
Fast Softmax Sampling for Deep Neural Networks

Ifueko Igbinedion
CS231N

ifueko@stanford.edu

Derek Phillips
CS231N

djp42@stanford.edu

Daniel Lévy
Ermon Group, Stanford University

danilevy@cs.stanford.edu

Abstract

The softmax function has been widely popularized due
to its frequent use in neural networks. It features a linear
computation time that can dominate training time if the out-
put space is very large. This project explores the use of k-
means clustering and uniform sampling to approximate the
softmax function and achieve O(

√
N) run time. We addi-

tionally present experiments varying the number of clusters
and update frequency of the data structure, showing that the
softmax approximation has potential to provide a significant
reduction to complexity.

1. Introduction

Many neural networks use a softmax function in the con-
version from the final layer’s output to class scores. The
softmax function takes an N dimensional vector of scores
and pushes the values into the range [0, 1] as defined by the
function:

fj(z) =
ezj∑N
k=1 e

zk

The denominator of the softmax function is dependent on
every element in the scores vector, and thus the time com-
plexity of using the softmax function is O(N). When using
datasets with very large output spaces, this can quickly be-
come a computational bottleneck during training time [11].
This is a result of the last matrix multiplication in these
models, between the hidden states of size B x d (B is the
batch size, and d is the dimension for the hidden state) and
the output weights, which are size d x K (K is the number
of classes, or output space). With large output spaces, this
quickly dwarfs the complexity of the other operations in the
model.

Our project implements and analyzes a theoretical algo-
rithm, developed by the Ermon Group at Stanford, for re-
ducing the complexity of the softmax function to O(

√
N)

without significantly compromising on accuracy [16]. This
approach uses Gumbel random variables, a Maximum In-

ner Product Search (MIPS) data structure and random sam-
pling to estimate an O(

√
N) sized subset of the dataset for

use in estimating the output of the softmax function. With
the K-means data structure used for MIPS, we estimate the
softmax function for each training example using O(

√
N)

classes that are considered its nearest neighbors as well as
a weighted random sampling of other classes. Achieving
an O(

√
N) speedup of the softmax computation in a deep

network with a large number of output classes will be very
impactful as it would decrease the training time of various
networks from weeks to days. In this paper, we first dis-
cuss some related approaches to speeding up computation
for problems with large output spaces. We then discuss in
detail our method for approximating the forward and back-
ward pass of softmax computation. We then highlight some
experiments conducted to assess the success of our fast soft-
max implementation and their results. Lastly, we discuss
some challenges we faced during implementation and con-
clude with some final thoughts on fast softmax approxima-
tion.

2. Background and Related Work
A popular class of image classification problems are

those that deal with natural language and consequently very
large output spaces. For example, recurrent neural networks
for image caption generation feature output spaces that can
enter the millions [18]. Many log linear prediction mod-
els normalize class probabilities using every element in the
scores vector. This can be a computational bottleneck, lead-
ing to training times that can range from weeks to months,
especially for datasets with both large output spaces and
large numbers of training examples [10].

The inefficiency of linear functions for problems with
large output spaces is well known. Many researchers have
attempted to provide an effective method for speeding up
computation of functions like the softmax. Perhaps the most
well known such method is the Hierarchical Softmax [5],
which uses a tree structure to represent the probabilities of
words, with nodes representing latent variables that can also
be interpreted as classes. A common variant of the Hier-

1

archical Softmax is called the two-level tree, which uses
O(
√
N) classes as the intermediate level of the tree, with

the words as the leaves [5, 13], but deeper trees have also
been explored [15]. Hierarchical softmax is fast during
training, but can be more expensive to compute during test-
ing than the normal softmax [4]. However, it is nonetheless
a popular choice, and a number of variations have been pub-
lished in recent years [19]

There are other tree-like approaches, such as that used
in Koenigstein et. al., which uses branched and bounded
binary spatial-partitioning metric tree based clusterings to
limit number of predictions made, by only ‘recommending’
for the center of a cluster [12]. However, this was only done
for the very specific task of making recommendations for
users. Another method implements a hierarchical bilinear
language model that utilizes decision trees to estimate prob-
ability distributions upon words to automatically construct
word trees from the model [14].

