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Abstract 
 

Super-resolution is the process of     
increasing the resolution and quality of an       
image. Recently, deep-learning based    
super-resolution methods have been shown     
to outperform basic interpolation methods in      
terms of aesthetic value to humans and       
pixel signal to noise ratio. We investigate       
whether super-resolution can also be used      
to enhance the discriminative features of      
imagery, such that the transformed imagery      
is more amenable to classification. We test       
two methods for super-resolution, training     
them on a variety of different datasets, and        
then use super-resolution as a     
pre-processing step to classification training     
on multiple datasets. We show that      
super-resolution does not necessarily    
increase classification accuracy, and thus     
does make the classes any more separable       
to a convolutional neural-net classifier.  
 
1. Introduction 
 

The image classification problem    
has drawn significant attention in recent      
years, as part of a concerted effort to        
minimize error and reach or exceed      
human-like accuracy. Although other    
approaches for high accuracy image     
classification exist, convolutional neural    
networks are currently state-of-the-art for     
this task [3]. Since these convolutional      

neural network methods are well-developed,     
this enables us to focus on more complex        
image processing problems, such as those      
present when analyzing low-resolution    
images. 

Although using high quality images     
for image analysis would be ideal, this is not         
always possible in practice e.g., attempting      
to identify relatively small objects in satellite       
imagery. In these cases, performing     
transformations to increase image quality     
may prove useful in the attempt to identify        
and classify less salient objects in the       
imagery. Some examples of    
quality-enhancing image transformations   
include denoising, colorization, and    
super-resolution. 

Since efficient image classification    
methods have already been developed, our      
main goal is to apply different      
super-resolution (SR) methods as a     
pre-processing step when attempting to     
train and test an image classifier. Further,       
we conduct experiments to compare image      
super-resolution methods to see which yield      
better results. 

According to [1], either per-pixel loss      
or perceptual loss functions can be used to        
perform super-resolution. When training a     
super-resolution network with a per-pixel     
loss function, the goal is to minimize the        
per-pixel difference between the output and      
the ground truth image. When using the       
perceptual loss function, high-resolution    
images are generated by minimizing the      
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differences between high-level image    
features of the output and ground truth,       
which are extracted from a pre-trained      
convolutional neural network.  

Although both methods have    
potential pitfalls, we hypothesize that using      
super-resolution as a pre-processing phase     
will help yield higher classification accuracy      
for a network being tested with relatively low        
quality images. 
 
2. Related Work 
 

Image super-resolution methods   
attempt to recover a high-resolution image      
from one or more low-resolution input      
images [5]. Super-resolution methods can     
be classified in two main families:      
Multi-image Super Resolution methods, and     
Single Image Super Resolution methods     
(SISR). Multi-image Super Resolution    
methods attempt to use several     
low-resolution images of the same scene to       
determine new details in the high-resolution      
image, where each image imposes a set of        
linear constraints on the unknown     
high-resolution intensity values [11, 18].     
However, these methods are not always      
practical, since multiple images of the same       
scene aren't always available. In addition,      
these methods tend to be limited to small        
increases in resolution.  

Figure 1: (a) Illustrates how Multi-Image SR       
generally works, (b) Illustrates how Single Image       
SR generally works. Image from [5]. 

Single Image Super Resolution, on     
the other hand, attempts to generate a       
high-resolution image from a single     
low-resolution image [20]. Single Image     
super resolution methods, in turn, can also       
be divided into the following subcategories: 
 
2.1 Interpolation Based  SR 
 

Interpolation based approaches   
attempt to interpolate the high-resolution     
image from the low-resolution input and are       
based on sampling theory. Such     
approaches tend to not be very effective,       
since they blur high-frequency details and      
have noticeable aliasing artifacts along     
edges [6]. Bicubic Image Interpolation is an       
example of this kind of SR methods, and is         
used throughout all of our experiments as a        
base comparison when upscaling images,     
since it's fairly common in photo editing       
software and even printer drivers. 
 
2.2 Reconstruction/Edge Based SR 
 

Reconstruction based methods   
produce high-resolution images by    
enforcing prior knowledge on the     
upsampled image, such as the assumption      
that edges are smooth along their contours.       
The appearance of the upsampled images      
also has to be consistent with the       
low-resolution version using back-projection    
[6]. The performance of such approaches      
depends on the prior used and its       
compatibility with the given image.     
According to [7], the use of smooth contour        
priors help to reconstruct the unknown      
pixels by interpolating along the contours of       
strong spatial edges. This leads to      
reconstructed edges that are both sharp      
and smooth along their contours [13]. An       
example of this is proposed by [7], where        
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the proposed "Fast Edge-directed SISR"     
method uses an edge-directed interpolation     
operator as its main component, improving      
speed and stability, but it is limited to just a          
2x scaling factor. 
 
