
Robo-Nanny: ConvNets for Intelligent Baby Monitoring

Lily Cheng - June 2017
Stanford University - CS231n Final Project Report

lilcheng@stanford.edu

Abstract

In this project, we seek to apply supervised learning
techniques on state-of-the-art deep convolutional neural
networks (CNN) to infer a baby’s status inside a crib us-
ing a baby monitor video feed. A dataset of 2500 im-
ages assigned to 5 predefined classes was used for train-
ing and hyperparameter tuning. After comparing different
model architectures including ResNet18[1], AlexNet[10]
and SqueezeNet[6], the best class-weighted accuracy of
96.7% on test set was achieved on pre-trained ResNet18.
Despite being significantly smaller model, Squeezenet was
able to deliver a test accuracy of 94.6% and, in a real life
application, would be preferable due to efficient model size.
When tested using images captured using a different cam-
era position or found online, the model was found to have
poor domain adaptability and further work would be need
to done to improve the ability of the model to accurately
classify images drawn from unseen domains.

Figure 1. Sample images from four classes

1. Introduction

Parents often utilize baby monitoring devices to keep
an eye on young children during the night. However, the
alert mechanism of such monitors are typically triggered on
sound and not visual information. Not all cries at night re-
quire adult intervention. Child monitoring devices would
have greater utility if they are able to consider both visual
and audio information to determine whether an alert needs
to be triggered. This would result in fewer unnecessary
alerts and hence better sleep for the parents. For example,
if the baby is crying but still lying down, chances are no
intervention is needed to drift back into sleep.

The objective of this project is to apply state-of-the-art
CNN to automate the identification of a childs status from a
visual monitoring device. In addition to optimizing the net-
work for high accuracy, a comparison across different archi-
tectures will be provided to understand trade-offs between
accuracy and compute/memory requirements of a forward
pass, recognizing the finite compute and memory available
in low-cost consumer hand-held devices.

2. The Problem

Working with limited and unbalanced data. While
CNNs are known to be able to achieve high accuracy rates
if given enough data for supervised image classification,
in practice, the resources needed to collect large amounts
of videos and images of children could be a hurdle for
commercialization. It is resource intensive to find a large
number of parents who will offer video streams of their
child in the crib given the privacy concerns. For this
project, 2500 images were been collected for one baby in
one crib/camera configuration over two weeks. It is a core
objective of this project understand what levels of accuracy
can be achieved with such a limited dataset by leveraging
transfer learning and fine-tuning of pre-trained models.
In addition, due to the fact that the baby is mostly lying
down in a crib, the dataset is highly unbalanced and
techniques such as oversampling or weighted-class loss
functions would be needed to avoid classification bias.

1

Extracting salient frames from video stream. Given
that the video feed is of a sleeping baby, most of the
frame-to-frame pixel changes at night would be minimal
with the exception of when the child is moving. It is
proposed that motion detection techniques such as image
subtraction [2, 16] or optical flow [9] be used to identify
and extract key frames from the video stream for use in
training. In practice, the child monitoring device would
likely only invoke the inference function if it detected some
change event such as a sound or movement, hence this
method is reflective of a real-world application.

Model architecture selection and optimization. To un-
derstand the maximum achievable accuracy, different model
architectures such as Alexnet[10] and ResNet[1] will be
tested using this dataset. To further understand the impact
of transfer learning, pre-trained model weights will be used
with different degrees of fine-tuning by freezing/unfreezing
different layers of weights during training.

Further more, as an edge computing application where
the inference step will be processed on a mobile device
with memory, computation and power consumption limi-
tations, this project seeks to also understand and explore
state-of-the-art architectures such as SqueezeNet[6]. The
trade-offs between accuracy and resource requirements will
be quantified through testing.

Understanding and overcoming domain bias. In prac-
tice, a commercially viable application would need to be
able to accurately classify images drawn from unseen tar-
get domains. For example, there can be significant do-
main shift caused by variations such as different camera
viewpoints, different rooms/cribs, different babies, different
lighting conditions and different toys inside the crib.

This project seeks to understand the domain adaptability
of the trained model by testing the model against datasets
with some domain shift introduced or collected using a
completely different method. In addition to training the
model with random image cropping, flipping and rotation
augmentation techniques[3], it is a hypothesis that cropping
the unseen datasets using object localization could reduce
the sensitivity of the model to camera placement and zoom
level. These techniques were tested to understand potential
impact on improving domain adaptability of the model.

