
 

 

 
Abstract 

 
In this paper, I propose a method for extracting objects 

from unordered point cloud data by using 2D semantic 
segmentation on a camera image of the corresponding 
data. This added constraint, which exploits a common 
feature in datasets such as KITTI, would collapse the 
relatively unsolved problem of categorizing unorganized 
3D data into a 2D problem plus also solved issues of 
sensor fusion and projection. The KITTI dataset was used 
as input to a Faster RCNN and then reprojected into 3D 
data to determine the regions of foreground objects, 
namely vehicles and pedestrians. Overall, there seemed to 
be an plausible application for using the projection 
matrices to determine the foreground points in the point 
cloud. 
 

1. Introduction 
 

In traditional structure from motion mapping, a camera 
uses a series of images to calculate disparity and depth to 
directly compute a point cloud for scene reconstruction. 
However, in cases such as autonomous vehicles, the 3D 
reconstruction alone is not enough to gather the necessary 
scene information. In the case of autonomous vehicles, 
vision is needed to distinguish obstacles as well as 
recognize intent. My project is about using object 
recognition to augment reconstruction by replacing 
partially reconstructed meshes of objects with full models 
of a generic model type recognized by CNNs. The results 
are evaluated visually, by comparison with the original 
scene, as well as numerically, by comparing depth, size, 
and object type to real collected data.   

1.1. Background 

 
Recent developments in computer vision, particularly in 

object recognition and sensor fusion, have accelerated the 
autonomous vehicle industry. However, although there are 
guidelines for so-called “Level 3” autonomy (vehicle 

assisting the driver), little has been done in visualizing the 
data the vehicle collects and displaying it to a user [1]. 
However, this project attempts to combine vehicle LIDAR 
/ stereo reconstruction data with image recognition and 
segmentation via Faster-RCNN to provide a clear virtual 
reconstruction of the surrounding environment. 

2. Related Work 

2.1. Scene Segmentation before Neural Networks 
In a paper in 2012. Kim et al. researched ways to 

segment objects in a scene by fitting the scene to sets of 
convex geometry [2]. It would first learn to recognize an 
object by a series of feature extractions. First, the points 
are fitted to sets of simple geometry, i.e. boxes and 
cylinders. Then, the sets of geometry are categorized 
together by the amount of overlap between them. Finally, 
the sets of primitives are ordered by the arrangement of 
objects within the hierarchy.  

For the runtime part, the dataset was first parsed into 
primitive sets as part of preprocessing. Then, the primitive 
sets were turned into objects through a fast (~0.2 s) 
recognition phase.  

Although this is relatively slow compared to some 3D 
object recognition algoirthms today, it was a major step in 
scene recognition, and laid out a potential framework for a 
neural implementation.  For example, given that the 
dataset mainly consisted of fitting geometry, followed by 
linear recognition, it made the idea of a more affine 
network like PointNet possible. Also, while it was not a 
neural network, it was still a form of machine learning, as 
there was a learning and recognition phase.  
 

2.2. FusionNet: Combining 2D and 3D data to improve 
object recognition 

 
For volumetric networks, the lecturer sought to 

work with ShapeNet, a Princeton-based network of CAD 
models. In order to do well, the lecturer came up with 
three different types of networks. The first combined 
multiple 2-D views of a 3D image (20 sides, all 
equidistant from each other), sent them across 20 CNNs to 
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output the class. This is called a Multiple View CNN. The 
second was to do a series of 3D convolutions of the 3D 
voxel image rather than 2D convolutions (i.e. the kernel 
now has 3 dimensions).  This was the iteration of the first 
Volume CNN (V-CNN). The second V-CNN improved 
upon the first by both using region sampling and taking 
advantage of the Inception Module style recently 
discovered by Google to try and piece together smaller 
components in the image. All of these elements, by 
themselves, showed significant improvement over the 
previous networks that entered ShapeNet40.  The biggest 
leap, though, came from how the combination of these 
elements into a single network called FusionNet, which 
once topped the ShapeNet40 and provides the highest 
accuracy overall. The paper for the structure has been 
published outline on Matroid’s website [3]. 