2.3 Statistical/Learning Based SR 
 

Learning based methods estimate    
high-resolution details from a large training      
set of high-resolution images that encode      
the relationship between high and     
low-resolution images [6]. These methods     
are effective in generating missing details in       
high-resolution images based on similarities     
between the low-resolution image and the      
high-resolution training set. However, the     
effectiveness of such methods are also      
limited by the similarities between the      
training dataset and the test images. As       
discussed in [6], the author attempts to       
tackle super-resolution by combining both     
edge based and learning based techniques      
to produce suitable results, though the      
results are highly dependent on the      
gathered training data set, and tend to be        
computationally expensive [21]. 

While many deep-learning-based   
methods also exist for generating     
higher-resolution images from lower    
resolution inputs [4, 16, 17], these methods       
can produce significantly different results;     
as stated by [1, 20], super-resolution is       
inherently ill posed, meaning that for a       
single low-resolution image, multiple    
high-res images could be considered a valid       
upscaling. This is especially apparent in the       
recent work by Dahl et al [8]​, ​which extends         
the PixelCNN network architecture [15] and      
uses extremely low-resolution (8x8) face     
images to produce realistic pictures of faces       
that often look nothing like the ground truth.        
Other methods like LAPGAN [9] also use       

low-resolution/frequency seeds to generate    
realistic using images by feeding the input       
through a series of Generative Adverserial      
Networks [10]. 

While PixelCNN and LAPGAN use     
ultra low-resolution, almost   
incomprehensible images inputs (random    
noise, in the case of LAPGAN), to create        
higher resolution realistic images, we - like       
Johnson et al [1] and Shi et al [2] - wish to            
limit our input domain to ​comprehensible       
low-resolution images, where it is still      
possible to deduce the content of the image.        
We are thus interested in the class of        
methods whose inputs should have a      
reasonable resolution and classification    
accuracy to begin with. Other     
super-resolution methods include SRCNN    
[4]​, a three layer convolutional network that       
minimizes PSNR, and SRGAN ​[14]​, which      
like LAPGAN, uses Generative Adversarial     
Networks to generate the images.  

The perceptual loss network we use      
for super-resolution can also perform style      
transfer, producing results similar to that of       
the Gatys et al Neural Style algorithm but in         
real-time [19].  

As will be discussed throughout this      
paper, our approach falls under learning      
based SR, which uses features learned      
from convolutional neural networks to     
perform upsampling. 
 
3. Methods 
 

The goal of the project is to       
determine whether super-resolution can be     
used as a pre-processing step to improve       
image classification accuracy. Experiments    
are carried out using general image      
classification datasets, like CIFAR-10 and     
STL-10, as well as domain specific datasets       
like Food-101.  

3 



 

Thus, our framework consists of a      
two-stage process: the first stage consists      
of a super-resolution network that upscales      
each image in a dataset by x3 or x4, where          
the inputs are of size 32x32. When using        
the Johnson et al method, histogram      
matching is also used as a post processing        
step to make the colors match that of the         
inputs. This is necessary because     
differences in final pixel values are not used        
in perceptual loss functions. The specific      
architecture of the Johnson et al network is        
shown in figure 4, and details of the Shi         
architecture are shown in figure 3.  

The second stage is the     
classification network, which is composed     
of a standard VGG net with a few layers         
added simply to account for the larger       
image sizes (128x128 of 96x96 as opposed       
to 32x32). A 16-layer VGG network was       
used for classifying the original 32x32 data,       
and a network with 4 additional layers (three        
basic blocks and one 3x3 stride 3 max pool)         
was built from that to fit the 96x96        
upsampled data. To classify the 128x128      
images, we used 8 additional layers on top        
of the VGG-16 (three basic blocks and one        
2x2 stride 2 max pool, twice).  

 
Figure 2: System overview of Johnson's et al [1]         
implementation of a perceptual loss network.      
The super-resolution network does not use the       
style-layers (used for style transfer), only the       
content relu3_3 layer. Images from [1]. 
 

 

Figure 3: Shi et al [2] efficient sub-pixel        
convolutional neural network (ESPCN), with two      
convolution layers for feature maps extraction,      
and a sub-pixel convolution layer that      
aggregates feature maps from LR space and       
builds SR image in a single step. Image from [2]. 
 

 
Figure 4: ​Left: architecture overview of the       
Johnson et al [1] super-resolution network.      
Right: sub-architecture of the residual block      
layer mentioned in the left. Images from [1]. 
 
