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Abstract 

 
In this project, we applied the current convolutional 

neural network based image classification, and cluster 
algorithm to automation of Smart TV UI performance 
testing. Applications such as YouTube specify upper 
bounds for launch and page transition time that device 
manufacturers need to meet, and this performance test is 
currently done manually. Although measuring page 
transition time is a relatively trivial task for humans, the 
fact that application displays different texts and images 
each time (due to its recommendation system) precludes 
simple solutions such as pixel comparison. We show that 
the convolutional neural networks can successfully classify 
different page types and propose a highly generalizable 
pipeline for the UI performance test automation.  
 
1.  Introduction 
Smart TV applications such as YouTube and Netflix have 
performance requirements. YouTube certification program 
specifies requirements regarding UI performance for OEM 
providers, system integrators and smart TV vendors that 
wish to ship their devices with YouTube application. 
Among those requirements is page transition performance, 
which refers to the time the transition between different 
types of pages (Guide, Menu, Settings etc.) takes. The 
YouTube certification program provides upper bounds 
needed to be met for different types of page transition. 
Although measuring page transition time seems like a 
trivial task for human eyes, it is currently measured 
manually, and the goal of this project is the automation of 
this performance testing procedure using current computer 
vision techniques.  
 
Deep learning based visual recognition algorithms such as 
Convolutional Neural Network can be used to recognize 
different pages and measure application's launch time and 
page loading time.  
 

To automate the measurement of page transition, we 
retrieve an image at each time step and run image 
classification algorithm to determine whether the 
YouTube application has transitioned from displaying one 
type of page to another. For image retrieval and collection, 
we will use BlackMagic image capture card. The outcome 
is a program that automatically measures the page 
transition performance.  
 
Intuitively, the evaluation metric should measure how 
accurately the program classifies the transition and 
pinpoints the time of transition, which allows us to 
measure the page transition performance and ultimately 
automate the testing procedure. Note that this is not the 
same as the classification rate (accuracy) of the neural 
network for collection of screenshots. Unfortunately, 
currently there is no automated and accurate method for 
measuring how accurately the automated tester measures 
the page transition other than visually and heuristically 
checking the measurements by running a demo program. 
 
2. Related Work 
Although the project itself has a very specific application, 
the core engineering task is a fairly standard image 
classification. Thus, we plan to review literatures on 
important neural network architectures that have come out 
in recent years. Starting from the convolutional neural 
network architecture used in ImageNet competition by 
Alex Krizhevsky et al. [1], we reviewed Inception 
architectures [2, 3], and ResNet [4] to name a few.  
 
Regarding the YouTube certification program for devices, 
we refer to “YouTube TV HTML5 Technical 
Requirements 2017” [9], which specifies different test and 
criteria needed to be performed and met. 
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3. Methods 
Overview of the pipeline. The pipeline for the automated 
performance testing can be divided into mainly two 
stages: 1) data gathering and model training and 2) 
multiple measurements and final decision. First, the we 
gather the image data for training by taking screenshots 
over many launches of the application. Once the images 
are labeled, we train a classifier.  
 
In the test run, the automated testing program will retrieve 
an image at each time step as the YouTube application 
launches and runs, and an image classification algorithm 
determines what type of page the application is currently 
displaying. The program measures the page transition 
times based on the list of classification output. The 
measurement is repeated many times and the final statistic 
and the decision is given. 
 
3.1 Image Classification 
The final program needs to perform image classification at 
each time step, and the classifiers were trained to classify 
5 different page types (𝑦 ∈ ℝ!).  
 
3.1.1 Convolutional Neural Networks 
Model Architecture. We tested two convolutional neural 
network architectures, Inception-v3 classifier [3] provided 
by the latest version of TensorFlow, and a simple 
convolutional neural network architecture resembling the 
model by Alex Krizhevsky et al. [1] Since the amount of 
data was small, the Inception-v3 was trained with transfer 
learning. The simple convolutional neural network used 
one convolution layer with a 4×4 filter and a single fully 
connected layer. The cross-entropy loss was used as a loss 
function. The idea was to build the simplest architecture 
possible to reduce the number of parameters and the 
classification speed.  

