
Improving Generalization of Feed-Forward Classifiers with Malicious Dropout

Jack Maris
Stanford University
jmaris@stanford.edu

Iskandar Pashayev
Stanford University

pashayev@stanford.edu

Abstract

Dropout is a technique proposed by Hinton et al. to
improve the generalization capability of neural network
models by randomly dropping out neurons at some hid-
den layer during training. We propose an alteration to the
dropout technique – which we call Malicious Dropout – to
improve generalization without adding too much computa-
tional overhead. Instead of randomly dropping out neurons,
we drop out the neurons that may be useful to correct classi-
fication. The MalDrop computation increases training time
approximately by a factor of two. Initial results are incon-
clusive.

1. Introduction
A network which successfully classifies many images of

a particular category may have poorly learned notable fea-
tures characteristic of that category. For example, consider
a network that classifies most dogs by the curvature and lo-
cation of their tails. The network would possess scant infor-
mation about canine snouts, paws, body postures, etc. This
then leads to generalization issues. In our example, front-
facing images where the tail is occluded may be misclassi-
fied. The network failed to learn a fundamental feature of
the category.

Simple measures like Dropout and L2 normalization can
promote ”backup” associations. Dropout is especially ap-
pealing because it encourages the network to be robust to
prominent missing features. When humans see a picture
of a dog whose tail has been digitally edited out, they still
recognize that the picture is of a dog; dropout encourages
networks to do the same. We propose a modification to the
Dropout algorithm that specifically drops neurons which are
valuable to correct classifications. That is, if on some trial
a dog-tail neuron HMal

dogtail being 0 would most significantly
increase Li (say, Wdogtail, dog is high and all HMal

6= dogtailare
all near 0), we set it to 0. The motivation is that by specif-
ically setting the most prominent features to 0, we can en-
courage the network to learn other features as well. This
may improve generalization and better capture important

characteristic features of each class.

2. Problem Statement

We implement a measure we call Malicious Dropout to-
wards the task of classifying images, e.g. in ImageNet. In
our conception it serves as a drop-in replacement for a stan-
dard dropout layer in the penultimate hidden layer of a con-
volutional neural network. The goal is to formulate a layer
which leads to better generalization than standard Dropout,
perhaps in fewer epochs, without incurring dramatic com-
putational overhead.

3. Literature Review

Dropout [5]1 is a technique which prevents overfitting
in deep neural networks by randomly (uniformly) dropping
neurons, thereby ”sampling” thinned networks from an ex-
ponential number of networks at training time [8]. While
the uniformity of this drop probability makes sense from a
regularizing perspective, it is not quite clear if it results in
the optimal possible performance at test time. We found
no papers studying the idea of modifying Dropout to tar-
get useful features. But significant work has been done on
improving Dropout generally.

Nested dropout [6] is a modified dropout technique for
data with ordered dimensions. The technique assigns a prior
distribution – usually a geometric distribution – over the in-
dexes of representation units, samples a random index b,
and drops all of the units that have an index greater than
b. However this technique is more effective with unsuper-
vised learning methods and is not effective compared to the
current supervised deep learning models.

Dropconnect [11] randomly drops weights rather than
neurons. It is simple, performant, and has results compa-
rable to Vanilla Dropout’s. An aside: a Malicious version
of Dropconnect would drop weights which are seen as im-
portant (by some metric) on a given trial. It would be an
interesting topic for further research.

1Hereafter we will refer to it as vanilla Dropout to avoid confusion with
Malicious Dropout.