 
4. Experiments 
 

A variety of super-resolution and     
classification experiments were conducted    
involving both general and domain specific      
datasets. In the following sections, we      
discuss what was done in detail, including       
the results obtained using super-resolution     
CNNs implementing both pixel loss and      
perceptual loss functions. 

 
4.1 External Code 

 
Our perceptual loss super-resolution    

network was based on a fast style transfer        
network from the implementation in [22]. We       
added the functionality necessary to     
perform super-resolution, with the exception     
of the histogram matching post-processing     
script, which we adapted from [23].  

The pixel loss based    
super-resolution implementation was based    
on [24]. Finally, the VGG classifier code was        
adapted from [25]. 
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4.2 Datasets 
 

● CIFAR-10: Consists of 60,000 32x32     
images with 10 basic classes (airplane,      
bird, car, cat, deer, dog, horse, frog, ship,        
truck​), and 6,000 images per class. The       
dataset is divided into 50,000 training      
images and 10,000 test images. This      
dataset was used both with and without       
pre-processing, in order to test the effects       
of super-resolution on classification    
performance. 

● STL-10: Has 500 training images and 800       
test images, with 10 classes (airplane, ​bird,       
car, cat, deer, dog, horse, monkey, ship,       
truck​). This dataset also contains 100,000      
unlabeled images, useful for unsupervised     
learning. All images are of size 96x96. 

● IMAGENET: Contains around 15 million     
labeled high-resolution images with    
approximately 22,000 categories. Both the     
image distribution per category, as well as       
the image size varies. Images are split       
about 50/50 between train and test sets. 

● Microsoft COCO 2014: Contains ~80,000     
labeled high-resolution training images with     
80 categories. Image resolution varies per      
image, and image distribution is ~80,000      
for train set, ~40,000 for validation set, and        
~40,000 for test set (based on MS COCO        
paper revised in 2014). 

● Food-101: Consists of ​101,000 images with      
101 food categories, each class having      
1,000 images. Each category in turn has       
750 training images, as well as 250 test        
images. All images are rescaled to have a        
maximum side length of 512 pixels, and all        
images contain some amount of noise. 

 
4.3 Pixel Loss 
 

We conducted our first experiments     
on the CIFAR-10 dataset. For the first       
experiment, two approaches for upsampling     
were employed as a pre-processing step to       
classification. The first approach was that of       

Shi et al. ​[2] that uses a standard per-pixel          
loss function to train a set of upscaling        
filters. We will refer to this as the pixel loss          
method. The second approach was a      
standard bicubic interpolation, mainly to be      
used as a control. 

In this first experiment, we trained      
the pixel loss method on the unlabeled       
partition of the STL-10 dataset. This      
partition has 100k images, a good size set        
for our learning problem. We trained the Shi        
network for 100 epochs, with a learning rate        
of 1e-3 using an Adam optimizer. The       
network was trained to upscale by a factor        
of three, since STL-10 consists of 96x96       
images, and CIFAR-10 consists of 32x32      
images. We hypothesize that using a      
scaling factor which scales the target      
imagery to match the training imagery is a        
good strategy. In addition, random crops      
and random flips were applied to the       
training data for all trials. 

We trained and tested a standard      
VGG-net classifier on CIFAR-10 for the      
original data, the data upsampled with      
bicubic interpolation, and the data     
upsampled with the trained pixel loss      
network. We wanted to keep the networks       
used on each set as similar as possible to         
reduce experimental variables.  
 
4.4 Perceptual Loss 
 

For our second experiment, we used      
the method of Johnson [1] et al, which        
leverages a perceptual loss objective. This      
objective calculates loss by penalizing     
differences in higher level features, which in       
this case are determined by a VGG loss        
network pre-trained for  classification. 

We then compared the performance     
of the classifier on data pre-processed with       
this method to the performance of our       
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results from the first experiment. The      
pre-trained loss network was trained on      
ImageNet [24], while the super-resolution     
network was trained on Microsoft COCO.  

 
Figure 5: Original CIFAR-10 images are      
juxtaposed against versions transformed with     
upsampling methods. 
 

In figure 5, we show the result of        
applying the pixel loss method, trained on       
STL-10, to some exemplars of CIFAR-10.      
We also show the result of the perceptual        
loss method, trained on COCO and applied       
to CIFAR-10. The images upsampled with      
the pixel loss method are of the highest        
aesthetic quality. 

In figures 6 and 7 we show the        
results of training and testing per epoch for        
the original, bicubic upsampled, pixel loss      
upsampled, and perceptual loss upsampled     
CIFAR-10 data. The networks are able to       
overfit the training data for all methods, but        
we see distinctions in the test data       

performance. In particular, the perceptual     
loss method performs worst, while the      
bicubic and pixel loss methods perform      
nearly identically. 
 

