
Finding Protests in Social Media Data using CNNs and Transfer Learning

Benjamin Zhou
Stanford University

Department of Computer Science
bzhou2@stanford.edu

Gaspar Garcia Jr.
Stanford University

Department of Computer Science
gaspar09@stanford.edu

Dylan Moore
Stanford University

Department of Computer Science
dmoore2@stanford.edu

Abstract

In this paper, we build various classifiers and compare
their performance in discriminating social protests from
non-protests in China, a problem with few previous results.
We use a labeled dataset of 500,000 protest and non-protest
images taken from the Chinese social media site Weibo.
Our work includes a baseline Support Vector Machine clas-
sifier, 3-layer and 5-layer convolutional neural networks,
and transfer learning models based on SqueezeNet and VG-
GNet. On the test set of 4400 random images, our best
model achieves 67% accuracy.

1. Introduction
Determining the stability of authoritarian regimes,

among them China, Russia, Iran, and Saudi Arabia, is of
central importance to policy makers, businesses, societal ac-
tors, and scholars around the world. For many authoritarian
regimes, protests and visible civilian unrest pose a serious
threat to the regime’s stability.

Independent measures of protest activity in such coun-
tries would be valuable for scientific and public policy pur-
poses. However, because repressive regimes actively re-
move evidence of protests, there are very few publicly avail-
able metrics for this issue.

The Chinese government will suppress social protest us-
ing force if it becomes too large. Weibo is a social me-
dia platform in China, where users can tweet or post pho-
tos about their life and surroundings. In an event of social
protest, there may be various photos or statuses posted from
user accounts. If the photos do not become too trending,
the government will not remove them. An account called
wickedonnaa, which were a husband and wife document-
ing social protest in China before being censored, gathered

a dataset of ∼ 500,000 social media posts. Professor Jen-
nifer Pan of Stanford’s Department of Sociology and Han
Zhang, a Sociology PhD student at Princeton, provided us
with their dataset. Given the inavailability of social protest
statistics in China, the goal of our project is to build classi-
fiers that can discriminate between protest and non-protest
images well.

2. Related Work

There was not much literature on our particular problem.
Previous work on this classification problem was by Han
Zhang, a PhD student at Princeton. Han’s work tried a sim-
ple two layer CNN classifier with a batch of 20,000 images.
Han’s CNN was evaluated on the test dataset described be-
low in section 3 and had precision of approximately 40%
for protest samples.

Previous results in crowd counting provided us some in-
sight on how to classify protests. The research of Lawrence,
Steve, et al., Wang, Chuan, et al., and Yingying Zhang,
et al. suggested that CNNs might ultimately be the most
effective classifiers for social protest. Their results con-
cluded that traditional hand-crafted methods such as SIFT
and HOG might be ineffective in classifying social protest,
since social protest images can be characterized by images
with very dense crowds of people. As the density of crowds
grows, SIFT features would be less ineffective, as only a
relatively few amount of pixels would be dedicated to each
person. That would make it harder to perform classification
with SIFT features. Inspired by Xia, et al., we implemented
an SVM classifier as a baseline result, in order to compare
linear classifiers with CNNs.

1



Figure 1. Above are 16 sample images from our dataset. The
left eight images are non-protest, and the right eight images are
protest.

3. Dataset and Features

The dataset from Weibo consists of 231618 protest im-
ages and 261516 non-protest images. Protest images are
labeled as 1, and non-protest images are labeled as 0. The
size of the training data is about 10 GB, and images had
width and height rescaled to 100x100x3, where the last di-
mension corresponds to the RGB depth. The test data set
has 4400 images, which were randomly selected from a tar-
get dataset of 4 million images from Weibo. In the test set,
about 10% of the samples are protest related images. The
dataset was uploaded onto Dropbox.

From the above images, we see that the protest images
vary in the number of people they contain. The first six
protest images do not contain a high density of people, in
contrast to the last two images. Protest images also likely
contain people holding signs, police, or violence. Non-
protest images can contain essentially anything.

4. Approach

The Chinese government defines social protest as any
form of collective action that contains at least three people.
If our learning was not supervised, we could try to approach
this problem by counting the number of people in an image
to classify it as protest or non-protest. However, just relying
on people count as an indicator for protest can lead to a high
number of false positives, since that indicator would be too
loose. If the images also contain police or violence, then it
is more likely that the images are indeed protest.

However, since the dataset came labeled, we can do su-
pervised learning. The following subsections describe var-

ious classifiers that we experimented with. We first imple-
ment an SVM as a baseline, go on to implement CNNs, and
finally transfer learning with VGGNet and SqueezeNet.

One thing to note is that in our classification problem,
the test data is likely generated from a different distribution
than the training data. The test data contain random im-
ages taken from 4 million images off Weibo. The majority
∼90% of them are non-protest, which can involve many dif-
ferent things, and makes the test dataset imbalanced. This
inspired us to use transfer learning, i.e. borrowing exist-
ing neural networks trained on ImageNet which are able to
capture many different things.

4.1. Training

All our work is done on a Google cloud instance using
Jupyter notebooks. We use Scipy for our shallow models
and our deep models are all written in TensorFlow.