1



4. Method and Implementation

4.1. Malicious Dropout layer

The MalDrop layer HMal takes in D neurons and out-
puts D neurons. ρ neurons are set to 0. We would like to
determine exactly the set of neurons which maximize loss,
but with high ρ this would be intractable, requiring (Dρ ) for-
ward passes from the MalDrop layer to the end. So we need
an efficient approximate heuristic. It would be useful to
have a heuristic value we could quickly assign each neu-
ron HMal

j because once all are computed, we could select
the top ρ neurons in O(D log(ρ)) time [1]. And we would
compute the network’s loss D times: once given that each
neuron independently has been set to 0 (call it Lj→0). The
neurons with the highest Lj→0 scores would be the ones to
set to 0. But this assumes that the impact that setting HMal

j

to 0 has on the loss depends little on how many other neu-
rons had been set to 0 (and it also requires us to compute L
exactly D times, which is intractable if the layer is early in
the network). This is a problem.

Say we have a layer Hi, where two neurons Hi
a and Hi

b

both have high (positively) weighted connections with one
neuron in the next layer Hi+1

z (and scantly weighted con-
nections with the others). Also, Hi

a >> 0, Hi
b << 0. And,

the layer after that is a ReLU. If we set only Hi
a to 0 then

Hi+1
z is negative and ReLU’d to 0. If we set only Hi

b to 0
then Hi+1

z is a high positive value (and remains that way af-
ter the ReLU). But if we set both to 0, the result is close to 0.
The gist is that neural networks encode complex non-linear
relationships, so in most situations taking the top ρ neurons
by Lj→0 is a poor heuristic.

But some layers can represent relationships we can work
with. An obvious case is the last layer, which in our case is
then softmax’ed out to determine final scores. To maximize
loss, we can set HFinal

yi to 0 if its score is greater than 0,
and set those neurons HFinal

6=yi which have scores less than
0 to 0. But this case is not useful because then the network
would not learn much: we could set HFinal

yi as high as we
would like, and the best we would be able to do would be to
have it at parity with ρ− 1 other categories.

Instead we can implement MalDrop in a penultimate
layer which is followed by an Fully-Connected layer, which
is softmax’ed. And our heuristic (which I reiterate is ap-
proximate) is thus (with the hyperparameter ω): for each
neuron HMal

j , compute

Vj = HMal
j Wj,yi − ωHMal

j

∑
k

(Wj,k 6=yi)

This is whatHMal
j ”contributes” to the last layer’s right cat-

egory minus the sum of whatHMal
j ”contributes” to the last

layer’s wrong categories (weighted by ω, usually less than

12.). Because exj∑
j′ e

x
j′ is monotonically increasing with re-

spect to xj , we at least know exactly whether any neuron
in HMal will increase or decrease some category c’s pre-
softmax value. There is no guarantee that the order of ”con-
tribution” corresponds to the best-possible combination of
ρ neurons to set to 0. That is, a category c 6= yi with a low
score should be unimportant, while one with a score near
yi should be important. It is an empirical question whether
this ends up mattering. But the simple weighted sum is effi-
cient enough, and the heuristic does not have to be perfect.
We run tests on 2 networks later to determine how well this
heuristic works.

4.2. Test Scaling

During training we track how frequently a neuron is
let through. For neuron HMal

j , call it pPassj . In normal
Dropout by the Law of Large Numbers lim

i→∞
pPassj = p. In

MalDrop we have no such guarantee. The computation of
each pPassj is not computationally expensive, however.

At validation and test time we do dropping, only multi-
plying each neuron by its pPassj , the expected probability
of passing during training. And this is similar to Vanilla
Dropout’s scaling by p.

4.3. Network Architectures

We begin with a simple network architecture as a proof-
of-concept, where we can compare no-Dropout, Vanilla
Dropout, and Malicious Dropout for efficiency and perfor-
mance with reasonable ρ. Our first network has this struc-
ture:

• A convolutional layer with depth=10, a kernel that is
3x3, padding=1, and stride=1,

• A ReLU,

• A spatial batchnorm layer,

• Another convolutional layer, with depth=1, a kernel
that is 3x3, padding=1, and stride=1,

• Another ReLU,

• One of No Dropout, Vanilla Dropout, or MalDrop.

• An affine layer.

