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Abstract

Scene understanding is an active area of research in
computer vision that encompasses several different prob-
lems. This paper addresses two of those problems: we use
a fully convolutional network architecture to perform, in a
single pass, both depth prediction of a scene from a single
monocular image, and pixel-wise semantic labeling using
the same image input and its depth information. We op-
timize the first task on L2 and berHu loss, and the latter
on negative log likelihood loss per pixel. Our model en-
compasses residual blocks and efficient up-sampling units
to provide high-resolution outputs, thus removing the need
for post-processing steps. We achieve reasonable validation
accuracies of 49% and 66% in the semantic labeling task,
when using 38 and 6 classes respectively.

1. Introduction

Predicting depth is crucial to understanding the physi-
cal geometry of a scene. The more challenging problem is
learning this geometry from a single monocular image in
the absence of any environmental assumptions, due to the
ambiguity of mapping color intensity or illumination to a
depth value. Developing an accurate real-time network for
generating pixelwise depth regression is an ill-posed task,
but a crucial one for automated systems where depth sens-
ing is not available. In addition, other tasks in computer
vision can also benefit greatly from having depth informa-
tion, as we have shown with semantic segmentation in our
project.

We adapted our model from the one proposed by Laina
et al. [10] and implemented a joint architecture in PyTorch
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for both depth estimation and semantic segmentation tasks.
The inputs to our model consist of RGB-D images from
the NYU Depth v2 dataset and their corresponding ground-
truth depth maps, whereas the outputs contain a predicted
depth map and semantic labels (for 6 and 38 most frequent
labels in the aforementioned dataset) for each input image.
The model is able to learn directly from data without any
specific scene-dependent knowledge. The absence of post-
processing steps and fully connected layers helps reduce the
number of parameters of our model as well as the number
of training examples required, while still ensuring reason-
able performance. We also combine the concepts of up-
convolution and residual learning to create up-projection
units that allow more efficient up-sampling of feature maps,
which are essential to increasing the resolution as well as
accuracy of the output image. In this paper, we will analyze
the influence of different variables (loss function, learning
rates, etc.) on the performance of the model, in addition to
the results it generates on standard benchmarks.

2. Related Work

Convolutional Neural Networks (CNNs) are being
widely used for tasks like image recognition, object classi-
fication and natural language processing. Eigen et al. [3]
were the first to use CNNs for depth estimation. They
present a multi-scale deep network, which first predicts a
coarse global output and then a finer local network. A re-
cent paper by Eigen et al. [2] extends this model on two
other tasks, namely surface normal estimation and seman-
tic labeling, and achieves state-of-the-art results on all three
tasks. They develop a general network model using a se-
quence of three-scales, based on AlexNet [9] and the Ox-
ford VGG network [14].

In [4], Farabet et al. propose a multi-scale convolutional
network for scene labeling from the raw input images by
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classifying into regions centered around each pixel. These
regions of multiple sizes are encoded in the form of dense
feature vectors, which are then used to obtain labels us-
ing post processing techniques (like superpixels and CRFs).
Couprie et al. [1] use a similar architecture to perform
multi-class segmentation, but using both input (RGB) im-
age and corresponding depth (D) image.

Laina et al. [10] explore different CNN networks
(AlexNet, VGG-16 and ResNet) for the down-sampling part
and try to improve the receptive field. They develop a net-
work based on ResNet-50 [7] which makes the network
deeper without vanishing gradient problem, making use of
residual and skip layers as well as batch normalization. Fur-
ther, they apply up-convolutional blocks to improve accu-
racy. Their model attains state-of-the-art results on all mod-
els for depth estimation.

Considering these architectures, we also use CNN for
both depth estimation and semantic labeling tasks. Further-
more, we seek to reduce the number of parameters and post-
processing steps required by gradually down-sampling the
input (using the ResNet architecture), followed by multiple
rounds of efficient up-convolution, to output depth predic-
tions in a single pass through the network. The latter is in-
spired by Laina et al. [10]. We extend their model for depth
estimation to perform the task of semantic labeling as well.
As done by Eigen et al. [2] and Couprie et al. [1], we use
both input (RGB) and ground truth depth (D) images for the
latter task.