A simple approach is simply to perform the normaliza-
tion calculation less frequently, saving on computation but
decreasing performance accuracy [2] Another approach is
called the Differentiated Softmax, and it assigns each output
class a capacity based on the output class’s frequency [4].

There are also a number of sampling based ap-
proaches [11], including targeted sampling [7], which is
similar to our method in goal. It selects a number of im-
posters to sample from the total output space, but does so by
simply using the classes with positive examples in a batch,
and sampling from the rest.

Another approach to accelerate neural network train-
ing is adaptive importance sampling. Adaptive importance
sampling aims to train a model from which learning and
sampling are fast [3]. During backpropagation, the likeli-
hood of only a few negative class examples are decreased.
The samples are chosen using an n-gram based model that
models conditional probabilities of the language model.

Another algorithm called BlackOut applies importance
sampling to RNN language models with outputs spaces on
the order of millions [8]. The approximation algorithm uses
a weighted sampling strategy to significantly reduce com-
putation time for softmax based layers in RNN language
models.

Other approaches use clustering to eliminate the linear
complexity of the softmax, often forming these clusters
based on features such as frequency, which are related to
the naturally uneven distribution of words in language [6].
This method, called adaptive softmax, uses probability dis-
tributions to estimate the most likely cluster from a set of
clusters, estimating the softmax function using data from
the most likely cluster.

Work very similar to what we implement in this project
was done by Vijayanarasimhan et. al., and used a locality-
sensitive hashing technique to approximate the actual dot

product, which could then be used to approximated the soft-
max layer [18]. This is very similar to the algorithm we use,
except we also introduce a sampling of the tail end of the
distribution [16]. Despite this lack of sampling, they were
able to obtain good results, with a speed-up of 10x while
maintaining 90% of accuracy of their baseline [18].

The algorithm we implemented in this project is inspired
by the work in the Ermon Group at Stanford related to fast
learning in log-linear models. [16]. In this work, Gum-
bel random variables are utilized in order to sample likely
states. Additionally, maximum inner product search is uti-
lized to select nearest neighbor states relevant to the input
vector. The randomly sampled and relevant states are then
used together to estimate the log linear function. The work
provides theoretical guarantees of gradient convergence to
the global maximum almost 10× faster than directly com-
puting the gradient [16]. Our method also uses random sam-
pling and nearest neighbor search to estimate a log linear for
a convolutional neural network.

3. Method
3.1. Theory

Our method redefines the forward and backwards passes
of the softmax layer for any neural network that computes
class scores using a linear layer. The forward pass of the
fast softmax layer computes the softmax function in four
steps: k-means clustering, determining top K nearest neigh-
bors, random sampling, and approximation. First, a k-
means data structure is (potentially) updated, clustering the
d dimensional weight vectors from of the last linear layer.
The weights are a good choice for generating clusters be-
cause they have the same dimensionality as the input vec-
tor, and they will have higher magnitudes for elements of
the input vector most related to that class. Choosing classes
whose weights are a most similar to the input increases the
probability that the correct class is within the set of near-
est neighbor classes. As a result input for the last linear
layer is used to query the k-means data structure for the top
K ≈ O(

√
N) classes. Random sampling is then used to

select L ≈ O(
√
N) random classes. Finally, the softmax

function is approximated according to the formula,

f̄j =
eφ(x)

>wj∑
i∈S e

φ(x)>wi + n−|S|
|T |

∑
i∈T e

φ(x)>wi

where φ(x) is the input to the last linear layer for a particu-
lar training example, S is the set of K nearest neighbors of
φ(x), and T is the set of L randomly sampled classes. The
slow softmax loss is given by the equation

L(x, y) = −φ(x)Twy∗ + log
∑
j

exp(φ(x)Twj)