This network is easy to work with, but powerful enough
to give us ≈ 0.55% Top-1 accuracy on CIFAR-10 with
Vanilla Dropout and some ρ-schedules of MalDrop.

We wanted to compare performance with a conventional
network too. We searched for a well-studied network whose
last two layers were Dropout and then Fully-Connected.

2To balance the positive and negative components, consider setting
ω = 1

D−1

2



Figure 1. left: A normal affine layer. right: An affine layer after MalDrop has been applied, with ρ = 1. Grey weights correspond to
weights near 0, red to significantly negative, green to significantly positive.

VGG[7] fit the bill (we specifically used PyTorch’s VGG-
16 from torchvision.models).

Both networks use cross-entropy loss, and the optimiza-
tion function is Stochastic Gradient Descent. We did little
hyperparameter tuning: our task is theoretical so we focus
on comparing relative performance, not squeezing out opti-
mal performance. And while we did explore different set-
tings of ρ, we did not do so with ω.

4.4. ρ Scheduling

We describe five different ways of setting the hyperpa-
rameter ρ for a MalDrop layer.

Standard. The user passes a constant ρ value, and for
each iteration we drop the top ρ neurons contributing the
lowest loss in the penultimate layer.

Randomized. For each batch, we sample a random ρ.
Then as in the standard scheduling, we drop the top ρ
neurons contributing the lowest loss in the penultimate
layer. The distribution from which ρ is sampled is the
hyperparameter in this case. However, we expect the
Uniform distribution to be the best performer in this case.
As such, we sample ρ ∼ Uniform(0, L), where L is the
number of neurons in the MalDrop layers. Other choices of
distribution are left as a future exercise.

Forward Annealing. The number of neurons dropped
for each batch increases with each successive epoch. In this
case, the user passes in an initial value of ρ from which we
compute the number ρi of neurons to drop, where i is the
current epoch. We use a logistic function bounded by 0 and
L to have an increasing sequence of ρi, where as before
L is the number of neurons in the MalDrop layer. More
specifically, ρi is determined by the logistic function

ρi =
L

1 + e−(ρ+i)
. (1)

Reverse Annealing. This form of scheduling is similar to
forward annealing, but instead of monotonically increasing
the number of neurons dropped, we monotonically decrease
it. To achieve this, given a user-supplied ρ, we determine
the number ρi of neurons to drop during epoch i as

ρi = L ·
(
1− 1

1 + e−(ρ+i)

)
. (2)

Note, that we also could have retained the formula for
Forward Annealing and simply subtracted i from ρ instead
of adding it. However, we decided against this because
when i = 0, both forward and reverse annealing then
begin with the same number of neurons dropped. In such a
case, unless ρ0 = L

2 , the rate of change of ρi for forward
annealing would be different from reverse annealing, and
we wished to preserve the symmetry of these rates of
change.

Periodic. The MalDrop layer is only active every tperiod
batches (tperiod being a hyperparameter). The idea behind
this is that MalDrop may be most useful as a counterweight
against a normal network. Our early recommendation
is tperiod = 5: rare enough that the network learns, but
frequent enough that less dominant features are allowed to
be learned.

4.4.1 Datasets and Features

We intend to focus on classifying the ImageNet dataset us-
ing convolutional neural networks. Here, vanilla dropout
has proven effective [8]. Other architectures seem poorly
suited for dropout, e.g. recurrent neural networks [12].
For our preliminary results we use the MNIST and CI-
FAR10 datasets to compare the effectiveness of networks
with vanilla dropout to network with malicious dropout. For
a more detailed evaluation of the effectiveness of the Mal-
Drop technique, we use the Tiny ImageNet Dataset.

3



5. Results
The code that the following results are based on is hosted

at git.io/maldrop. These results are based on an im-
plementation within the PyTorch[4] and NumPy[3] frame-
works. The code references example projects on Justin
Johnson’s Github profile[2] and PyTorch’s Github profile.
These experiments were performed on a Google Cloud
Compute Engine VM instance of Ubuntu 16.04 LTS, run
with one GPU accelerated by an NVIDIA Tesla K80.

