

Abstract

In this paper, I propose a method for extracting objects

from unordered point cloud data by using 2D semantic
segmentation on a camera image of the corresponding
data. This added constraint, which exploits a common
feature in datasets such as KITTI, would collapse the
relatively unsolved problem of categorizing unorganized
3D data into a 2D problem plus also solved issues of
sensor fusion and projection. The KITTI dataset was used
as input to a Faster RCNN and then reprojected into 3D
data to determine the regions of foreground objects,
namely vehicles and pedestrians. Overall, there seemed to
be an plausible application for using the projection
matrices to determine the foreground points in the point
cloud.

1. Introduction

In traditional structure from motion mapping, a camera
uses a series of images to calculate disparity and depth to
directly compute a point cloud for scene reconstruction.
However, in cases such as autonomous vehicles, the 3D
reconstruction alone is not enough to gather the necessary
scene information. In the case of autonomous vehicles,
vision is needed to distinguish obstacles as well as
recognize intent. My project is about using object
recognition to augment reconstruction by replacing
partially reconstructed meshes of objects with full models
of a generic model type recognized by CNNs. The results
are evaluated visually, by comparison with the original
scene, as well as numerically, by comparing depth, size,
and object type to real collected data.

1.1. Background

Recent developments in computer vision, particularly in

object recognition and sensor fusion, have accelerated the
autonomous vehicle industry. However, although there are
guidelines for so-called “Level 3” autonomy (vehicle

assisting the driver), little has been done in visualizing the
data the vehicle collects and displaying it to a user [1].
However, this project attempts to combine vehicle LIDAR
/ stereo reconstruction data with image recognition and
segmentation via Faster-RCNN to provide a clear virtual
reconstruction of the surrounding environment.

2. Related Work

2.1. Scene Segmentation before Neural Networks
In a paper in 2012. Kim et al. researched ways to

segment objects in a scene by fitting the scene to sets of
convex geometry [2]. It would first learn to recognize an
object by a series of feature extractions. First, the points
are fitted to sets of simple geometry, i.e. boxes and
cylinders. Then, the sets of geometry are categorized
together by the amount of overlap between them. Finally,
the sets of primitives are ordered by the arrangement of
objects within the hierarchy.

For the runtime part, the dataset was first parsed into
primitive sets as part of preprocessing. Then, the primitive
sets were turned into objects through a fast (~0.2 s)
recognition phase.

Although this is relatively slow compared to some 3D
object recognition algoirthms today, it was a major step in
scene recognition, and laid out a potential framework for a
neural implementation. For example, given that the
dataset mainly consisted of fitting geometry, followed by
linear recognition, it made the idea of a more affine
network like PointNet possible. Also, while it was not a
neural network, it was still a form of machine learning, as
there was a learning and recognition phase.

2.2. FusionNet: Combining 2D and 3D data to improve
object recognition

For volumetric networks, the lecturer sought to

work with ShapeNet, a Princeton-based network of CAD
models. In order to do well, the lecturer came up with
three different types of networks. The first combined
multiple 2-D views of a 3D image (20 sides, all
equidistant from each other), sent them across 20 CNNs to

Using Faster-RCNN to Improve Shape Detection in LIDAR

TJ Melanson
Stanford University
Stanford, CA 94305

melanson@stanford.edu

output the class. This is called a Multiple View CNN. The
second was to do a series of 3D convolutions of the 3D
voxel image rather than 2D convolutions (i.e. the kernel
now has 3 dimensions). This was the iteration of the first
Volume CNN (V-CNN). The second V-CNN improved
upon the first by both using region sampling and taking
advantage of the Inception Module style recently
discovered by Google to try and piece together smaller
components in the image. All of these elements, by
themselves, showed significant improvement over the
previous networks that entered ShapeNet40. The biggest
leap, though, came from how the combination of these
elements into a single network called FusionNet, which
once topped the ShapeNet40 and provides the highest
accuracy overall. The paper for the structure has been
published outline on Matroid’s website [3].

