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Abstract

We explore a prototypical network for k-shot classifica-
tion on the Omniglot dataset. A prototypical network learns
a Euclidean embeddings of images and uses their cluster-
ing for classification. This approach generalizes to differ-
ent numbers of classes as well as previously unseen classes.
We managed to replicate previous state of the art results
on one-shot, and five-shot 20-way classification. Using a
larger network, we surpassed these results by statistically
significant margin. We also propose a Gaussian prototypi-
cal network which, together with a vector embedding of an
image, learns its covariance matrix, and uses it to construct
a direction and class dependent distance metric on the em-
bedding space. This allows the network to reflect inherent
spread of images within a class. We reach state of the art
results on Omniglot with this approach as well.

1. Introduction
1.1. Few-shot learning

Deep learning has been performing well in settings with
an abundance of data. In general, deep learning models have
a very high functional expressivity and capacity, and rely
on being iteratively trained in a supervised regime on very
large dataset. An influence of a particular example within
the training set is therefore small, as the training is designed
to capture the general behaviour of the data set. [13]

In contrast, a lot of problems requires a very fast adap-
tation to new data. In particular, one-shot, few-shot, and
k-shot classification refer to a regime where classes unseen
during training must be incorporated using a single, a few,
and k examples respectively. In this regime, the effect of
a small number of examples (in one-shot classification of a
single one) must be very large.

Humans are able to learn to recognize new object cate-
gories on a single or a small number of examples. This has
been demonstrated in a wide range of activities from hand-
written character recognition [3], and motor control [2], to

acquisition of high level concepts [10].

1.2. Related work

Non-parametric models, such as k-nearest neighbours
(kNN), are an ideal candidate for a few-shot classification,
as they allow for incorporation of previously unseen classes.
However, using the distance in the space of inputs (e.g. raw
pixel values) directly does not result into a high accuracy,
is the the connection between the semantic meaning of an
image and its pixel values is very non-linear.

A straightforward modification in which a metric em-
bedding is learned and then used for kNN classification has
yielded good results, as demonstrated by [5], [9], and [1].
An approach using matching networks has been proposed
in [14], in effect learning a distance metric between pairs
of images. A noteworthy feature of the method is its train-
ing scheme, where each mini-batch (called an episode) tries
to mimic the data-poor test conditions by subsampling the
number of classes as well as numbers of examples in each.
It has been demonstrated that such an approach improves
performance on few-shot classification. [14]

Instead of learning on the dataset directly, [12] has re-
cently proposed to train an LSTM [7] to predict updates to
a few-shot classifier given an episode as its input. This ap-
proach is referred to as meta-learning.

Combinations of parametric and a non-parametric meth-
ods have been yielding the best few-shot learning results
recently. [15][6][8]

In this paper, we explore a prototypical network that
does not suffer from severe overfitting and according to our
knowledge reaches state of the art performance on the Om-
niglot dataset. [8] By increasing the model size compared
to [8], we are able to exceed their results by a statistically
significant margin.

Furthermore, we propose a modification of a prototyp-
ical network, a Gaussian prototypical network, that learns
how to embed images into a Euclidean space as well as to
generate a covariance matrix for each image, reflecting a
confidence about its value and importance in different di-
rections of the embedding space. We show that a Gaussian
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prototypical network slightly outperforms a vanilla proto-
typical network, and reaches a state of the art k-shot classi-
fication result on Omniglot.

This paper is structured as follows: we describe the pro-
totypical and Gaussian prototypical network in Section 2.
The episodic training scheme is also presented there. We
discuss the Omniglot dataset in 3 and our experiments in 4.
Final, our conclusions are presented in 5.

2. Methods
In this paper, we first explore the prototypical networks

described in [8]. We then continue to present our modifica-
tion to the architecture, which we call a Gaussian prototyp-
ical network. The encoder architecture does not differ apart
from its final layer, and we therefore describe both of them
together. The same applies to the training scheme.

2.1. Encoder

We use a multi-layer convolutional neural network with-
out a fully connected layer to transfer images into high-
dimensional Euclidean vectors. We have been experiment-
ing with fully connected layers, and CNNs followed by a
fully-connected layer as well. The fully-connected layer on
its own does not have a good spatial awareness and there-
fore does not perform well in image recognition. A CNN
followed by a fully-connected layer does not seem to per-
form better than a CNN whose outputs are directly reshaped
into an embedding vector. We therefore primarily used a set
of stacked CNNs as our encoder.