For both models described below, we experiment with
a mini-batch of 20,000 training images from our dataset.
These samples were randomly chosen, where half of them
are protest images and the other half are non-protest images.
Our validation set was a set of 2,000 different images with
the same 50/50 distribution of labels. We used the cross en-
tropy loss function for classification in the CNNs as shown
below. The cross entropy loss for a particular training ex-
ample i is,

Li = − log(
expfyi∑
j exp

fyj
)

where fyi refers to the output score for the true label of
training example i. The entire cross entropy loss is then
defined as,

L =
∑
i

Li

4.2. SVM baseline

We first fit an SVM over flattened images with a linear
kernel. The SVM perfectly fitted the 20,000 training images
and achieved 75% accuracy over the 2,000 sample valida-
tion set.

4.3. 3-Layer CNN

Our first CNN model uses 3 convolutional layers fol-
lowed by two affine layers. The first conv layer uses 32
4x4 filters with stride 2. The second conv layer uses 64 4x4
filters with stride 2. The third conv layer uses 64 4x4 filters
with stride 1. Each convolutional layer uses relu activation
and a batch normalization layer. The output from the last
convolutional layer flows into a 2x2 max pool with stride 2.
The max pool output is fed to an affine layer with 1048 out-
puts. This layer is followed by a dropout layer with dropout

2



Figure 2. Architecture of 3-layer CNN.

probability 0.5. The final layer is an affine layer with 2 out-
puts, one for each protest and non-protest class.

We used an Adam optimizer and L2 regularization over
the affine weights. The regularization rate is 5e-2 and the
learning rate is 5e-4.

4.4. 5-layer CNN

For our 5-layer CNN, the first conv layer uses 32 3x3 fil-
ters with stride 1. The second conv layer uses 64 4x4 filters
with stride 2. The third conv layer uses 64 4x4 filters with
stride 2. The fourth conv layer uses 128 3x3 filters with
stride 1. The fifth conv layer uses 128 3x3 filters with stride
1. Each conv layer uses relu activation and a batch normal-
ization. The output of the last convolutional layer goes into
a max pool layer, which uses filters of size 2x2 with stride 2.
This layer is followed by a fully connected layer with 2048

output units, then a dropout layer with dropout probability
0.5, and finally a fully connected layer with 2 output units.

Figure 3. Architecture of 5-layer CNN.

We used an Adam optimizer and L2 regularation over
the affine weights. The regularization rate was 5e-2, and
the learning rate was 5e-4.

4.5. Transfer Learning with SqueezeNet

We implemented transfer learning by using the exist-
ing neural network SqueezeNet, which was trained on Im-
ageNet. We added our 5 layer neural network to the top of
the 3rd layer of SqueezeNet, i.e. we fed our protest training
data into SqueezeNet, and used the extracted features from

3



the 3rd layer to then feed into our 5-layer neural network.
We chose the 3rd layer because it achieves the highest accu-
racy, and also it represents high level features of the protest
images.

Figure 4. Architecture of neural network SqueezeNet used for
transfer learning. We use the extracted features from the third layer
fire3 to train our 5-layer CNN described earlier.

We used an Adam optimizer and L2 regularization over
the affine weights. The regularization rate was 5e-2, and the
learning rate was 5e-4.

4.6. Transfer Learning with VGG

We implemented transfer learning using VGGNet as
shown in Figure 5, which is trained on ImageNet. We ex-
tracted the features from the second to last fully connected
layer of VGGNet, which contained 4096 output units, and
fed them into our own fully connected layer of two output
units.

We took these extracted features and fed them into our
own fully connected layer of 2 output units.

5. Experiment Discussion and Results

In this section, we describe our results and the motivation
behind our experiments.

Figure 6 shows the training accuracies, validation accu-
racies, target or test accuracy, precision, recall, and number
of epochs trained statistics of the various classifiers.

The baseline SVM classifier achieves 75% validation ac-
curacy and 53% target accuracy. The 3-layer CNN and a
deeper 5-layer CNN both achieve higher validation accu-
racies at 85% and higher target accuracies at 62%. Our

Figure 5. Architecture of neural network VGG16 used for transfer
learning. We take away the last layer, and replace it with our own
fully connected layer of 2 units.

transfer learning models seemed to be the most promis-
ing. We trained them for less epochs than regular CNNs,
but achieved similar if not higher accuracies. The transfer
model using VGGNet achieved our highest test accuracy at
67.6%. In all models, the precision was relatively low, com-
pared to Han’s previous work of 40% precision. Ultimately,
our goal is to build a convolutional neural network that can
achieve > 90% accuracy on our test data with high preci-
sion as well.

Figure 6. Statistics for the various classifiers.

For our 3-layer CNN, we initially had one affine layer
with 2 outputs. The convolutional layers used 7x7 filters,
4x4 filters and 3x3 filters all with stride 1. Every conv layer
used relu activation and batch normalization. However, this
yielded a low training accuracy with a very noisy, yet flat
lost curve, indicating that the network was not learning,
shown in Figure 7.