2.3. 3D Scene Segmentation

Most of the work for 3D scene segmentation has been
for indoor scenes. The most recent major example was the
3DIS dataset [4], a series of pointcloud sets depicting large
indoor scenes. These scenes were filled with indoor
objects such as tables, chairs, and cabinets, and provided a
content-rich set of point models within a scene.

To parse this dataset, PointNet was created to not only

recognize objects as point clouds (it is currently on the top
set of ModelNet classifiers), but also to distinguish objects
in a point cloud scene. The idea behind PointNet was to
create a network that can learn on unordered datasets by
selecting the “important” points via max pooling. The
results of each max pooling function are then connected
through a series of affine fully connected layers as a sort
of global feature analysis. It is additionally on of the few
neural networks out there that use unordered points rather
than voxel data [5].

3. Methods

3.1. 2D Image Segmentation

The purpose of using a neural network is to detect the
shapes of the vehicle within the 3-D image so it can be
processed or segmented out. Because of this, it made sense
to use a Faster-RCNN structure to determine the regions
of various foreground objects in an image. The input to the
network is the camera data, which could be considered the
projection of the 3D scene into a 2D image, and the output
is the sets of bounding boxes for the relevant foreground
objects in the region [8].

The metric for object recognition in the KITTI dataset

was taken from the PASCAL Mean Average Precision

(MAP) algorithm. This involves taking the number of
correctly guessed images for each set, then dividing it by
the number of correct images and false negatives in a
given set. In the case of the KITTI dataset, the metric
measures the number of bounding correct bounding boxes
rather than the full image. As said before, a bounding box
is considered correct for a vehicle if it has at least 70%
intersection with the annotated bounding box, and a
person is considered correct if the area of intersection is at
least 50% of the full image.

3.2. 3D Segmentation from 2D Segmentation

Once these foreground obstacles are detected, they then

could be tracked by the vehicle over time, and can then be
either recorded or acted upon by a vehicle decision. The
output of the Faster-RCNN is then combined with the 3D
scene for the output. Originally, I was going to combine
the 2D scene segmentation output with that of a 3D scene
segmentation output. However, due to time constraints,
and the relative recentness of the PointNet framework (the
code for semantic segmentation was uploaded last week),
the 3D point cloud was directly converted from the world
view into the camera view using camera projection:

K is the camera intrinsic matrix; T is the transformation

from the Velodyne coordinate frame to the camera view
frame (similar to the view matrix). The coordinates x, y,
and z are the point cloud coordinates, and the resulting
[wu,wv,w] vector are the 2D pixel coordinates u, v scaled
by the homogenous coordinate w.

3.3. Data Conversion

For each of the experiments, a major component of the
work was formatting the dataset to resemble the input for
each of the interim steps. The formats in detail of each of
the data structures is listed below. In particular, the KITTI
dataset was translated to the VOC and ModelNet dataset
formats, and the output of the Faster-RCNN was
converted to the KITTI annotated format for
benchmarking tests.

3.4. 3D Segmentation from 2D Segmentation

Originally, the final step was to gather some of the
geometric properties of the shape could either be
averaging the points to find the center, then using standard
deviations to approximate the outer bounds of the shape.
As for the certainty, using such an approximation would
affect the original score, so the standard deviation would

[wu, wv, w]T = K T [x, y, z, 1]T

likely have to be taken into account in addition to the
original uncertainty score of the 2D region.

4. Dataset and Features

4.1. Baseline Data: KITTI

Originally, for the purpose of integrating this project

with a previous project, the Oxford dataset was used.
However, because of a lack of benchmarking, as well as
the misaligned captures of the Velodyne LIDAR data and
the camera image, the KITTI dataset was used in this
project. (Note: existing code from the other project was
not used in this project, and neither funds nor human
resources were used in the making of this project, although
the CPU we use was briefly used for creating the datasets).
Ideally, the Faster-RCNN could be partially trained on the
KITTI dataset; the KITTI dataset, as it contains only a few
thousand images and 10 classes, would not be able to train
data as well as the ImageNet data.