2.3. 3D Scene Segmentation  
 

Most of the work for 3D scene segmentation has been 
for indoor scenes. The most recent major example was the 
3DIS dataset [4], a series of pointcloud sets depicting large 
indoor scenes. These scenes were filled with indoor 
objects such as tables, chairs, and cabinets, and provided a 
content-rich set of point models within a scene.  

 
To parse this dataset, PointNet was created to not only 

recognize objects as point clouds (it is currently on the top 
set of ModelNet classifiers), but also to distinguish objects 
in a point cloud scene. The idea behind PointNet was to 
create a network that can learn on unordered datasets by 
selecting the “important” points via max pooling. The 
results of each max pooling function are then connected 
through a series of affine fully connected layers as a sort 
of global feature analysis. It is additionally on of the few 
neural networks out there that use unordered points rather 
than voxel data [5]. 

3. Methods 

3.1. 2D Image Segmentation 
 

The purpose of using a neural network is to detect the 
shapes of the vehicle within the 3-D image so it can be 
processed or segmented out. Because of this, it made sense 
to use a Faster-RCNN structure to determine the regions 
of various foreground objects in an image. The input to the 
network is the camera data, which could be considered the 
projection of the 3D scene into a 2D image, and the output 
is the sets of bounding boxes for the relevant foreground 
objects in the region [8].  

 
The metric for object recognition in the KITTI dataset 

was taken from the  PASCAL Mean Average Precision 

(MAP) algorithm. This involves taking the number of 
correctly guessed images for each set, then dividing it by 
the number of correct images and false negatives in a 
given set. In the case of the KITTI dataset, the metric 
measures the number of bounding correct bounding boxes 
rather than the full image. As said before, a bounding box 
is considered correct for a vehicle if it has at least 70% 
intersection with the annotated bounding box, and a 
person is considered correct if the area of intersection is at 
least 50% of the full image. 

3.2. 3D Segmentation from 2D Segmentation 
 
Once these foreground obstacles are detected, they then 

could be tracked by the vehicle over time, and can then be 
either recorded or acted upon by a vehicle decision. The 
output of the Faster-RCNN is then combined with the 3D 
scene for the output. Originally, I was going to combine 
the 2D scene segmentation output with that of a 3D scene 
segmentation output. However, due to time constraints, 
and the relative recentness of the PointNet framework (the 
code for semantic segmentation was uploaded last week), 
the 3D point cloud was directly converted from the world 
view into the camera view using camera projection: 

 
 

 
K is the camera intrinsic matrix; T is the transformation 

from the Velodyne coordinate frame to the camera view 
frame (similar to the view matrix). The coordinates x, y, 
and z are the point cloud coordinates, and the resulting 
[wu,wv,w] vector are the 2D pixel coordinates u, v scaled 
by the homogenous coordinate w.  

 

3.3. Data Conversion 
 

For each of the experiments, a major component of the 
work was formatting the dataset to resemble the input for 
each of the interim steps. The formats in detail of each of 
the data structures is listed below. In particular, the KITTI 
dataset was translated to the VOC and ModelNet dataset 
formats, and the output of the Faster-RCNN was 
converted to the KITTI annotated format for 
benchmarking tests. 

3.4. 3D Segmentation from 2D Segmentation 
 

Originally, the final step was to gather some of the 
geometric properties of the shape could either be 
averaging the points to find the center, then using standard 
deviations to approximate the outer bounds of the shape. 
As for the certainty, using such an approximation would 
affect the original score, so the standard deviation would 

[wu, wv, w]T = K T [x, y, z, 1]T 



 

 

likely have to be taken into account in addition to the 
original uncertainty score of the 2D region. 