In response, we experimented with the architecture by
adding another Fully connected layer before the final affine
output. This new affine layer had 128 outputs. The layer
increased the training accuracy dramatically and with tuned
learning rates, we easily overfitted the train data.

This network had validation accuracy at <79% and train
accuracy up to 95%. In order to counter the overfitting
model, we added L2 regularization over the weights on the

4



Figure 7. Initial noisy loss curve in the 3-CNN training.

affine layers and added a dropout layer after the second to
last affine layer.

At this point the hidden layer had 128 outputs and wasnt
learning so well on training data. We took inspiration from
the architecture by AlexNet and VGG16 which use hidden
affine layers with 4096 outputs preceded by 2x2 max pool.
We added a 2x2 max pool after the final conv layer and
increased the outputs for our affine layer to 1048. At this
point we had an overfit issue again. We tuned hyperparam-
eters over 3 epochs. We performed a random grid search to
tune the learning rate and regularization rate between 1e-2
and 1e-7. Dropout probability was tuned linearly between
0.1 and 0.5. The loss curve for the tuned model is shown
below.

Figure 8. Final loss curve for the 3-CNN.

The loss curve suggests that the network learned well.
Our architecture achieved 81% train accuracy and 81% val-
idation accuracy with 3 epochs. We increased the number
of epochs to 15 to get a final result of 92% train accuracy
and 85% validation accuracy.

In addition, we wanted to experiment with a deeper net-
work. We used 5 layers and tuned them in a similar way as
in the 3-layer CNN. But the resulting accuracies were simi-
lar, and hence we decided to turn away from deepening the
network.

We also visualized the learned weights after the 1st con-

Figure 9. Visualization of the first convolutional layer weights of
the 3CNN (3x3)

Figure 10. Visualization of the first convolutional layer weights of
the 5CNN (7x7)

volution layer of the 3-CNN as shown in Figure 9. The
weights are quite coarse since they are viewed in 3x3, the
dimension of the filters.

Figure 10 shows the learned weights after the 1st convo-
lution layer of the 5CNN, but supposing the filters had di-
mension 7x7. We ran this just to see how well our network
was learning from the data itself, and to make the visualiza-
tion of the weights less coarse. In some of the weights such
as the top right, the network seems to be detecting informa-
tion such as edges.

Finally, we turned to transfer learning models. Our main
reasoning for using transfer learning was that we thought
existing neural networks trained on ImageNet would be able
to recognize non-protest images better, which consisted of
90% of the test data. It turned out that the transfer models
did the best, with the VGG16 model achieving the highest
accuracy of 67% on the test set. Also, our transfer learn-
ing models achieved a much higher recall than the previous
models. This suggests that the transfer learning models do
a much better job at classifying protest images as protest.

5



6. Challenges and Future Work
The experiments described in this milestone use a sub-

sample of 20,000 from 500,000 images in the whole dataset.
We tried this number of training samples initially as Han’s
previous work suggested. But this is a small fraction of the
data. Moving forward, it would be beneficial to use more
images for both training and validation. We haven’t yet
reached our target accuracy of > 90%, but training on more
non-protest images would make our network more robust.

Figure 11. Images classified by the VGG16 transfer learning
model as TP, TN, FP, FN, respectively.

The precision of our models is also low at < 30%. This
is worse than Han’s previous precision of 40%, but there is
much room for improvement. The figure above shows ex-
amples of images classified by the VGG16 transfer learning
model as TP, TN, FP, and FN. The FP image is interesting;
the classifier classified a car as protest, which suggests the
model could be not robust. The FN image is understand-
ably difficult to classify as protest, since there are no actual
people protesting in the image, but just their protest sign.

Future work could include incorporating other metrics
to measure size or intensity of protest. It is valuable if we
can also determine whether images of protests are violent
or non-violent.

7. Conclusion
We want to thank Professor Jennifer Pan of the Depart-

ment of Sociology, and Han Zhang for advising us on this
project. Furthermore, we want to thank the staff of CS231A
for leading an interesting and informative class.

Below is a link to the github of our code.
https://github.com/gaspar09/EyesOnProtests

8. References
1. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun;

The IEEE International Conference on Computer Vi-
sion (ICCV), 2015, pp. 1026-1034

2. Wang, Chuan, et al. ”Deep people counting in ex-
tremely dense crowds.” Proceedings of the 23rd ACM
international conference on Multimedia. ACM, 2015.

3. Lawrence, Steve, et al. ”Face recognition: A convolu-
tional neural-network approach.” IEEE transactions on
neural networks 8.1 (1997): 98-113.

4. Xia, Jiantao, and Mingyi He. ”High Dimensional
Multi-spectral Image Classification by SVM and Its
Characteristic Analysis [J].” Computer Engineering 13
(2003): 009.

5. Levis, Joel, et al. ”Joint Deep Exploitation of
Semantic Keywords and Visual Features for Mali-
cious Crowd Image Classification.” arXiv preprint
arXiv:1610.06903 (2016).

6. Yingying Zhang, et al. ”Single-Image Crowd Count-
ing via Multi-Column Convolutional Neural Network”

6