Network Visualization. CNN networks have often been
criticized for being a black box. Network visualization tech-
niques will be used on the train model in an attempt to gain
some intuition for what the model is looking for. Given that
each class is actually a collection of the baby in many dif-
ferent positions in the crib, would we get more recognizable
images if we trained pixels to maximize a certain neuron ac-
tivation in an earlier layer rather than the final output layer?

3. Related Work
Addressing unbalanced datasets. The problem of

class imbalance is well documented and is known to lead to
classifiers that are biased towards major classes with very
poor classification rates on minor classes. In the extreme
case, it is possible for classifiers to class everything as the
major class. To avoid such problems, Longadge et al.[11]
outlined solutions that fall into three basic categories: algo-
rithmic, data-preprocessing and feature selection. Existing
literature suggest that data pre-processing provides the best
solution by adding or subtracting data through over and
under-sampling to balance the underlying data. However,
in this project, there are significant constraints to obtaining
more samples for under-represented classes, hence, the
algorithmic approach would be appropriate.

Motion Detection. Some of the most common methods
for human motion detection used in video surveillance
are outlined by Alzughaibi et al. [16]: the temporal
difference method, optical flow method and background
subtraction method. The temporal difference method is one
of the easiest models and involves taking the pixel-wise
difference between the previous frame and the current
frame and comparing it against a threshold. The optical
flow method uses an algorithm which produces a 2D
vector field representing the displacement vector of each
pixel between two frames[9]. The background subtraction
method is similar to the temporal difference method in that
the pixel-wise difference of the current image is subtracted
from a defined background image. The background image
can be initialized using various methods, including taking
the median of a series of frames known to contain only the
background. Such a background can be updated to adapt
to changes over time. In our application, it is likely that
a temporal difference method (also referred to as image
subtraction method) will suffice though we also look to test
the optical flow method for the sake of comparison.

CNN Architectures. A paper comparing different deep
neural networks for practical applications by Canziani et
al. published in April 2017[17] provides a comprehensive
framework for model selection based on not only accuracy
but practical considerations towards memory footprint,
parameters, operations count, inference time and power
consumption. Top performing network families in the last
four years on the ImageNet challenge such as Alexnet[10],
NIN, ENet, GoogLeNet, VGG, ResNet[1] and Inception
models were included. In addition, Squeezenet [6] was
introduced by Iandola et Al. in Nov 2016 as an alternative
to AlexNet which achieves the same level of accuracy
whilst having 50x fewer parameters than Alexnet. Also
worth noting is when compression techniques proposed
by Han et al. [14] such as network pruning and quantiza-

2

tion are applied to SqueezeNet, 510x size reduction was
achieved compared to uncompressed AlexNet without any
degradation in accuracy. Compressed SqueezeNet requires
less than 0.5MB of memory. While a comprehensive survey
of all of these models is out of scope for this project, a few
selected architectures will be compared to gain an intuition
for the accuracy and resource utilization trade-offs for this
specific dataset.

Domain Adaption. In response to the quest to come
up with the next competition-winning model, Torralba and
Efros [13] noted that the community has focused on accu-
racy at the expense of cross-dataset generalization capabil-
ity of winning models. If these models are to be represen-
tative of the real world, they should be able to be trained
on ImageNet, say, and then accurately classify images from
datasets such as PASCAL VOC, SUN09 and so on. To a
human, all of these datasets are from the same ”domain”
- the world. However, in practice, these public datasets
inevitably suffer issues such as selection bias and capture
bias, reducing their ability to truly represent the real world.
In this project, it is likely that the our dataset suffers from
significant bias. Although a full solution may not be vi-
ably found within the scope of this project, it is important to
quantify and acknowledge the limited ability of this model
to achieve the kind of cross-domain adaptability that would
be needed in real-world applications.
A comprehensive survey of techniques to allow a model
trained on a source domain to classify an unseen dataset
drawn from a different domain was presented by Csurka[8].
One of the more promising methods are deep domain adap-
tation techniques using deep networks. For example, the
concept of Generative Adversarial Networks can be ap-
plied in the domain adaptation context[15]. The discrimina-
tive model seeks to accurately discriminate between images
from the source-domain and the target-domain. The gen-
erative model aims to generate target-domain images that
appear to have been drawn from the same distribution as
the source-domain, hence bridging the gap between the two
domains.