Figure 6: Train accuracy v. epoch for original,        
bicubic upsampled, pixel loss super-resolution,     
and perceptual loss super-resolution CIFAR-10     
data. 
 

 
Figure 7: Test accuracy v. epoch for original,        
bicubic upsampled, pixel loss super-resolution,     
and perceptual loss super-resolution CIFAR-10     
data. Accuracies are moving averages over 20       
preceding points. 
 
4.5 Domain Restriction 
 

In our final experiment, we restricted      
the domain of the super-resolution network      
to better match the data used for       
classification. Specifically, we split the     
Food-101 dataset into three partitions: 50%      
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for training a super-resolution network, 25%      
for classifier training data, and 25% for       
classifier testing data. All partitions     
contained an equal number of samples from       
each class. 

We hypothesized that upscaling the     
classifier partitions with the super-resolution     
network trained on data from the same set        
was more likely to add discriminating      
features, and potentially improve    
classification performance. We were careful     
not to use any of the same images for         
training the super-resolution network and     
classifier, as this would trivialize the      
problem.  

The Food-101 dataset is large     
enough to allow for sufficient data to train        
the super-resolution network and the     
classifier, but still contains enough variability      
to make the experiment interesting i.e. the       
experiment could apply to real computer      
vision problems. 

We used both the pixel and      
perceptual loss methods for this experiment,      
since the first experiment offered insufficient      
evidence that either might be ineffective in       
this case. For the pixel loss method, we        
trained the Shi network for 100 iterations       
over the “super” partition of the Food-101       
data (50.5k images). For the perceptual loss       
method, we trained the Johnson network for       
150 epochs over the same data partition.       
These networks were trained to upscale by       
a factor of four. Examples of super-resolved       
images using these methods, in addition to       
the naive bicubic interpolation and the      
ground truth are shown in Figure 8. Here,        
ground truth means the original imagery at       
128x128 resolution. 

Both super-resolution networks were    
applied to the entire train and test partitions        
to generate upsampled imagery for the      
classification experiment. The classification    

experiment parameters were similar to     
those used in the first experiments. The       
network used to train the downsampled      
“original” imagery (32x32) was identical to      
the one used for the original CIFAR-10       
imagery. The network used to train the       
upsampled/ground truth imagery (128x128)    
was similar, but had additional conv layers       
and max-pooling layers to appropriately     
downscale the feature layers. The training      
schemes were identical to those used in the        
first experiments, with 350 training epochs,      
and a manually adjusted learning rate. 

The results of these classification     
experiments are shown in Figures 9 and 10.        
Most importantly, we see that the original       
imagery performed worst, and the ground      
truth imagery performed best for test      
accuracy. We assume that the best possible       
result of an upsampling algorithm would      
produce the ground truth image, and that       
the ground truth images are optimal for the        
classification task. While it is possible that       
an upsampling algorithm could produce     
images better for classification than the      
ground truth, our super-resolution methods     
are unlikely to produce this type of result. 

The pixel loss and bicubic methods      
performed nearly identically. This suggests     
that neither method adds any discriminative      
information. On the other hand, the      
perceptual loss method performed markedly     
worse. This suggests the type of features it        
added are actually worse than the original       
image content for discrimination. Figure 8      
shows that all upsampled (and ground truth)       
sets were easily overfit during training. 
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Figure 8: Ground truth Food-101 images are       
juxtaposed against bicubic upsampled (middle)     
and upscale filtered (right). 
 

 
Figure 9: Train accuracy v. epoch for original,        
bicubic upsampled, and upscale filtered (Super)      
data. 
 

 
Figure 10: Test accuracy v. epoch for original,        
bicubic upsampled, and upscale filtered (Super)      
data. Accuracies are moving averages over 20       
preceding points. 
 
5. Conclusion/Future Work 
 

Our experiments show that our     
original hypothesis was disproved, at least      
for the methods and scenarios that we       
used. Specifically, these super-resolution    
methods do not improve the discriminative      
capacity of the imagery used for      
classification. This shows that the aesthetic      
quality these methods sought to improve did       
not correspond to bringing the imagery any       
closer to the ground truth in the feature        
space. We suspect that incorporating this      
discriminative goal into the objective would      
be crucial to making super-resolution     
effective as a preprocessor for     
classification. 

In the future, we would like to try        
some of the other super-resolution methods      
highlighted in section 2. We think a type of         
LAPGAN could be promising, because     
LAPGANs train a discriminator in the      
process of generating fooling samples. This      
discriminator could encourage generated    
samples to be effective for training in the        
classification context. If we could modify the       
input of LAPGAN to take downsampled      
images instead of a random seed, it could        
be effective for super-resolution focused on      
class separation instead of aesthetic quality. 
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