5.1. MNIST

We test our model on the MNIST handwritten digits
dataset as a preliminary evaluation of our model. The fol-
lowing table provides a comparison of the loss after 10
epochs and the validation accuracies at the specified epochs
for the aforementioned basic CNN, with different choices
of dropout applied to the penultimate layer.

Dropout Loss Epoch 1 Epoch 5 Epoch 10
None 0.099 91.63% 97.31% 97.91%
Vanilla 0.072 91.57% 96.95% 97.81%
Malicious 0.082 91.04% 94.83% 97.46%

As we see, the architecture with MalDrop (ρ = 256, out
of a layer with 4,096 neurons) learns slower than the other
architectures. This is as expected since the network actively
drops the features that would help it classify correctly with
the most ease. However, by the end of the full 10 epochs,
MalDrop’s performance is on par with that of the other two
networks. Given the simplicity of the dataset, we cannot
draw any conclusions about the generalization capability of
the MalDrop architecture. However, the architecture is still
able to learn more specialized and simpler datasets like the
handwritten digits of MNIST.

5.1.1 Time-Space Tradeoff.

We do notice a significant slowdown in the time it takes
for the network to learn with Malicious Dropout as opposed
to the other two choices of dropout. However, the extra
time it takes for the computation can be mitigated by us-
ing extra space. More specifically, we can use more space
and perform parallelized computations when calculating the
contribution of each neuron to the final loss. However, this
is a huge problem when training more complex networks
on larger datasets, since the space required to parallelize
these computations outscales memory on modern comput-
ing hardware.

As a baseline, the architecture with Vanilla Dropout runs
in 79 seconds and the architecture with no dropout runs in
77 seconds. By using more memory, the MalDrop layer
runs in 184 seconds. Even though the time taken to train
doubles, the computational overhead is still manageable.
Without using space to improve the computation time, we

expect the network with the MalDrop layer to take approxi-
mately 28,125 seconds, or almost eight hours for 10 epochs.
This computational overhead is significantly more ineffi-
cient and impractical compared to the architectures with
vanilla dropout and without dropout.

5.2. CIFAR10

We use the same architecture to evaluate MalDrop on
CIFAR10 as we did for MNIST. After ten epochs, the
No Dropout architecture yielded a validation accuracy of
52.5%, taking approximately 96 seconds to train, and the
Vanilla Dropout architecture yielded an accuracy of 54.4%,
taking approximately 97 seconds to train. The performance
after ten epochs of the MalDrop architecture is similar to
the performance of the Vanilla Dropout architecture; the
MalDrop architecture fluctuates around 54.5%, when set-
ting ρ carefully. Our MalDrop architecture utilizes the
Time-Space tradeoff optimization that we also utilized for
MNIST. As a result, training the MalDrop architecture for
10 epochs takes about 180-190 seconds. This increase is
slightly relatively larger than the one for MNIST, but still a
manageable computational overhead. Data for the MalDrop
architecture is given in the figure in Section 5.2.1.

5.2.1 ρ Scheduling

We also used the CIFAR10 dataset to compare the perfor-
mance of MalDrop under different schedules of ρ. The
following figure illustrates the performance of the MalDrop
architecture for different settings of rho under the Standard,
Forward Annealing, and Reverse Annealing modes. We
also show the performance under the Randomized mode,
where ρ is sampled from a Uniform distribution bounded
by 0 and 4,096, which is the number of neurons input into
the final affine layer. We note that in this case, setting ρ
for randomized mode does not have an impact. Rather, the
choices of ρ under randomized shown in the figure serve
as trials for which we sample a random ρ and measure the
performance. This further helps us to visualize the variance
that the MalDrop layer induces onto the network through
its setting of ρ.