Network Visualization. In attempts to gain more
intuition about what deep neural networks are doing to
achieve the stated objective, a number of techniques have
been developed over the years to visualize the trained
networks. In particular, a method presented by Simonyan
et al. [12] involves generating an image by gradient accent
with respect to the image pixels, treating the weights
as fixed parameters, with the optimization objective of
maximizing the selected class score. This technique will be
applied in this project in an attempt to visualize different
layers of the network.

4. Data Collection and Preprocessing

4.1. Main Dataset - A1 and A2

For this main dataset, an IP camera in a fixed position
relative to a baby crib was used to capture videos of a
single baby. Dataset A1 and A2 are similar but A2 has 25%
more samples . The following 7 pre-processing steps were
used to produce the input to our CNN model for training,
validation and testing.

Step 1: Capture Video Stream. A Nest IP Camera was
placed over a baby crib and a continuous stream of frames
were captured at a rate of 1 frame per 10 seconds. This
script was activated every time the child is put into the crib
for sleep over a period of 2 weeks.

Step 2: Extract Salient Images from Video. Two
techniques were briefly tested in order to efficiently extract
salient images from the video feed: image subtraction[2, 4]
vs. Optical Flow[9] The image subtraction method was se-
lected due to the combination of efficacy and simplicity.
The salient images extracted represent 5% of the total raw
frames captured.

Figure 2. Image subtraction operation.

3

⌧

lower

< |P [F (t� 1)]� P [F (t)]| < ⌧

upper

where pixel values P of a frame F extracted at time t
is subtracted from the frame immediately preceding it to
obtain the pixel difference. For noise reduction, a Gaussian
filter was applied to the frames prior to image subtraction.
If the L1-norm is within a lower and upper threshold,
the image is extracted for use. The upper threshold helps
to eliminate frames where camera jitter or illumination
changes caused a high pixel difference rather than localized
motion.

Step 3: Manually classify into 5 classes. The resulting
images were manually classified into the following 5 cate-
gories, providing a class distribution as shown in the table
shown below.

Number of Images By Class
Class A1 A1% A2 A2%

Caretaker 40 2% 51 2%
Empty Crib 182 9% 278 11%
Sitting Up 209 10% 269 11%

Lying Down 1165 58% 1462 58%
Standing Up 406 20% 440 18%

Total 2002 100% 2500 100%

Table 1. Dataset sample count and class distribution prior to aug-
mentation.

Step 4: Split into Train, Validation and Test Sets.
This dataset was further split at random into training,

validation and test set at a ratio of 68:20:12.

Step 5: Resize and Crop images. The resulting images
were converted into squares of 224x224 pixels (or 227x227
depending on the model used) by first scaling the shorter
dimension to be 224 pixels and cropping the center of the
image along the longer dimension.

Step 6: Synthetic augmentation (selectively applied).
This step was only introduced later on in the training to pro-
duce dataset A2* (which is an augmented version of dataset
A2) so that the effect of augmentation can be evaluated. In
this step, 3 additional images were synthetically generated
from each training image by flipping along vertical and
horizontal and both axes.

Step 7: Normalization. The images were then normal-
ized using the mean and standard deviation specified by the
pre-trained model.

4.2. Dataset B - modified camera viewpoint

In this dataset B, the same set up as the main dataset
A was used with the exception that the camera was more
zoomed out. In the two images at the top of figure 3, one
can see that the camera is capturing more of the room and
not just the scene inside the crib as per dataset A.

The purpose of this dataset is to test the adaptability of
the model to changes in camera viewpoint and to further
explore whether adaptability can be improved by localizing
the object and automatically cropping prior to feeding into
the network for inference. Steps 1,2,3,4 and 7 outlined
in section 4.1 was used to process this dataset. Step 2
was modified so not only was image subtraction used to
identify the salient frames, it was also used to localize the
object (shown in figure 3 - outlined by box labeled ”A”).
The localized zone was then programmatically expanded
to the larger box ”B” to ensure that the cropped image
captures most of the baby and not just the moving body
parts. Dataset B includes a total of 68 images across the 5
classes.