2

The fast softmax loss can thus be calculated as

L(x, y) = −φ(x)Twy∗ + log Ẑ

Where Ẑ is∑
j∈S

exp(φ(x)Twj) +
n− |S|
|T |

∑
j∈S

exp(φ(x)Twj)

The backwards pass for fast softmax estimates the gradi-
ents with respect to the inputs and weights for the last linear
layer. The gradient of the loss with respect to the input vec-
tor is

∇φ(x)L(x, y∗) = −wy∗+
∑
i∈S e

yi + n−|S|
|T |

∑
i∈T e

yi∑
i∈S e

yifi + n−|S|
|T |

∑
i∈T e

yifi

where y∗ is the correct class for this training example and
yi = φ(x)>wi. The gradient of the loss with respect to the
weights of the last linear layer is

∇wiL = −φ(x)1i=y∗ + 1i∈S∪T
exp(φ(x)Twi)

Ẑ

3.2. Implementation

For the k-means implementation, we utilized Facebook’s
implementation of FAISS, a tool for fast similarity search
and clustering of dense vectors. FAISS utilizes the GPU to
allow for fast training and querying of k-means indexes [9].
Our network was implemented using PyTorch. In order to
use our fast softmax approximation, we needed to define a
new autograd function based on the forward and backwards
passes described above. The main network we trained our
model was a simple convolutional neural network. The first
layer was a convolutional layer with 32 7 × 7 filters and
a stride of 2. This was followed by a ReLU nonlinearity
layer [1], which ensures all values are non negative accord-
ing to the function f(x) = max(0, x). This was followed
by a spatial batch normalization layer which normalizes the
mean and variance along the second dimension (within each
RGB channel) [1]. We then apply a 2 × 2 max pooling
layer [1] with a stride of 2 to choose the largest value within
each 2 × 2 grid in the data. We then apply a 6272 by 2048
linear layer [1] followed by a 2048 byC linear layer without
a bias term, where C is the number of output classes, before
the fast softmax. Our implementation combines the last lin-
ear layer and the softmax layer, computing the forward and
backward pass and calculating gradients with respect to the
both the input and weights. The pseudocode for the forward
pass is in Algorithm 1, while the pseudocode for the back-
wards pass is in Algorithm 2. These algorithms are defined
for a single training example, but the algorithm is easily ex-
tensible to batch sizes greater than 1.

Input: output of last linear layer
Output: fast softmax loss
w ← weights of last linear layer;
knn← FAISS K-Means Data Structure;
t← current iteration of training;
p← hyper parameter: update frequency;
K ← hyper parameter: number of desired nearest

neighbors, O(
√
N);

L← hyper parameter: number of randomly sampled
classes, O(

√
N);

if t%p = 0 then
Train K-Means Data Structure on current weights

end
n← total number of classes;
S ← top K nearest neighbors of input from K-Means
data structure;
T ← random sampling of L classes;
Ẑ =

∑
j∈S e

(φ(x)Twj) + n−|S|
|T |

∑
j∈S e

(φ(x)Twj);

L = −φ(x)Twy∗ + log Ẑ;
return L;
Algorithm 1: Fast Softmax Sampling Forward Pass

Input: Loss from forward pass
Output: Gradients with respect to φ(x) and w
w ← weights of last linear layer;
φ(x)← previous input vector;
y∗ ← correct output class for this example.;
S ← top K nearest neighbors calculated at the
forward pass;
T ← L randomly sampled classes calculated at the
forward pass;
n← total number of classes;

dX = −wy∗ +
∑
i∈S e

yi+
n−|S|
|T |

∑
i∈T e

φ(x)>wi∑
i∈S e

φ(x)>wifi+
n−|S|
|T |

∑
i∈T e

φ(x)>wifi
;

dW = −φ(x)1i=y∗ + 1i∈S∪T
exp(φ(x)Twi)

Ẑ
;

return dX, dW;
Algorithm 2: Fast Softmax Sampling Backward Pass

4. Data

We utilized the Flickr100M dataset [17], which has 100
million images and a vast output space of all of the tags for
the images. The dataset has been used in previous work,
such as that done by Joulin, Maaten et al. [10]. We subsam-
pled the dataset to allow for us to run our experiments in the
allotted time for the project, but with more time we would
have tested with different output sizes starting from 500 and
increasing to 100, 000 distinct classes. For our tests, we be-
gan with a few tests on 500 output classes, but the majority
of our work is done with 5000 output classes.