 

4. Dataset and Features 

4.1. Baseline Data: KITTI 

 
Originally, for the purpose of integrating this project 

with a previous project, the Oxford dataset was used. 
However, because of a lack of benchmarking, as well as 
the misaligned captures of the Velodyne LIDAR data and 
the camera image, the KITTI dataset was used in this 
project. (Note: existing code from the other project was 
not used in this project, and neither funds nor human 
resources were used in the making of this project, although 
the CPU we use was briefly used for creating the datasets). 
Ideally, the Faster-RCNN could be partially trained on the 
KITTI dataset; the KITTI dataset, as it contains only a few 
thousand images and 10 classes, would not be able to train 
data as well as the ImageNet data.  

 
The purpose of this project is to detect objects in 3D 

space by properly segmenting the portions of the Point 
Cloud related to three classes: Person, Car, and Cyclist. 
Although other classes, such as Plant and Train/Tram, are 
included in the detection suite, there is not a significant 
enough set of objects outside of the three major class types 
to warrant a full training/testing dataset. Additionally, 
when an object is detected, but the data is either 
inconclusive or irrelevant to the class objects above, it is 
marked as a “Dontcare” object. Although the project could 
be generalized by including only a foreground and 
background object, it would be better to keep disparate 
items such as vehicles and pedestrians separate. 

 
For training, however, in order to preserve the model 

already implemented in the system, the network used was 
the default network trained on ImageNet. The class output 
of the data, which included a class for vehicles, 
pedestrians, buses, trains, and bikes, could then be 
trimmed and converted to the class mapping of the KITTI 
dataset. Trimming was done by labeling the extraneous 
classes as “Dontcare.”  

4.2.  3D Benchmarking Suites 
 

The KITTI site has both a 2D and 3D competition for 
both object detection and tracking. The competitions are 
ranked separately depending on if it detects people, cars, 
or cyclists. For the 3D object detection and tracking, the 
data must know the object position as well as the 
orientation in terms of the Y rotation (i.e. the direction a 
vehicle would be moving) [7]. For the object detection, it 

is enough to determine a bounding box that has at least 
70% intersection with the correct annotation. The 
bounding box has both a location and orientation. The 
tracking dataset additionally has an object ID to 
distinguish between objects. 

 
Instance level 3D object recognition has been done in a 

very similar fashion to 2D images, through a method 
known as a Volumetric CNN. This takes a 3D “image” of 
an object by viewing it as a series of blocks, or “voxels” 
[3]. The most significant work in the field was a project at 
Princeton called ModelNet, which created a database of 
models with labels as well as benchmarks for object 
recognition [6]. These models were of single objects, 
without any background clutter, simplifying 3-D 
recognition algorithms for recognizing the object. 

 

4.3. Conversion of 2D Features into 3D Point Sets 

 
The second step was to convert the 2D image data into 

the 3D LIDAR space. For the KITTI object detection 
dataset, the LIDAR data and the camera data were taken at 
the same time, so there was no issue of determining the 
change in vehicle pose between two image captures. 
Additionally, the Velodyne and camera were aligned such 
that the view frame for both datasets were the same. 
However, for the transformation into the camera view, the 
dataset were calibrated with internal camera parameters. 
These were used to project the Velodyne data into the 2D 
camera space. From there, the points within the bounding 
square of an object were determined and marked.   

 

4.4. Dataset Formats 

4.4.1 KITTI Object File: 

 
Layer Values 

1. Data segment Training, test 
2. Device/recording type Velodyne, Image_0[0-2], 

calib, label_0[0-2] 
3. Capture number 0000- (~7900) 
4. Data within file Varies 
(Label type) Class, score, alpha, 

(bounding-box) 
 
 
 

4.4.2 KITTI Raw: 

 



 

 