4



As we can see, the schedule of ρ does not induce much
variation on the final loss. This is because as we see from
the Standard mode, and indirectly from the Randomized
mode, ρ itself does not affect the final accuracy by much.
Even though the Reverse Annealing mode seems like it per-
forms worse than the other three modes, this could be at-
tributable to its definition. It is still unclear if equations (1)
and (2) are optimal methods for annealing ρ. In particular,
from superfluous checks it seems that the updating mech-
anism with which to ”trace” ρi along the logistic function
(i.e. adding the epoch number to the base ρ) is inadequate
for annealing ρi.

5.3. Tiny ImageNet

We chose VGG16-Net to test MalDrop’s generalization
on a more complex dataset, since it had a Dropout layer as
its penultimate layer. Furthermore, when we ran our sim-
plified network with two convolutional layers, the network
was unable to learn any meaningful results, regardless of
the No Dropout, Vanilla Dropout, and Malicious Dropout
options. We tested the performance of VGG16-Net with its
standard dropout layer, its dropout layer missing, and with
a MalDrop layer. All three networks had a learning rate of
10−3. The network with the MalDrop layer trained for 4
epochs, whereas the other two trained for 5 epochs. We dis-
cuss the number of epochs in Section 5.3.2. Figures 2, 3,
and 4 summarize the performance of the models.

We observe that the performance of VGG16-Net with
the MalDrop layer fails to learn at all. The loss is rela-
tively constant, which suggests that perhaps the network
parameters are not updated in a meaningful way. Even
though the loss for the architectures with vanilla dropout
and without dropout have increasing losses, their accura-
cies are nonetheless higher than that of the MalDrop archi-
tecture, the top-1 accuracy of which remains constant at 0.
The increase in the top-5 accuracy of the MalDrop architec-
ture after the fourth epoch is interesting to note, but could
still be an aberration.

Figure 2. Validation losses after each epoch for VGG16-Nets with
different settings of dropout.

Figure 3. Top-1 accuracies after each epoch for VGG16-Nets with
different settings of dropout.

5.3.1 Discussion

Overall, it appears that the VGG-16 MalDrop Network
failed to begin learning. This could be a result of dropping
the most important neurons during the start of training, pre-
venting the network from learning. We have already seen
in MNIST results, that even though MalDrop is as effec-
tive as regular dropout after 10 epochs, it converged slower
than the VanillaDrop and NoDrop networks. Since Mal-
Drop networks effectively ignore the most obvious features,
they have to work more to ”catch up” during training. The
complexity of the ImageNet dataset increases the difficulty
with which a MalDrop architecture has to learn many dif-
ferent features. Furthermore, the low number of epochs for
which the MalDrop network trained is most likely insuffi-
cient time for the MalDrop to begin learning. Training the
network for more epochs could show a MalDrop network to
begin learning.

5



Figure 4. Top-5 accuracies after each epoch for VGG16-Nets with
different settings of dropout.

Another note to mention is that we found it surprising
that the loss through 5 epochs was increasing, at least for
the VGG16 networks with VanillaDrop and NoDrop. As a
result, we reran the tests with the learning rate set to 10−1.
However, while testing with a higher learning rate resulted
in improved performance (and decreasing loss) for the net-
works without MalDrop, the performance decreased for the
MalDrop network. Indeed, both sets of top-1 and top-5 ac-
curacies for the MalDrop network were 0 throughout the
first four epochs.

5.3.2 Running Time

To compute the scores of one batch of size 320 and back-
propagate gradients, the VGG16 NoDrop and VanillaDrop
networks take approximately 15 seconds, whereas the Mal-
Drop network takes 31 seconds. This is consistent with
the compute time ratios seen for the MNIST and CIFAR10
datasets. Consequently, to train 5 epochs of 100,000 exam-
ples requires the MalDrop network to take approximately
12-13 hours, or double the 6-7 hours it takes to train the
VGG16 networks with and without the penultimate vanilla
dropout layer. Due to time constraints and the lengthy
amount of time taken to train a MalDrop network, we
trained the MalDrop network for four epochs. As such,
while there is still a possibility that MalDrop may help net-
works generalize better, the added computational difficulty
makes it impractical for networks to efficiently learn how to
classify complex visual data.