Because of the vast output space of the Flickr100M

3

dataset, we subsampled the dataset in the following manner.
First, we go through each training example in the dataset,
and with a 1% probability we add each data example to a
dictionary whose keys are single words used to tag the im-
age. After iterating through the entire dataset, we sort the
output class labels by the number of training examples it has
and ignore the top 250 most common words (for example,
”the”, ”of”, ”with”) in a similar manner as [10]. From the
remaining data we take the top C ∈ [500, 5000] most com-
mon output classes and select an equal number of training
and validation examples per class. Additionally, we limit
the resolution to be 64 × 64 and scale the images into the
range 0 to 1 and normalize, as is common in image process-
ing scenarios.

5. Experiments
The main evaluation metric for this work was the speed

vs. performance trade off. There are a number of poten-
tial relationships specific to our proposed algorithm that we
could evaluate, including the update frequency of the MIPS
KNN data structure, output space size, and a variety of
hyper-parameters for the FAISS k-means implementation.
Due to time constraints encountered, we focused on what
we thought would be the most interesting relationship, the
update frequency. This parameter has not been not tested
previously, and there is no theoretical effect described for
the update frequency’s effect on performance. Obviously,
updating every iteration would produce results most simi-
lar to that of the baseline, but that is the extent of the un-
derstanding for how it will affect performance. For other
parameters, such as the output space size, there is a theoret-
ical understanding of how they affect the performance [16].
Thus, we determined the update frequency to be most inter-
esting and selected it to test on given the time constraints.

For this work, we test with update frequencies of every
{1,5,10} mini-batch iterations. We perform experiments
using the same training and validation sets (as described
in section 4) for all models, ensuring comparable results.
We additionally perform some evaluation over the size of
the output space, testing with both 500 and 5000 output
classes. Both output spaces are not as large as we would
have liked, a constraint encountered as a result of limited re-
sources and time. As a result, we examine the performance
of the fast k-means softmax approximation with both

√
C

and 10
√
C classes selected as the ‘Top-K’ for the forward

pass. The theoretical background of the work suggests that
the results with

√
C classes will not be as reliable regarding

accuracy as the proven 10
√
C [16]. However, we evaluate

that performance as a further, and more prominent, demon-
stration of the potential time savings. Additionally, there
is an overhead to using the k-means MIPS data structure,
which is another aspect that we are evaluating.

Throughout the evaluation of the various models, we

keep track of the training loss, the training and validation
accuracy, the time spent in the forward pass of the model,
and the overall time spent evaluating the model. We de-
fine the forward pass to include the update to MIPS KNN
data structure, as we expect that update to take a non-
insignificant amount of time. We use standard time to per-
form the the efficiency comparison of the models because
we are using a dedicated server - the google compute en-
gine - that should have limited fluctuations in other tasks
that divert processing power away from our process. Fur-
thermore, the relatively minor fluctuations will not affect
the overall trends, which are what we are evaluating.

The hyper-parameters we used were as follows:

1. Batch size: 300, 150

2. Learning rate: 0.001

3. Number of epochs: 1

4. FAISS Specific:

nlist = 1

nprobe = 1

We chose a batch size of 300 for the 5000 output class
example because of constraints on the training time avail-
able. However, we could not use a bigger batch size because
of the memory constraints of the machine we were working
on. For the 500 output class example, we used a batch size
of 150 to balance the number of iterations between overall
speed and enough iterations to illustrate the trends we are
looking for.