Figure 3. Object localization and automatic cropping used to re-
duce viewpoint sensitivity.

4

4.3. Dataset C from Youtube/Google

In this third test dataset, a small collection of 155 image
samples of different babies in different positions inside the
crib has been collected from images and videos on Google
and Youtube. Images that had a top-down angle rather than
taken from side of the crib where selected.

Figure 4. Images of babies in cribs from Youtube/Google.

5. Methods and Algorithms
5.1. Model Architectures and Transfer Learning.

AlexNet, ResNet18 and SqueezeNet pre-trained on Ima-
geNet were tested. In order to adapt the first two models to
produce class scores required for this dataset, the final fully
connected layer was modified to provide 5 outputs scores.
SqueezeNet does not have any fully connected layers, hence
the final convolutional layer in the model classifer was mod-
ified to produce the required output. In addition, in or-
der to compare the difference between using the pre-trained
weights as-is compared to simply using the weights as an
initialization value, our ResNet18 model was used in two
ways: Firstly with weights frozen with other than the last
layer for fine-tuning (referred to as ”ResNet18-Fr” in Table
3); Secondly with all weights unfrozen.

A random search was used to tune the model hyper-
parameters using the validation dataset. Finally, the test
dataset was used to quantify model performance.

The table below outlines the relative resource require-
ments of the model architectures tested, including num-
ber of parameters, number of operations and memory re-
quirements - base model and with deep compression ap-
plied. One can see a significant practical advantage to using
SqueezeNet so to the extent that accuracy can be demon-

strated to not be significantly impaired.

Model Param GFlop Memory
ResNet18 11M 3.5 44.6MB! 4MB
AlexNet 60M 1.5 250MB! 6.9MB

SqueezeNet 1.25M 0.72 4.8MB! 0.47MB

Table 2. Resource requirements of different architectures.[24, 18]

5.2. Optimization Algorithm and Loss Function.

Stochastic gradient descent with momentum was used as
the optimizer for all tests.

v

t+1 = ⇢ ⇤ v
t

+rf(x
t

)

x

t+1 = x

t

� ↵ ⇤ v
t+1

where ⇢ refers to the ”friction”, v refers to velocity and
x refers to weight values. In terms of the loss function,
the objective of the optimization is to maximize prediction
accuracy on test set with equal importance assigned to every
class, hence a weighted cross-entropy loss function [5] will
be used to address the unbalanced nature of the dataset.

Loss(X,C) = W [C] ⇤ (�X[C] + log(
X

j

exp(X[j])))

where X are the images, C are the classes and W is the
weights applied to each class to balance the data.

5.3. Data Visualization.

In order to visualize what the model might interpret to
be an image that belongs to a given class, a gradient as-
cent method[12] with respect to randomly initialized input
image pixels using fixed weights of a trained Alexnet model
was used to maximize the output score for the ”stand” class.
Given that the baby could’ve been standing in many dif-
ferent locations in the crib, it is expected that perhaps the
resulting image would look like a composition of many in-
stances of the baby in different positions across the image
and, hence, difficult to see. We hypothesized that if the gra-
dient ascent was replicated to maximize the activation of a
neuron in the second last layer, with the neuron being cho-
sen to correspond to one that is multiplied by high weights
to produce the ”stand” class score, perhaps the image gen-
erated would be more interpretable by humans (for e.g. rep-
resenting one instance of the baby standing in one spot).

I

⇤ = argmaxN

y

(I)� �kIk22
where,N

y

= argmax(W
FC2[y, :])

The method was extended further to the third layer.

5

6. Results and Conclusions
6.1. Motion Detection Method

As previously noted, both image subtraction and op-
tical flow were explored briefly as possible methods
for motion detection. Qualitative results are presented
in a Youtube video available at the following link:
https://youtu.be/sF24ccg9-Cs

Figure 5. Youtube video comparing image subtraction vs. Optical
Flow alongside original video.