Layer Values 

1. Date of recording (mm-dd-yyyy)_sync 
2. Device/recording type Velodyne, Image_0[0-2], 

label_0[0-2] 
3. Capture number %dddddd 
4. Parameters/data Data directory, calib.txt, 

vo.txt 
4. Data within file Varies 
 

4.4.3 PASCAL_VOC 

 
Layer Values 

1. Benchmark Type Annotation, Layout, 
JPEGImages, 
SegmentationClass, 
SegmentationObject 

2. Device/recording type Velodyne, Image_0[0-2], 
calib, label_0[0-2] 

3. Capture number 0000- (~7900) 
4. Data within file Varies 

 

4.4.4 ModelNet 

 
Layer Values 
1. Area Area_%dd 
2. Device/recording type Velodyne, Image_0[0-2], 

calib, label_0[0-2] 
3. Capture number 0000- (~7900) 
4. Data within file Varies 
 

5. Experiments/Results/Discussion 

 

		

 
The detected objects in the foreground of the image, 
and their corresponding projection onto the LIDAR 
view. The red corresponds to vehicle data, while the 

yellow corresponds to the person data. 
 

 The Faster-RCNN was able to detect both vehicles and 
pedestrians within the LIDAR cloud (see figure above). 
Although there is reprojection error, and some extraneous 
point cloud data due to including any point that fell within 
the bounding box. Even with these sources of noise, 



 

 

however, the general location of the vehicle could be 
determined by the location of the highlighted data.  
 

One major takeaway is that, although it may seem 
easier to reformat the data to build off of others’ work, 
building your own model based on the structure in others’ 
work is easier than trying to retrofit new data into the 
current codebase. This is because, while much of the dirty 
work in neural network structure is abstracted away by 
libraries such as TensorFlow and Pytorch, the input 
datasets for any network often have unique classes in 
addition to format. This means that a lot of the lower level 
work most code bases use to abstract away the work only 
applies to specific datasets, and are not flexible with their 
input. For example, both PointNet and Py-Faster-RCNN 
relied on a specific data structure for their respective 
default inputs (for PointNet, it was the ModelNet input, 
and for Py-Faster-RCNN, it was the Pascal VOC dataset). 
The sample evaluation code also assumed a certain set of 
classes when training the data, which either overfit the 
KITTI dataset (in the case of PASCAL) or didn’t even 
apply (in the case of ModelNet). When all these datasets 
are removed, the result is essentially the base 
implementation using a CV library, which is high-level 
enough to implement the data structures in only a few 
hundred lines of code.  

 

6. Conclusion/Future Work 
 

It is possible to extract the foreground features from the 
overall mesh, although some work must be done to refine 
the extracted LIDAR points. Because the KITTI 
benchmarking did not output any data, and the Pointnet 
network integration could not be reformatted to train on 
the LIDAR dataset, there was not enough benchmarking 
data to conclude if this method improves current 3D 
tracking or segmentation methods for LIDAR data. 

 
One possible improvement is to refine the bounds on 

the 2-D vehicle data, thereby removing possible noise 
from the outliers. However, this method could also create 
false negatives around the outer boundaries of the objects, 
and would not account for the noise created by projection 
error. 

 
Another improvement would be to use 3D CNN to 

convert the noisy model into a more realistic model. There 
are several volumetric approaches to 3D recognition. If the 
original model was taken in as noisy input, gradient ascent 
could magnify the features the model is missing (for 
example, a car that looks incomplete due to missing parts 
could be modified to have a shape more like a vehicle’s).  

 
Perhaps the simplest approach is to extract more basic 

features from the extracted 3D model, and then abstract 
away the physical shape into a generic placeholder. For 
example, all the cars in the image would be converted to 
the same  sedan shape, with different sizes and rotations 
depending on their location and orientation. In the end, 
this would be useful for tracking a vehicle based on its 3D 
bounding box. However, without some improvement to 
either denoise the model or by using learning to predict the 
center rather than a more naïve averaging method, feature 
extraction would be very prone to noise (as a few outliers 
could greatly affect the car shape and center point). 
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