The learning rate of 0.001 was chosen based on sam-
ples tested on the 500 output class example. With a learn-
ing rate of 0.01 we saw very little learning, and an accu-
racy that hovered around random performance, but with a
slightly lower learning rate the model was able to optimize
better. However, we did not extensively test this because
the purpose of our project centers more around the relative
performance of the models, so as long as they all use the
same learning rate we should see similar results. Nonethe-
less, testing different learning rates may be an interesting
element to study in future work.

We only tested over 1 epoch as a direct result of the time
constraints encountered. However, the trends we see over
this epoch would likely continue, but it would have been
preferred to have tested until convergence for a number of
models, which we will discuss more in section 6

The nlist and nprobe variables are FAISS specific hyper-
parameters that determine the “number of cells” and the
number of those cells that are visited to perform a search,
respectively. We selected an nlist of 1 because it is the most
straightforward option, and will give a lower bound on the
search efficiency, i.e. it will be the slowest because using an

4

Figure 1. The loss learning curves for a number of models with
5000 output classes over 1 epoch.

nlist of 1 is equivalent to a naive search [9]. Varying these
hyper-parameters are another likely next step for this work.

6. Results and Discussion
The results presented here are based on the experiments

we ran as described in section 5. To summarize, we vary
the update frequency of the MIPS KNN data structure in
{1,5,10}, and K ∈ {1, 10}, where the number of classes
selected for the Fast Softmax computation is K

√
C, with

5K
√
C uniformly sampled classes. The baseline uses the

same implementation of the Fast Softmax layer we defined,
but it never updates the MIPS KNN data structure and never
performs a search in the data structure, instead always se-
lecting everyC class (and thus there is no uniform sampling
done for the baseline).

6.1. Loss

As we can see in Figure 1, the models all have a rela-
tively normal learning curve, the with loss decreasing over
the course of an epoch. There are two interesting obser-
vations from this graph. First, the Baseline model has the
highest lost, but it is also decreasing slowly yet consistently.
This suggests that it may converge less quickly, but when

it does it will converge to a lower value. It is also worth
noting that the behavior is relatively consistent between the
K values tested. This could be a result of the fact that the
FastSoftmax models update only a small subset of weights
each iteration. However, the model that updates its MIPS
KNN data structure every iteration does not experience such
a drastically lower loss, suggesting that the behavior is re-
lated to less frequent updates.

The second observation is that the more frequently up-
dated FastSoftmax models see an increase in loss towards
the end of the epoch. This likely signifies an overfitting of
the models. A cause for this could be that the less frequently
updated data structure gives the model a large number of it-
erations to learn using the same weights, thereby overfitting.
This is a particularly interesting result, as it was not one of
the expected results we talked about in the milestone.

6.2. Time

Figure 2. The time spent in the forward pass (and updating MIPS
KNN datastructure) for the baseline and the KNN based fast soft-
max approximation per iteration with 5000 output classes over 1
epoch.

We claim that the time spent in the forward pass of the
model is linearly proportional to the output space, which is
confirmed through Figure 2. The figure clearly shows that

5

using a small number of clusters creates extremely large
savings for the forward pass. With K=1, we would have√

5000, or 70 classes selected for the top-K, with 5
√

5000,
or 353, randomly sampled classes. Therefore, we expected
to see the absolute time to compute for the forward pass
drop by about 90%, which it does do. An interesting ob-
servation from these results is how consistent the time is,
showing that the updates to the MIPS data structure are ex-
tremely quick. With K = 10, we see 10

√
5000, or about

700 clases selected for the top-K, with 50
√

5000, or about
3500 uniformly sampled classes also considered. While this
amounts to fewer classes for the Softmax to sum over, the
overhead present from the FAISS data structure and search-
ing makes the overall time spent in the forward pass much
more than the time spent in the baseline forward pass.

Table 1. The total time to run one epoch, not just forward passes,
for the models tested.