6. Conclusion and Proposed Future Work
We have established the theoretical basis behind our

MalDrop layer. Still the data is insufficient to conclude
that MalDrop is useful in any practical domain. We con-
tend that it may be useful with the right settings: ρ sched-

ule, ρ0 setting, ω setting3, and network architecture. At the
very least our proposed trade-off between efficiency and ac-
curacy is not a computational bottleneck. And because our
layer is efficient future work should focus on establishing
useful settings. An immediate example here would be a
smoother way of annealing ρi along the logistic function,
as suggested in Section 5.2.1.

Other work should consider how useful it would be to
calculate the exact best neurons to drop (i.e. those that con-
junctively maximizeL) exactly rather than using our heuris-
tic. It would be comically expensive to compute each com-
bination: VGG16-Mal has 4,096 neurons. If ρ = 10, this
comes out to (409610 ) = 3.62 × 1029 loss computations. But
on a small network with a small ρ, we would expect the
computation to be tractable. To us it remains to be seen that
exactly honing in on the right features will lead to much bet-
ter performance on the training set or generalization. And
even if the exact results are impressive, they are impossible
to use on a normally-sized network. A MalDrop layer, for
its flaws, manages to specifically target some important neu-
rons while being only slightly slower than a vanilla-Dropout
network.

Spatial dropout drops channels (vectors) rather than indi-
vidual neurons [10]. It is worth studying Spatial Malicious
Dropout. That is, dropping ρ channels instead of ρ neurons.
It requires an architecture where the penultimate layer is not
one-dimensional, but would otherwise be straightforward:
compute Lj→0for each channel rather than each neuron.

Malicious Dropout could be applied at any level before
one which take loss. Thus networks which propagate loss
as multiple levels like GoogLeNet [9] would yield interest-
ing results. However this would require the calculation to
effectively ignore the loss coming from distant layers when
determining which ρ neurons to drop.

MalDrop can be combined with Vanilla Dropout. This
can be conceptualized as either one layer or a dual-part
layer: a neuron is culled with some probability p, and then
the remaining neurons are Maldropped4. Or, visa-versa. Fu-
ture work could examine this.

References
[1] Finding the top k items in a list efficiently. http://

stevehanov.ca/blog/index.php?id=122. Ac-
cessed: 2017-06-11.

[2] Justin johnson github profile. https://github.com/
jcjohnson/. Accessed: 2017-06-12.

[3] Numpy github profile. https://github.com/
numpy/. Accessed: 2017-06-12.

3Recall ω balances how much of a neuron’s score comes from yi versus
y 6=i. We recommend values orders of magnitude below 1, and experiment-
ing.

4Though these conceptions are not strictly identical: it is possible for a
neuron which equals 0 to be set to 0 in Maldrop.

6

http://stevehanov.ca/blog/index.php?id=122
http://stevehanov.ca/blog/index.php?id=122
https://github.com/jcjohnson/
https://github.com/jcjohnson/
https://github.com/numpy/
https://github.com/numpy/


[4] Pytorch github profile. https://github.com/
pytorch/. Accessed: 2017-06-12.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov. Improving neural networks by pre-
venting co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[6] O. Rippel, M. Gelbart, and R. Adams. Learning ordered rep-
resentations with nested dropout. In International Confer-
ence on Machine Learning, pages 1746–1754, 2014.

[7] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[8] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[10] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bre-
gler. Efficient object localization using convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 648–656, 2015.

[11] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Reg-
ularization of neural networks using dropconnect. In Pro-
ceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1058–1066, 2013.

[12] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural
network regularization. CoRR, abs/1409.2329, 2014.

7

https://github.com/pytorch/
https://github.com/pytorch/