Optical flow did not work as well as image subtraction
during the testing on first attempt. There was significant
noise around the bars of the crib and the actual baby motions
were less noticeable with only the outlines being shown as
active vectors. Perhaps optical flow is not so suitable for this
task as the frames captured were 10 seconds apart so in or-
der to capture such large displacements in between frames,
a coarser scale would’ve had to be used at the expense of
accuracy. Although optical flow could’ve been optimized
for the task at hand, image subtraction was sufficient and
had the benefit of being simple and easy to execute, hence,
image subtraction was used in our pre-processing steps.

6.2. Model Architectures vs. accurate rates

The best result was achieved using a pre-train ResNet18
finetuned with unfrozen weights using the A2 dataset with
synthetic augmentation. Weighted training accuracy of
98.2%, a weighted validation accuracy of 94.7% and a
weighted test accuracy of 96.7% were achieved.

It should also be noted that ResNet18 performed sig-
nificantly better with larger A2 dataset compared to A1
dataset. The synthetic augmentation step preformed on the
A2 dataset (noted as A2*) also exhibited a small minor im-
provement in test accuracy results. Resnet18 with frozen
weights with the exception of the final layer performed the
worse with test accuracy of 81.2%. Given that this dataset is
significantly different from Imagenet (on which the models
were pre-trained on), simply finetuning the weights of the
final layer was apparently not sufficient to fully optimize
the model to the new dataset.

Alexnet and Squeezenet performed at similar levels, both
being marginally worse than ResNet18. However, as noted

Weighted Accuracy
Network Data Train % Val % Test %

ResNet18-Fr A1 86.9% 85.7% 81.2%
ResNet18 A1 100% 93.5% 90.5%
ResNet18 A2 99.9% 94.2% 96.0%
ResNet18 A2* 98.2% 94.7% 96.7%
AlexNet A1 97.5% 93.7% 94.2%
AlexNet A2* 97.5% 94.3% 95.0%

SqueezeNet A2* 99.3% 92.5% 94.6%

Table 3. Comparing results using different model architectures and
datasets.

Ground Truth
Pred Care Empty Sit Sleep Stand
Care 5 0 0 0 0

Empty 0 31 0 0 1
Sit 0 0 24 2 0

Sleep 0 0 0 152 1
Stand 1 0 0 0 52
Total 6 31 24 154 54

Recall 83% 100% 100% 99% 96%

Table 4. Confusion matrix of ResNet18 on A2* test set

in Table 2, SqueezeNet was designed to be extremely effi-
cient with only 1.25M parameters, 0.72 GFlops per image
and a compressed size of 0.47MB. This has significant prac-
tical benefits including power consumption and low latency.
Given these accuracy results, it appears that Squeezenet
presents the best trade-off between accuracy and resource
requirements.

6.3. Results of Inference Dataset B

The test results of dataset B using models trained on
dataset A2/A* were poor but there are promising avenues
for further improvement. Recall that dataset B was captured
using the same setting as Dataset A other than the camera
being configured to capture a wider scene (more zoomed
out). In the table below, ”Not cropped” refers to dataset
B, being used as-is whereas the ”cropped” set utilized the
image subtraction object localization technique to automat-
ically crop the salient part of the image for further process-
ing.

Test Accuracy on Dataset B
Model Train Dataset Not Cropped Cropped

AlexNet A2 23.8% 40.3%
AlexNet A2* 35.5% 51.8%

SqueezeNet A2* 40.3% 54.4%

Table 5. Cross-domain adaptability of trained models.

6

With 5 classes, random guesses would result in accuracy
rates of 20%, hence the Alexnet trained on A2, tested on
uncropped dataset B is not much better than random. How-
ever, we do observe that the image localization and cropping
significantly improved the results from 35.5% on Alexnet to
51.8% . In addition, we can see that the synthetic data aug-
mentation performed on dataset A2 helped to improve the
model adaptability to this unseen dataset. AlexNet trained
on A2* (augmented) exhibited a 51.8% accuracy rate on
the cropped dataset B compared to 40.3% when A2 was not
augmented. Further more, it appears that using the same
A2* dataset as training data and cropped dataset B as test
data, SqueezeNet was able to achieve a 54.4% accuracy,
somewhat better than AlexNet with the same set up. Fur-
ther exploration would be required to fully understand this
effect.

Although the best result obtained here with Squeezenet
at 54.4% is nowhere near the level required for commer-
cialization, it should be noted that the techniques employed
here are relatively simple and have already shown marked
improvements. Hence, it can be concluded that there may
be other methods that can further improve the cross-domain
adaptability of the model to unseen data.