Baseline Freq: 1 Freq: 5 Freq: 10

K = 1 3:35 3:10 3:02 2:34
K = 10 3:35 4:38 4:33 4:31

Table 1 Shows that the overall time taken to train the
models is not only based on the time spent in the forward
pass. There are many other components of training, such as
the backwards pass and the time spent checking accuracy
(most of it). Checking accuracy took so long because it
required doing a forward pass for each minibatch of data
(because we could not store the full dataset in memory),
each pass of which took almost as much time as the forward
pass of the iteration (no updating the data structure).

6.3. Accuracy

Although not the main focus of the project, we see in-
teresting results in both the training and the validation ac-
curacy of the models, as shown in Figure 3 and Figure 4.
Beginning with the training accuracy, we can see that the
lower update frequency again outperforms the higher up-
date frequencies and the baseline, a counter-intuitive result.
However, we can follow the same explanation as for the loss
behavior, and we can see that the lowest update frequen-
cies appear to have hit a maximum accuracy and actually
decrease after iteration 70, possibly indicating overfitting.
Seeing the behavior over a number of more epochs would
be able to confirm or refute the trend. For the validation ac-
curacy, we actually encounter some troubling behavior, as
the baseline and the frequent update model reach 0 accu-
racy. That would seem to suggest overfitting on the training
set, but neither the loss nor the training accuracy corrobo-
rate that interpretation.

Figure 3. The training accuracy for a number of models with 5000
output classes over 1 epoch.

6.4. Challenges

Some implementational challenges limit the effective-
ness of our application of the theory. The nature of the
FAISS data structure required the use of numpy arrays,
adding necessary conversions between CPU and GPU based
data structures in the PyTorch framework. PyTorch also in-
troduced challenges to our implementation. While PyTorch
supports indexing of all rows in a matrix by a single set
of indices, it does not support the indexing of each row
by a unique set of indices. This limited the magnitude of
batch sizes we could support, as indexing for each training
example had to be conducted individually. Another chal-
lenge was that the tradeoff between maintaining an expen-
sive MIPS KNN data structure and improving speed was
only beneficial for very large output spaces, in which the
time spent maintaining the data structure was negligible
compared to the time required to compute the softmax func-
tion. Lastly, neural networks with large vocabularies are
extremely expensive to train. For just 500 output classes, it
takes about 30 minutes to run 1 epoch with our setup, and
this time increased linearly as we tested 2500, 5000, and
10,000 output classes.

6

Figure 4. The validation accuracy for a number of models with
5000 output classes over 1 epoch.

7. Conclusion

The experiments described in this paper illustrate the
potential of the K-Nearest Neighbors based Fast Softmax
Sampling Approximation technique to reduce the compu-
tational complexity of the softmax layer [16]. However,
we also encountered unexpected relationships between the
update frequency of the data structure used to evaluate the
Maximum Inner Product. This same data structure is what
we used to find the top−K classes for an input hidden state
vector to the softmax layer we defined. These K classes
were supplemented with uniformly sampled other classes
to produce a theoretically guaranteed output [16]. We found
that less frequent updates of the MIPS KNN data structure
led to better performance over 1 epoch, but this could eas-
ily be an anomaly in an overall trend should the training
duration be extended. Finally, we see that there is a notice-
able overhead for performing the nearest-neighbors search,
despite the fact that it is performed on a GPU.

Taking this work further could prove very fruitful. Doing
so would allow for longer training durations to see longer-
term trends, and it would allow for the testing of more hy-
per parameters, such as the FAISS specific nlist and nprobe,

which could have significant benefits for the efficiency of
the K-Nearest Neighbors search.

8. Author Contributions
Ifueko Igbinedion and Derek Phillips contributed equally

in the design and implementation of the project framework.
Daniel Lévy, a Ph.D. student in the Ermon Lab (and not
in CS 231N) provided mentorship, taught the other authors
the theory needed to implement this project, and suggested
a FAISS based implementation.

9. Appendix
We include in the appendix the results for the tests we

ran with 500 output classes and a batch size of 150. We do
not include these in the body of our paper because they do
not contribute to the claims we are making, nor do they re-
fute them. They do, however, show the same trends, with
performance increasing for less frequent updates. The leg-
end in the plot for training loss applies to all four figures. It
is noticeable that only 30 iterations were performed. That is
due to the batch size of 150 and the fact that we maintain a
constant number of examples per class, between these runs
and the runs with 5000 output classes.