 
3.1.2 Non-Neural Network Classifiers 
To provide a benchmark for convolutional neural 
networks, we also tested simpler classifiers, which are 
linear classifier with the softmax, Support Vector Machine 
(SVM) and k-nearest neighbors (k-NN). 
 
3.2 Page Transition Time Measurement  
Once the classifier is trained, new screenshots are gathered 
over multiple launches of the application. The classifier 
classifies these test images, and gives a series of classifier 
outputs for each launch. To get an accurate measurement 
of the page transition time, we summarize the statistic 
with a confidence interval. 
 

 
Figure 1. Histogram of application launch time. 
 
The figure 1 shows the distribution of launch time, which 
we approximate with a normal distribution. After 
obtaining n measurements, a confidence interval (90% or 
95%) based on the mean and the standard deviation 
calculated from those measurements was obtained.  
 
The decision rule for the performance test is arbitrary, 
because it is a criterion set by the testers (for example, 
YouTube). Of the simplest decision rules are the rules 
based on the mean, median or the maximum of the 
transition time: 
 
    𝑓 𝑥 = 𝕀 𝑥 < 𝛾                                                         ( 1 ) 
 
    𝑓 𝑥 = 𝕀 𝑥 < 𝛾                                                          ( 2 ) 
 
    𝑓 𝑥 = 𝕀 max(𝑥) < 𝛾                                                ( 3 ) 
 
If we use the first two rules, however, roughly 50% of the 
transition times in practice will be greater than the 
reported value used for decision. Given that the 
measurement of the page transition time has previously 
been done manually with a stopwatch, these criteria are 
still acceptable, but the previously stated characteristic of 
these rules might not be attractive enough especially when 
the statistic is barely smaller than the requirement 𝛾. 
 
The third criterion is the most rigorous, and the simplest. 
It is the best choice if the testers demand that all runs of 
the application must achieve a page transition time less 
than the requirement. 
 
The decision rule we propose is whether the upper bound 
of the confidence interval is less than the specified 
transition time.  
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    𝒇 𝒙 = 𝕀 𝒙 + 𝒕∗ 𝒔

𝒏
< 𝜸                                      ( 4 ) 

 

    𝒔 = 𝒙!𝒙 𝟐

𝒏!𝟏
                                                    ( 5 ) 

 
This criterion is more conservative than the mean or the 
median based rule, and is more resistant to the outliers in 
the right tail of the distribution. This, of course, is not an 
intrinsically desirable quality of a decision rule; if the 
tester requires that the page transition time should be less 
than the specified time in all circumstances, the maximum 
criterion is more appropriate.  
 
One advantage of this rule is that it gives a rough (though 
not statistically correct) heuristic that the probability that 
the true mean is greater than the obtain upper bound is 
about 2.5% or 5% (if the confidence level is 95% or 90%). 
Also, the rigor of the test can be controlled with the 
confidence level, which is a parameter. 
 
 
4. Dataset and Features 

4.1 Dataset Description  

When the YouTube application launches, it sequentially 
displays 5 different page, namely, White Screen, Logo, 
Spin Loading, Text Loaded, and Image Loaded. White 
Screen and Logo pages are static pages, lacking dynamic 
elements. Spin Loading page only has a spinning wheel in 
the center of the screen.  
 
Shown below are typical images for YouTube application. 
The pages of class White Screen, Logo, Spin Loading are 
not shown. The labeled YouTube screenshots can be 
found in: https://goo.gl/QGJ3i3.  

 
 
Figure 2. Image of type “Text Loaded”. The text may change for 
different launches, making simple pixel comparison methods 
difficult.  
 

 
 

Figure 3. Image of type “Image Loaded”. Again, video 
thumbnails and text may change for different launches. 
 