For a vanilla prototypical network, the encoder is a func-
tion taking and image I and transforming it into a vector ~x
as

encoder(W ) : I ∈ RH×W×C → ~x ∈ RD , (1)

where H and W are the height and width of the input im-
age, and C the number of its channels. D is the embedding
dimension of our vector space and it is a hyperparameter
of the model. W are the trainable weights of the encoder.
In our models, the encoder was always made of 4 layers of
CNN.

For a Gaussian prototypical network, the output of the
encoder has a dimension 2D, as it is to be understood as
a concatenation of an embedding vector ~x ∈ RD and the
diagonal of a covariance matrix ~σ ∈ RD. Therefore

encoderGauss(W ) : I ∈ RH×W×C → [~x, ~σ] ∈ R2D . (2)

We used down-sampled gray-scale Omniglot images of
the dimension 28 × 28 × 1 as an input. A 4-layer CNN
architecture with 2×2 max pooling therefore resulted into a
volume of shape 1×1×D, where the embedding dimension
D is equal to the number of filters in the last later. We were
using the TensorFlow SAME padding and stride 1. Our
filters were 3× 3 in spatial extent.

Figure 1. A diagram of a function of a prototypical network. An
encoder maps an image into a vector in the embedding space.
Support images are used to define the centroids of the particular
classes (shown as stars). The distances between these centroids
and encoded query images are used to classify them.

We were using 2 encoder architectures: 1) a small ar-
chitecture, and 2) a big architecture. The small architecture
corresponded to the one used in [8] and we used to vali-
date our own experiments with respect to the state of the
art results. The big architecture was used to see the effect
of increasing the model capacity on accuracy. As a basic
building block, we used a series of a 3 × 3 CNN, batch
normalization, dropout, ReLU, and 2 × 2 max pooling (in
this order). Both architectures were composed of 4 of these
blocks stacked together. The details of the architectures are
as follows:

1) Small architecture: 3 × 3 filters, numbers of fil-
ters [64, 64, 64, 64] ([64, 64, 64, 128] for a Gaussian
model). Embedding vector dimension D = 64.

2) Big architecture: 3 × 3 filters, numbers of filters
[128, 256, 512, 256] ([128, 256, 512, 512] for a Gaus-
sian model). Embedding vector dimension D = 256.

2.2. Episodic training

A key component of the prototypical model is the
episodic training regime. During training, a subset of Nc

classes is chosen from the total number of classes in the
training set without replacement. For each of these classes,
Ns of support examples are chosen at random, as well asNq

of query examples. The encoded embeddings of the support
examples are used to define where a particular class c lies
in the embedding space. The distances between the query
examples and positions of classes determined from the sup-
port points are then used to classify and calculate a loss. A
diagram of the process is shown in Figure 1.

For a Gaussian prototypical network, the diagonal of a
covariance matrix is output together with the embedding
vector. These are then used to weight the embedding vec-
tors corresponding to support points of a particular class, as
well as to calculate a total covariance matrix for the class.
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Figure 2. A diagram showing the embedding space of a Gaussian
prototypical network. An image is mapped to its embedding vector
(dark dot) by the encoder. Its covariance matrix (small ellipses) is
also output by the encoder. An overall covariance matrix for each
class is then computed(large light ellipses), as well as centroids
of the classes. The covariance matrix of a class is used to locally
modify the distance measure to query points (shown in gray).

Distances from class c are then calculated as

dc(i) = (~xi − ~pc)
T 1

Σc
(~xi − ~pc) , (3)

where ~pc is the centroid, or prototype of the class c and Σc

its covariance matrix. The Gaussian prototypical network
is therefore able to learn class, and direction-dependent dis-
tance metric in the embedding space. A diagram of the em-
bedding space for a Gaussian network is shown in Figure 2.
In our case, we set the covariance matrix of an example i to
be

Σi = diag (~σi) , (4)

where (~σi is the second half of the output of the encoder for
a Gaussian network. This is done to make the model faster,
as a full covariance matrix would be D ×D in size. In our
experiments, we also try setting the Σi = sI , where s ∈ R
is just a scalar. Effectively, this means that each point only
carries a sphere of radius s with it.

The training algorithm is described as follows:

1) Choose a subset C of Nc classes from all possible
training classes (without replacement)

2) Choose Ns support examples for each class c ∈ C.

3) Choose Nq query examples for each class c ∈ C.

4) Calculate embedding vectors ~xi of all chosen images
(and their ~σi if using the Gaussian network).

5V) If using a vanilla prototypical network, evaluate dis-
tances of query points to classes as:

a) For each class c, calculate the position of the
class prototype (centroid)

~pc =
1

Ns

∑
i∈c(support)

~xi

b) Calculate the distance between prototype c and
query point i dc(i).