We originally had an outlier in Table 1, of 12:58, for
testing with Frequency 1 and K = 10. For some reason,
the google VM experienced no CPU activity for overnight
when that test was running. It died at around 1:30 AM,
when we were asleep, but started back up around 11. This
led to imprecision in the time we measured, but taking out
the dead period of the CPU (it was at 0% CPU for utilization
for 8 hours and 20 minutes, more or less), as seem in Fig-
ure 7. Subtracting this dead period gave us a time that was
approximately as expected.

7

Figure 5. Appendix Figure 1: The Loss and Forward Pass Time
for a number of models with 500 output classes over 1 epoch.

References
[1] Cs231n course notes. http://cs231n.github.io/.

Accessed: 2017-06-06. 3
[2] J. Andreas and D. Klein. When and why are log-linear mod-

els self-normalizing? In HLT-NAACL, 2015. 2
[3] Y. Bengio and J.-S. Sencal. Adaptive importance sam-

pling to accelerate training of a neural probabilistic language
model. IEEE Transactions on Neural Networks, 19(4):713–
722, 2008. 2

[4] W. Chen, D. Grangier, and M. Auli. Strategies for train-
ing large vocabulary neural language models. CoRR,
abs/1512.04906, 2015. 2

[5] J. Goodman. Classes for fast maximum entropy training.
CoRR, cs.CL/0108006, 2001. 1, 2

[6] E. Grave, A. Joulin, M. Cissé, D. Grangier, and
H. Jégou. Efficient softmax approximation for gpus. CoRR,
abs/1609.04309, 2016. 2

[7] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using
very large target vocabulary for neural machine translation.
CoRR, abs/1412.2007, 2014. 2

[8] S. Ji, S. V. N. Vishwanathan, N. Satish, M. J. Anderson, and
P. Dubey. Blackout: Speeding up recurrent neural network
language models with very large vocabularies. ICLR 2016,
2015. 2

Figure 6. Appendix Figure 2: The validation accuracy for a num-
ber of models with 500 output classes over 1 epoch.

Figure 7. The Google VM randomly died overnight while we were
asleep.

[9] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity
search with gpus. CoRR, abs/1702.08734, 2017. 3, 5

[10] A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.
Learning visual features from large weakly supervised data.
CoRR, abs/1511.02251, 2015. 1, 3, 4

[11] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, and
Y. Wu. Exploring the limits of language modeling. CoRR,
abs/1602.02410, 2016. 1, 2

8

http://cs231n.github.io/

[12] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient retrieval
of recommendations in a matrix factorization framework. In
Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, CIKM ’12, pages
535–544, New York, NY, USA, 2012. ACM. 2

[13] T. Mikolov, S. Kombrink, L. Burget, J. ernock, and S. Khu-
danpur. Extensions of recurrent neural network language
model. In 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5528–5531,
May 2011. 2

[14] A. Mnih and G. E. Hinton. A scalable hierarchical distributed
language model. Advances in neural information processing
systems, pages 1081–1088, 2009. 2

[15] F. Morin and Y. Bengio. Hierarchical probabilistic neural
network language model. In AISTATS05, pages 246–252,
2005. 2

[16] S. Mussmann, D. Levy, and S. Ermon. Fast amortized infer-
ence and learning in log-linear models with randomly per-
turbed nearest neighbor search. Unpublished. 1, 2, 4, 7

[17] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. Yfcc100m: The new data
in multimedia research. Communications of the ACM, 59(2),
2016. 3

[18] S. Vijayanarasimhan, J. Shlens, R. Monga, and J. Yag-
nik. Deep networks with large output spaces. CoRR,
abs/1412.7479, 2014. 1, 2

[19] G. Zweig and K. Makarychev. Speed regularization and op-
timality in word classing. In 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages
8237–8241, May 2013. 2

9

