions & Future Work
As the result section shows, we have successfully applied
current deep learning based visual recognition as well as
other basic machine learning techniques to the automation
of UI performance testing. We have shown that the
convolutional neural networks achieve 100% test time
accuracy for the image classification task, and the page
transition time can be accurately measured.

In the future, a similar pipeline and a training procedure
can be applied not only to similar UI performance testing
of different applications, but also to all UI related test
automation that requires similar computer vision
capabilities. For example, a similar system can be used to
iOS and Android UI related test automation, because the
details of the system can be adjusted to match iOS and
Android UI's image resolutions and test criteria. This can
be easily achieved by a pre-processing of training and test
image and if necessary, tweaking of model architecture
parameters.

During the development of our automated UI tester, the
new iOS11, in the recent 2017 Apple Worldwide
Developer Conference, was announced to be equipped
with the Core Machine Learning Tools (Core ML) for
vision tasks. The Core ML supports a variety of machine
learning algorithms, from simple classifiers such as trees
and SVM to the state-of-the-art neural network
architectures such as Inception V3, VGG16 and ResNet50.
Using these tools, we can implement the same pipeline,
training and performing image classification in the server
with iOS11 device. Therefore, this performance
measurement scheme can potentially be implemented with
a single iOS application.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, 1097–1105,
2012.
[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going
deeper with convolutions. In CVPR, 1–9, 2015.
[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. arXiv
preprint arXiv:1512.00567, 2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.
[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich
feature hierarchies for accurate object detection and semantic
segmentation. In CVPR, 2014.
[6] J. Huang V. Rathod, C. Sun, M. Zhu, A. Korattikara, A.
Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, K. Murphy,
Speed/accuracy trade-offs for modern convolutional object
detectors, In CVPR 2017
[7] J. Dai, Y. Li, K. He, J. Sun. R-FCN: Object Detection via
Region-based Fully Convolutional Networks, In NIPS, 2016
[8] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R.
Sukthankar, and L. Fei-Fei. Large-scale video classification with
convolutional neural networks. In CVPR, 1725–1732, 2014.
[9] YouTube TV HTML5 Technical Requirements.
https://drive.google.com/file/d/0B0C4aKjz5kL6X3hsTUg5NjJC
aWs/view?usp=sharing
[10] Decklink Capture Card from Black Magic Design
https://www.blackmagicdesign.com/products/decklink
[11] R. Boyer and J. Moore. MJRTY: A fast majority vote
algorithm. In Automated Reasoning in Springer, 1991
[12] M. Abadi, Ashish Agarwal, P. Barham et al. TensorFlow:
Large-scale machine learning on hetero generous systems, 2015.
Software available from tensorflow.org
[13] Buitinck et al. API design for machine learning software:
experiences from the scikit-learn project, 2013.
[14] iOS11 machine learning API
https://developer.apple.com/machine-learning/
[15] Selenium WebDriver [Software] Available from
http://www.seleniumhq.org/
[16] Image Module used for preprocessing images – Pillow
[Software] Available from http://pillow.readthedocs.io/
[17] FFmpeg Developers. (2016). ffmpeg tool (Version be1d324)
[Software]. Available from http://ffmpeg.org/