The purpose of this project is to detect objects in 3D

space by properly segmenting the portions of the Point
Cloud related to three classes: Person, Car, and Cyclist.
Although other classes, such as Plant and Train/Tram, are
included in the detection suite, there is not a significant
enough set of objects outside of the three major class types
to warrant a full training/testing dataset. Additionally,
when an object is detected, but the data is either
inconclusive or irrelevant to the class objects above, it is
marked as a “Dontcare” object. Although the project could
be generalized by including only a foreground and
background object, it would be better to keep disparate
items such as vehicles and pedestrians separate.

For training, however, in order to preserve the model

already implemented in the system, the network used was
the default network trained on ImageNet. The class output
of the data, which included a class for vehicles,
pedestrians, buses, trains, and bikes, could then be
trimmed and converted to the class mapping of the KITTI
dataset. Trimming was done by labeling the extraneous
classes as “Dontcare.”

4.2. 3D Benchmarking Suites

The KITTI site has both a 2D and 3D competition for
both object detection and tracking. The competitions are
ranked separately depending on if it detects people, cars,
or cyclists. For the 3D object detection and tracking, the
data must know the object position as well as the
orientation in terms of the Y rotation (i.e. the direction a
vehicle would be moving) [7]. For the object detection, it

is enough to determine a bounding box that has at least
70% intersection with the correct annotation. The
bounding box has both a location and orientation. The
tracking dataset additionally has an object ID to
distinguish between objects.

Instance level 3D object recognition has been done in a

very similar fashion to 2D images, through a method
known as a Volumetric CNN. This takes a 3D “image” of
an object by viewing it as a series of blocks, or “voxels”
[3]. The most significant work in the field was a project at
Princeton called ModelNet, which created a database of
models with labels as well as benchmarks for object
recognition [6]. These models were of single objects,
without any background clutter, simplifying 3-D
recognition algorithms for recognizing the object.

4.3. Conversion of 2D Features into 3D Point Sets

The second step was to convert the 2D image data into

the 3D LIDAR space. For the KITTI object detection
dataset, the LIDAR data and the camera data were taken at
the same time, so there was no issue of determining the
change in vehicle pose between two image captures.
Additionally, the Velodyne and camera were aligned such
that the view frame for both datasets were the same.
However, for the transformation into the camera view, the
dataset were calibrated with internal camera parameters.
These were used to project the Velodyne data into the 2D
camera space. From there, the points within the bounding
square of an object were determined and marked.

4.4. Dataset Formats

4.4.1 KITTI Object File:

Layer Values

1. Data segment Training, test
2. Device/recording type Velodyne, Image_0[0-2],

calib, label_0[0-2]
3. Capture number 0000- (~7900)
4. Data within file Varies
(Label type) Class, score, alpha,

(bounding-box)

4.4.2 KITTI Raw:

Layer Values

1. Date of recording (mm-dd-yyyy)_sync
2. Device/recording type Velodyne, Image_0[0-2],

label_0[0-2]
3. Capture number %dddddd
4. Parameters/data Data directory, calib.txt,

vo.txt
4. Data within file Varies

4.4.3 PASCAL_VOC

Layer Values

1. Benchmark Type Annotation, Layout,
JPEGImages,
SegmentationClass,
SegmentationObject

2. Device/recording type Velodyne, Image_0[0-2],
calib, label_0[0-2]

3. Capture number 0000- (~7900)
4. Data within file Varies

4.4.4 ModelNet

Layer Values
1. Area Area_%dd
2. Device/recording type Velodyne, Image_0[0-2],

calib, label_0[0-2]
3. Capture number 0000- (~7900)
4. Data within file Varies

5. Experiments/Results/Discussion

		

The detected objects in the foreground of the image,
and their corresponding projection onto the LIDAR
view. The red corresponds to vehicle data, while the

yellow corresponds to the person data.

 The Faster-RCNN was able to detect both vehicles and
pedestrians within the LIDAR cloud (see figure above).
Although there is reprojection error, and some extraneous
point cloud data due to including any point that fell within
the bounding box. Even with these sources of noise,

however, the general location of the vehicle could be
determined by the location of the highlighted data.