5G) If using a Gaussian prototypical network, evaluate dis-
tances of query points to classes as:

a) For each class c, calculate the position of the
class prototype (centroid)

~pc =

 ∑
i∈c(support)

~xi
σ2
i

 /

 ∑
i∈c(support)

1

σ2
i


b) For each class c, calculate the class covariance

matrix Σc as

Σc =

 ∑
i∈c(support)

1

σ2
i

−1/2

c) Calculate the locally defined distance between
prototype c and query point i

dc(i) = (~xi − ~pc)
T 1

Σc
(~xi − ~pc) .

6) Classify query points based on the closest class as
ŷ(i) = argmincdc(i).

7) Calculate the cross-entropy loss as loss = CE(y, ŷ)
over the query points, where y are the known correct
classes.

2.3. Distance metric

The distance metric used does not change the result of
classification, as long as it is monotonously increasing with
the Euclidean distance. The key difference lies in the ease
of training. We have explored the cosine and L2 norms,
and found that the latter outperforms the former. We also
explored powers of the L2 norm, and found that the norm
itself works the best.

2.4. Gaussian local metric

For the Gaussian prototypical network, the distance be-
tween a query point i and a class c is class dependent, as
well as direction dependent. Intuitively, this allows classes
that would more easily assume a non-spherical shape to do
so, while using their size in the direction in question as a
standard ruler.
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Figure 3. An example of class number augmentation by rotations.
An original character (on the left) is rotated by 90◦, 180◦, and
270◦. Each rotation is then defined as a new class.

2.5. Evaluating models

To estimate the accuracy of a model on the test set, we let
it go through the whole test set multiple times with a num-
ber of support points Ns = k for k ∈ (1, ..19). Then, the
accuracies are aggregated. Since we are not using a desig-
nated validation set, we then take the test results for 3 or 5
(3 for small models, and 5 for big) highest training accura-
cies and calculate their mean and standard deviation of the
mean. By doing that, we prevent overfitting on the test set.

3. Datasets
We were working with the Omniglot dataset in this pa-

per. [11] Omniglot contains 1623 character classes from 50
alphabets (real and fictional) and 20 hand-written exam-
ples of each. We were using the recommended split to 30
training alphabets, and 20 test alphabets, as suggested by
[11] and used by [8]. The training set included overall 964
unique character classes, and the test 659 of them. There
was no class overlap between the training and test datasets.

To extend the number of classes, we augmented the
dataset by rotating each character by 90◦, 180◦, and 270◦,
and defined each rotation to be a new character class on its
own. The same approach is used in [8] and [14]. An exam-
ple of an augmented character is shown in Figure 3. This
increased the number of classes 4-fold. In total, the train-
ing set therefore included 77,120 images, and the test set
52,720 images. Due to our rotational augmentation, char-
acters that have a rotational symmetry will be classified as
multiple classes. As even a human is not able to recognize
the charactor ”O” from a mirror ”O”, 100 % accuracy will
not be reachable.

Each Omniglot character comes as a gray-scale 105 ×
105 × 1 image. We downsample them to 28 × 28 × 1, and
subtract the mean of each image from itself. Omniglot also
provides characters with background value 1.0 and writing
vale 0.0. We invert this to have the character at a higher
value than the background.

4. Experiments
We conducted a large number of experiments with

vanilla as well as Gaussian prototypical networks. In gen-
eral, we explored the size of the encoder (small, and big, as
described in Section 2), the vanilla/Gaussian prototypical

Figure 4. A PCAed two dimensional slice of the embedding space
during training. Clustering of similar characters is apparent in the
project.

method, the distance metrics (cosine,
√
L2, L2, and L2

2, and
the number of degrees of freedom for the covariance matrix
in the Gaussian networks.

We were using Adam as our optimizer with an initial
learning rate of 10−3. We then halved the learning rate each
2000 episodes ≈ 30 epochs. All our models were imple-
mented in TensorFlow and ran on a single NVidia K80
GPU on Google Cloud.

We implemented the prototypical network described in
[8] and managed to reach very comparable results. We
trained with Nc = 60 classes, and tested on Nct = 20, i.e.
20-way classification. During training each class present in
the mini-batch comprisedNs = 1 support point. The results
can be found in Table 1.

A PCAed sample of the embedding space during training
is shown in Figure 4. It illustrates the clustering of similar
characters.

We conducted the same experiments with the large en-
coder architecture described in Section 2. We managed to
outperform [8] on both 1 and 5-shot 20-way classification
by a statistically significant margin. The results are summa-
rized in Table 1.