 
4.2 Data Acquisition and Labeling 
For image retrieval and collection, we used Decklink 
image capture card from BlackMagic [10]. The image 
resolution was 720P, captured at a frame rate of 60Hz, 
capturing 60 screenshots per second. The images were 
labeled in a semi-automated fashion: since the pages are 
shown sequentially, we used the average launch time and 
the average durations for which each page is displayed to 
roughly divide and save the images in subfolders. Then 
each folder was manually checked to move the wrongly 
assigned images to the correct folders. 

Each class has over 400 images, and the dataset contains a 
little more than 4000 labeled images in total. To gather 
this dataset, the application was launched more than 1000 
times, which took about 5 hours. Since the size of each 
class is proportional to how long the application displays 
that page, there was a class imbalance in training and test 
data. We did not address this issue, mainly because the 
result obtained with this raw dataset was sufficiently good. 

The size of the dataset is quite small compared to a typical 
dataset size for training of neural networks, but the result 
suggests that the current size is sufficient especially 
because the in-class variability of the images is very small 
and each class was sufficiently different from the other 
classes. The number of training samples needed depends 
on the model choice. The number of training samples can 
be increased or decreased flexibly since the tester has a 
complete control over the size of the dataset. 

Labeling with K-Means Clustering. In addition to the 
original dataset, for which the labeling needed some 
manual correction, a dataset labeled with k-means 
clustering was gathered, taking advantage of the fact that 
our image data has a low in-class variability. The idea was 
to test the possibility of a full automation of the data 
labeling process.  
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Instead of manually sorting and labeling the images, we 
clustered the dataset into 5 clusters using k-means 
clustering. Since clustering algorithm assigns the class 
label arbitrarily, Bayer-Moore majority vote algorithm 
[11] was used to find the right permutation of class labels 
that matches labeling of the test data. However, this is 
only necessary for the testing of clustering performance. 
 
4.3 Pre-process Images 
The original images are 3-channel images, but were 
re-sized to 72×128 greyscale images. 

 

 

Figure 4. Images after pre-processing.  

 
5.  Results 
5.1 Classification Results  
The table below summarizes the test accuracies of the 
classification algorithms we tested.  
 

Model Test Accuracy 
k-NN 1.00 
SVM 0.89 
Softmax Linear 1.00 
Simple-CNN 1.00 
Inception V3 1.00 
Table 1. the test accuracy of different classification algorithms. 
 
The classification task was easy enough for most 
classifiers we used; all classifiers except for the SVM 
achieved 100% test time accuracies. This is not surprising 
given our dataset since the in-class variability was very 
low.  
 
Linear classifier with softmax was the fastest classifier, 
and for this YouTube dataset, was also the best classifier, 
since it was the fastest classifier that achieved 100% 
accuracy. Although the k-NN achieved 100% accuracy as 
well, it was noticeably slower than the other classifiers, 
since it has to search for the closest image each time.  

 

Figure 5. Time (in seconds) taken to classify 500 images for 
different models. 
 
For the UI performance testing of applications that yield 
similar in-class distribution of images, the linear classifier 
with softmax is likely to perform very well in both 
accuracy and speed. The launch time measurement falls 
into this category, since many apps simply show a 
sequence of static images when it launches. 
 
If the in-class variability is large, and the images of 
different classes are similar, the softmax as well as the 
other non-convolutional neural network classifiers might 
not be able to achieve 100% accuracy. Convolutional 
neural networks, however, are much more powerful in 
their classification capability and will likely be able to 
achieve 100% accuracy on almost all kinds of UI page 
transition, since the in-class variability and the similarity 
between different image classes are inherently very 
limited compared to the standard image classification 
tasks such as ImageNet.  
 

 
Figure 6. The training time loss converges very fast and well for 
the simple CNN, with little effort put into model optimization 
and hyperparameter search. 
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As expected, the training of the convolutional neural 
network for this task was easy, and the loss converges 
very fast with no complication. This is a very important 
property, since we want to minimize the effort the testers 
need to put in to the search of a convolutional neural 
network architectures and a set of hyperparameters that 
give 100% or close to 100% accuracy, so that even testers 
with little to no knowledge of neural network and model 
training can readily use the pipeline with minimal 
instructions. 
 