6.4. Results of Inference Dataset C

Recall that Dataset C was obtained from Youtube and
Google of completely different babies, in different cribs,
camera settings and light settings. Although from the per-
spective of a human, these are all still pictures of babies in
cribs and hence would be desirable to be considered as one
domain, from the perspective of the machine, it is a signifi-
cantly different domain.

When tested on AlexNet A2 dataset, the weighted classi-
fication accuracy on dataset C was not much better than ran-
dom at 23.5%. When the model trained on the augmented
A2* dataset was used, the result improved to 30.4%.

Although the accuracies on dataset A achieved were in
the high nineties, it is sobering to realize that the model
really doesn’t generalize well at all to unseen images that
humans would consider to be from the same ”domain” -
have we created yet another ”Clever Hans”? The model
is overfitting to the domain represented by dataset A and
optimizing for the idiosyncracies manifested in that dataset
in such a way that it no longer is able to perform the task
for ”similar” images.

To achieve a level of cross-domain adaptability required
for commercialization, further work would need to be done
to explore more sophisticated Domain Adaption methods
such as those mentioned by Csurka[7] as well as the obvi-
ous approach of broadening the source domain by capturing
more data so it is more representative of the target domain.

6.5. Results of Visualizations

Below are two images generated through gradient ascent
on pixel values for the class ”sit” and the class ”stand” re-
spectively. A trained AlexNet was used as the base model.
It can be seen in the visualization for the ”sit” class that
something resembling the top of a baby’s head can be seen
in various positions across the image. Likewise, in the visu-
alization for ”stand”, one can see artifacts towards the bot-
tom of the image which looks like arms holding on to the
edge of the crib.

Figure 6. Network visualizations of two classes: sit and stand.

Below are the visualization attempts to visualize the 2nd
last and 3rd last layers of the network by selecting neurons
that correspond with high weights for the output class.

Figure 7. Network Visualizations of 2nd and 3rd last layer.

Although the 2nd/3rd last layer visualizations do not val-

7

idate the hypothesis that they would be decompositions of
the final layer class image, it is interesting to see that they
are somewhat more interpretable than the class image. For
example, the 3rd last layer one looks like fox faces (a stuffed
toy present in the crib).

Finally, it is also interesting to see the differences be-
tween class visualizations generated by ResNet18 shown
below compared to the previous ones from AlexNet.
ResNet images are significantly more intricate - more work
would be required to understand how to account for these
visualization differences. Similar to the class image for
”sit” for AlexNet, one can see an oval that holds some re-
semblance to the top of a baby’s head whilst sitting down.

Figure 8. Visualization of class = Sit generated from ResNet18.

7. For Further Investigation
Although a respectable 96.7% test accuracy was

achieved, the dataset collected was too limited and not truly
representative of the real world domain. In order to improve
the real world applicability of the model, there are four pri-
mary avenues that can be pursued:

1. More data should be collected which include different
camera viewpoints (zoom level and angle), different
babies in different settings. Ideally, the data collected
should have the same degree of variation as what one
might encounter in real life - such as different color of
cribs, babies of different ages, sizes and color, different
bedding and so on.

2. Given the challenges of collecting more data, ad-
ditional methods of synthetic image augmentation
should be explored. When dataset A2 was syntheti-
cally augmented by flipping across vertical/horizontal
axes, the incremental benefit on test accuracy on the

same domain was limited but the benefits on the cross-
domain adaptability of the model was significantly in-
creased. Perhaps color and brightness adjustments can
be considered to synthesize lighting scenarios.

3. It would be challenging to collect a completely repre-
sentative dataset for training that is free from any kind
of bias, hence it would be good to further investigate
and test the Domain Adaptation techniques outlined
in the Csurka paper[8]. For example, the technique
we explored with Dataset B with automated localized
cropping was able to make Dataset B more similar
to what the model has seen before in dataset A and
was able to deliver a marked improvement in accu-
racy. In particular, generative adversarial methods that
can modify new target domain images to the source do-
main seems interesting to explore - though that method
may be too resource intensive and introduce too much
latency to deploy in real-time.