We them used the Gaussian prototypical network with its
covariance matrix fixed to a single scalar and used a small
encoder. The network outperformed its small vanilla coun-
terparts in 1-shot learning and reached equivalent results for
5-shot.

To study the effect of capacity on the model perfor-
mance, we experimented with the big encoder architecture
for the vanilla model, Gaussian model with covariance fixed
to a scalar, and a Gaussian model with covariance fixed to a
diagonal of the covariance matrix. The results are shown in
Table 1.
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Figure 5. The effect of support size on test accuracy. The plot
shows the test accuracy for k-shot 20-way classification for our
vanilla big model training with support size Ns = 1, and support
sizeNs = 5. The smaller support size improves the accuracy. The
previous state of the art is shown in red.

Figure 6. The effect of model size on loss. The bigger model trains
faster and reaches a smaller loss overall. The yellow vertical lines
show where the learning rate was halved.

The effect of the number of support examples during
training on test accuracy is shown in Figure 5. The Ns = 1
does better on all k. A comparison of training loss as a
function of epoch for a small and a large model is shown in
Figure 6. The training accuracy and its comparison to test
performance for our model is shown in Figure 7. There is a
significant gap between the training and test accuracy which
shows that we having a large enough model.

The performance of our best small and large models is
shown in Figure 8 with respect to the current state of the art
from [8]. The performance of our best big models is com-
pared in Figure 9. The model with a trainable covariance
matrix diagonal performs the best overall, however, the dif-
ferences are not as significant.

The Table 2 compares our best small and big models to
the current state of the art and previous attempts at k-shot
learning.

Figure 7. The training accuracy as compared to the test accuracy.
The plot shows the training accuracy of a large Gaussian prototypi-
cal model and compares it to its 1-shot and 5-shot test performance
(20-way classification). It also compares the results to the current
state of the art. [8]

Figure 8. Comparsion of k-shot test accuracy of our best big and
small models.

Figure 9. The performance of different versions of the big encoder
model and their uncertainties. The Gaussian model with a train-
able covariance matrix diagonal performs the best overall, how-
ever, the differences are not very significant.

5. Conclusion

In this paper we investigated the usage of prototypical
networks for few-shot classification on Omniglot. We also
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Method (20-way classification) 1-shot test 5-shot test
Best results from [8] 96.0 % 98.9 %
Small, Ns = 5 94.28± 0.26 % 98.61± 0.08 %
Small, Ns = 1 95.64± 0.22 % 98.87± 0.05 %
Small Gauss σ ∈ R1, Ns = 1 95.99± 0.28 % 98.81± 0.07 %
Big, Ns = 5 95.36± 0.16 % 99.01± 0.04 %
Big, Ns = 1 96.77± 0.10 % 99.08± 0.05 %
Big Gauss σ ∈ R256, Ns = 1 96.76± 0.10 % 99.07± 0.06 %
Big Gauss σ ∈ R1, Ns = 1 96.78± 0.09 % 99.09± 0.06 %

Table 1. Results of our experiments. State of the art for 20-way classification 1-shot was 96.0% and for 5-shot 98.9%. Small means the
small encoder architecture, big is the big encoder archicture. Ns is the number of support points per class during training. All training
done in Nc = 60 (60-way classification) regime. For the Gaussian prototypical model σ ∈ S shows the dimensionality of the estimated
covariance matrix.

Method (20-way classification) 1-shot test 5-shot test
Matching networks [14] 93.8 % 98.5 %
Matching networks [14] 93.5 % 98.7 %
Neural statistician [4] 93.2 % 98.1 %
Prototypical network [8] 96.0 % 98.9 %
Small Gauss R1, Ns = 1 96.0± 0.3 % 98.8± 0.1 %
Big Gauss R1, Ns = 1 96.8 ± 0.1 % 99.1 ± 0.1 %

Table 2. The best results of our experiments. Ns is the number of support points per class during training. All training done in Nc = 60
(60-way classification) regime. For the Gaussian prototypical model σ ∈ S shows the dimensionality of the estimated covariance matrix.
We manage to outperform previous work with our large network, and perform similarly to the previous state of the art with our small
network.

proposed an improved version of a prototypical network
which we call a Gaussian prototypical network. The pro-
totypical networks proved to be very useful for k-shot clas-
sification and we managed to replicated state of the art re-
sults on Omniglot with them. [8] By increasing the model
size, we outperformed the results by a statistically signifi-
cant margin. The Gaussian prototypical networks typically
performed better then the vanilla networks, although with
a smaller margin. Contrary to [8], we found that the best
results are obtained if one trains the network in the 1-shot
regime.
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