5.2 K-means Clustering for Data Labeling 
Taking advantage of the fact that the in-class variability is 
small and the classes are dissimilar enough, we also tested 
a k-means clustering for labeling of the data, to test the 
possibility of full automation of the data gathering 
process. 
 
To test the clustering performance, the original training 
dataset (that we manually labeled) was clustered with 
k-means clustering algorithm, and the accuracy was 
measured by comparing it to the true label. The direct 
application of clustering to the entire training dataset only 
achieved about 80% accuracy, which is unusable for the 
purpose of automatic labeling (and of course, 
classification). 
 

 
Figure 7. The plot of the class label assignment by k-means 
clustering vs. sequential input images over multiple launches of 
the application. 
 
The unexpectedly low performance (given the dataset) 
was due to the class imbalance. To address the imbalance 
problem, centroids for each class were obtained from 
clustering a small number of images evenly selected from 
each class (and to do this we need a small but 
hand-labeled data), and the rest of the data was labeled 
using these centroids. Although this compromises the goal 
of full automation, the k-means clustering achieved 95% 
training time accuracy and 92% test time accuracy. The 
figure 7 shows the class label assignment of a sequential 

input images. The clear periodic pattern suggests that the 
clustering can assign the labels reasonably well.  
 
The simple convolutional neural network was trained with 
this “imperfectly labeled” dataset, and achieved 96% test 
accuracy on the original test set. With further optimization 
of the clustering and measurement procedure, this data 
labeling scheme can be used for a further automation of 
the pipeline. 
 
5.3 Minor Optimizations 
To make the automated tester more resistant to the 
classification error and ultimately the measurement error, 
a few more ways to improve the tester were considered.  
 
First, the system can easily incorporate the fact that the 
different types of images always appear in the same order, 
and ignore the misclassification when the classifier output 
doesn’t match the expected possible output labels.  
 
Also, we noticed that sometimes the misclassification 
error (which is already a rare event) occurs because of the 
garbage image captured probably due to an error in the 
image capture device. Instead of simply taking an argmax 
of the classifier outputs, the score, or the “probability” of 
the classifier output and a threshold can be used to detect 
these noises, since the output score of the neural networks 
and the linear classifier with softmax will be relatively low 
for these cases. 
 

 
Figure 8. The screenshot of a demo of the automated tester. 
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5.4 Overall Performance 
Since there is no good way to accurately quantify how 
well the program measures the time, we ran the automated 
tester and visually checked that the time measurement is 
consistent with the actual page transition, and the 
automated tester does behave consistently, and never 
failed to match the visual check we conducted.  
 
6. Conclusions & Future Work 
As the result section shows, we have successfully applied 
current deep learning based visual recognition as well as 
other basic machine learning techniques to the automation 
of UI performance testing. We have shown that the 
convolutional neural networks achieve 100% test time 
accuracy for the image classification task, and the page 
transition time can be accurately measured.  
 
In the future, a similar pipeline and a training procedure 
can be applied not only to similar UI performance testing 
of different applications, but also to all UI related test 
automation that requires similar computer vision 
capabilities. For example, a similar system can be used to 
iOS and Android UI related test automation, because the 
details of the system can be adjusted to match iOS and 
Android UI's image resolutions and test criteria. This can 
be easily achieved by a pre-processing of training and test 
image and if necessary, tweaking of model architecture 
parameters.  
 
During the development of our automated UI tester, the 
new iOS11, in the recent 2017 Apple Worldwide 
Developer Conference, was announced to be equipped 
with the Core Machine Learning Tools (Core ML) for 
vision tasks. The Core ML supports a variety of machine 
learning algorithms, from simple classifiers such as trees 
and SVM to the state-of-the-art neural network 
architectures such as Inception V3, VGG16 and ResNet50. 
Using these tools, we can implement the same pipeline, 
training and performing image classification in the server 
with iOS11 device. Therefore, this performance 
measurement scheme can potentially be implemented with 
a single iOS application. 
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