4. Lastly, of course, changes or constraints can be de-
signed into the application to make the image recog-
nition problem easier and more reliable to solve. For
example, depth sensors are becoming more prevalent
in mobile devices and could bring the additional in-
formation that a model needs to more reliably under-
stand what is the going on in the environment. Also,
some commercially available intelligent baby monitors
(such as the Nanit Baby Monitor) provide a physical
fixture to be attached to the side of the crib, so to min-
imize the camera viewpoint variability in different set-
tings. Finally, some applications may be able to guide
the end user to provide some labeled training data from
the new domain so the model can be finetuned for each
individual user scenario. For example, when the Touch
ID feature of the iPhone is activated for the first time,
the user is guided to provide a number of different
finger-prints scans around different parts of the finger,
so the device can recognize the print even if not placed
exactly in the same way on the sensor every time.

Finally, a more detailed and comprehensive architecture test
can be conducted, including applying deep compression
[14, 24, 18] to the model to confirm that the best architec-
ture is indeed a compressed Squeezenet.

8. Code References
• Code libraries used: Pytorch[19], OpenCV[20]

• Third party code referenced: Motion Detection with
OpenCV[21], Transfer Learning in Pytorch[22], Net-
work Visualization in CS231[23]

• Code used in this project can be accessed at Github
repo: https://github.com/ririgriff/cs231n project

8

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

Deep Residual Learning for Image Recognition. 2015.

[2] Nayyab Naseem, Mehreen Sirshar Target Tracking In
Real Time Surveillance Cameras and Videos 2015.

[3] Sebastien C. Wong, Adam Gatt, Victor Stamatescu,
Mark D. McDonnell Understanding data augmentation
for classification: when to warp? 2016.

[4] Massimo Piccardi Background subtraction techniques:
a review 2004.

[5] Numerous contributors. nn: Loss Functions (PyTorch
Library

[6] Forrest N. Iandola, Song Han, Mathew W. Moskewicz,
Khalid Ashraf, William J. Dally, Kurt Keutzer.
SqueezeNet: AlexNet-Level Accuracy with 50x Fewer
Parameters and <0.5MB Model Size

[7] Sagie Benaim, Lior Wolf. One-Sided Unsupervised Do-
main Mapping

[8] Gabriela Csurka. Domain Adaptation for Visual Appli-
cations: A Comprehensive Survey

[9] Gunnar Farneback Two-Grame motion Estimation
Based on Polynomial Expansion

[10] Alex Krizhevsky One weird trick for parallelizing
convolutional neural networks.

[11] Rushi Longadge, Snehlata Dongre, Latesh Malik
Class Imbalance Problem in Data mining: Review

[12] Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
Deep Inside Convolutional Networks: Visualising Im-
age Classification Models and Saliency Maps

[13] Antonio Tarralba, Alexei Efros Unbiased Look at
Dataset Bias

[14] S. Han, H. Mao, W. Dally Deep compression: Com-
pression DNNs with pruning, trained quantization and
huffman coding.

[15] I. Goodfellow, J Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, Y. Bengio Gener-
ative Adversarial nets.

[16] Arwa Darwish Alzughaibi, Hanadi Admed Hakami
Review of Human Motion Detection based on back-
ground subtraction techniques.

[17] Alfredo Canziani, Eugenio Culurciello, Adam Paszke
An Analysis of Deep Neural Network Models for Prac-
tical Applications.

[18] J. Shen, V. Boddeti, N. Vesdapunt, K. Kitani Learning
Compressed Models for Pedestrial Detection.

[19] Numerous Contributors. Pytorch Library
http://pytorch.org

[20] Numerous Contributors. (version 3.2.0) OpenCV Li-
brary http://opencv.org

[21] Adrian Rosebrock. Basic motion detec-
tion and tracking with Python and OpenCV
http://www.pyimagesearch.com/2015/05/25/basic-
motion-detection-and-tracking-with-python-and-
opencv/

[22] Sasank Chilamkurthy. Transfer Learning Tutorial
http://pytorch.org/tutorials/beginner/transfer learning tutorial.html

[23] Numerous Contributors. CS231n As-
signment 3 Network Visualization Code
https://github.com/cs231n/cs231n.github.io

[24] Song Han. Efficient Methods
and Hardware for Deep Learning
http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture15.pdf/

9