One major takeaway is that, although it may seem
easier to reformat the data to build off of others’ work,
building your own model based on the structure in others’
work is easier than trying to retrofit new data into the
current codebase. This is because, while much of the dirty
work in neural network structure is abstracted away by
libraries such as TensorFlow and Pytorch, the input
datasets for any network often have unique classes in
addition to format. This means that a lot of the lower level
work most code bases use to abstract away the work only
applies to specific datasets, and are not flexible with their
input. For example, both PointNet and Py-Faster-RCNN
relied on a specific data structure for their respective
default inputs (for PointNet, it was the ModelNet input,
and for Py-Faster-RCNN, it was the Pascal VOC dataset).
The sample evaluation code also assumed a certain set of
classes when training the data, which either overfit the
KITTI dataset (in the case of PASCAL) or didn’t even
apply (in the case of ModelNet). When all these datasets
are removed, the result is essentially the base
implementation using a CV library, which is high-level
enough to implement the data structures in only a few
hundred lines of code.

6. Conclusion/Future Work

It is possible to extract the foreground features from the
overall mesh, although some work must be done to refine
the extracted LIDAR points. Because the KITTI
benchmarking did not output any data, and the Pointnet
network integration could not be reformatted to train on
the LIDAR dataset, there was not enough benchmarking
data to conclude if this method improves current 3D
tracking or segmentation methods for LIDAR data.

One possible improvement is to refine the bounds on

the 2-D vehicle data, thereby removing possible noise
from the outliers. However, this method could also create
false negatives around the outer boundaries of the objects,
and would not account for the noise created by projection
error.

Another improvement would be to use 3D CNN to

convert the noisy model into a more realistic model. There
are several volumetric approaches to 3D recognition. If the
original model was taken in as noisy input, gradient ascent
could magnify the features the model is missing (for
example, a car that looks incomplete due to missing parts
could be modified to have a shape more like a vehicle’s).

Perhaps the simplest approach is to extract more basic

features from the extracted 3D model, and then abstract
away the physical shape into a generic placeholder. For
example, all the cars in the image would be converted to
the same sedan shape, with different sizes and rotations
depending on their location and orientation. In the end,
this would be useful for tracking a vehicle based on its 3D
bounding box. However, without some improvement to
either denoise the model or by using learning to predict the
center rather than a more naïve averaging method, feature
extraction would be very prone to noise (as a few outliers
could greatly affect the car shape and center point).

References
[1] Reese, Hope. “Autonomous driving levels 0 to 5:

Understanding the differences.” TechRepublic. 20 Jan 2016.
[2] Young, Kim et al. Acquisition of 3D Indoor Environments

with Variability and Repetition. Stanford University, 2012.
http://hci.stanford.edu/cstr/reports/2012-01.pdf

[3] Hegde Vishakh , Zadeh Reza. FusionNet: 3D Object
Classification Using Multiple Data Representations.
Matroid, Jul-Nov 2016

[4] Armeni et al., 3D Semantic Parsing of Large-Scale Indoor
Spaces, CVPR2016.

[5] Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas,
Leonidas J. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. 2016

[6] Princeton ModelNet. http://modelnet.cs.princeton.edu
[7] Geiger, Lenz, and Urtasun. Are we ready for Autonomous

Driving? The KITTI Vision Benchmark Suite. 2012
[1] Shaoqing Ren and Kaiming He and Ross Girshick and Jian

Sun, Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks

[2] Kundu et al. Joint Semantic Segmentation and 3D
Reconstruction from Monocular Video. Georgia Institute of
Technology, 2014.
https://web.engr.oregonstate.edu/~lif/HybridSFM-
ECCV2014.pdf

[3] http://www.robots.ox.ac.uk/~mobile/Papers/2016IROS_ma
ddern.pdf

[4] http://graphics.usc.edu/cgit/publications/papers/point_cloud
_3dcnn.pdf

[5] http://ai.stanford.edu/~haosu/papers/iccv_renderforcnn.pdf
[6] https://arxiv.org/pdf/1702.04405.pdf