3. Dataset

We evaluate our model on a subset of NYU Depth v2
dataset [11], one of the largest RGB-D datasets for indoor
scene reconstruction. The images in the dataset represent
environments that we often interact with in everyday life -
scenes of offices, stores, rooms of houses - most of which
have uneven lighting. There are 1449 scenes in total with
1449 corresponding ground-truth depth maps and 894 dif-
ferent object classes. However, related works often focus on
only a subset of those classes. As mentioned in [2], there are
three standard subsets of label classes, namely 4, 14 and 40,
that are used for the task of semantic labeling. The 4-class
labels defined by Silberman et al. [13], give a high-level cat-
egorization of labels into the sets “floor”, “structure”, “fur-
niture” and “props””. On the other hand, Couprie et al. [1]
use the 13-class labels for segmentation. The more common
approach now is to use the most dominant 40-class labels,
as described by Gupta et al. [6], which include more ab-
stract objects like “wall”, “floor”, “desk”, “book shelf”, etc.
We use the standard 40-class labels, but instead of the 3 cat-
egories “other furniture”, “other props”, “other struct”, we
group all other labels into one class which we call “other”.
Along with these 38-labels, we also test our model on the
most frequent 6-class labels, namely “wall”, “floor”, “bed”,

“chair”, “cabinet” and others.

4. Methodology

In this section, we describe in detail the different compo-
nents of our network, starting with the overall architecture,
to the additional components that help to boost efficiency,
ending with our choice of loss function.

4.1. Depth Estimation

4.1.1 Convolutional Neural Network

We use a single CNN architecture to output depth esti-
mation, adapted from [10], with the hypothesis that hav-
ing combined information from neighboring pixels in the
same local region is useful for the task of depth predic-
tion. Our network uses transfer learning, keeping most of
the downsampling and early up-convolutional layers fixed.
The weights for those layers are taken from a pretrained
TensorFlow model provided in [10].

At the start, a series of convolution and pooling layers
reduce the resolution but at the same time capture global in-
formation such as edges, corners, blobs etc. Near the end of
the network where we want to transition to a high-resolution
output, we replace the typical fully connected layers as used
in the model by Eigen et. al. [2], [3], which are expensive in
terms of number of parameters, with more efficient residual
up-sampling blocks as elaborated in the following section,
and end with up-sampling the feature map using bilinear in-
terpolation to scale the feature map to the size of ground
truth depth map in order to calculate regression loss.

In addition, our approach relies heavily on residual learn-
ing, particularly through the skip and projection layers.
Therefore, we are able to build a deep network relatively
unaffected by the vanishing gradient problem. As seen in
the top half of the architecture in Figure 3, our model ac-
cepts input size 304⇥228⇥3 and output prediction map of
size 640⇥ 480 .

4.1.2 Up-projection

Unpooling layers, such as by mapping each entry value into
the top left corner of a 2 ⇥ 2 kernel (with other values in
it being zeros) followed by a 5 ⇥ 5 convolution (as illus-
trated at the top of Figure 1), is a standard way of increasing
the size of the inputs, doubling in this case. However, that
means a lot of computation would deal with zero values in
the up-sampled feature map. Up-projection block (Figure
2) addresses this issue by breaking the 5 ⇥ 5 convolution
into smaller filters with receptive fields of sizes 3⇥3, 3⇥2,
2 ⇥ 3 and 2 ⇥ 2. The elements of the four resulting filter
maps undergo interleaving (the bottom of Figure 1) to form
the final output of this block. (Unlike TensorFlow, PyTorch
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Figure 1. More efficient up-convolution using 4 different filters
and interleaving [10]

Figure 2. Fast up-projection layer [10]

does not have any built-in function for interleaving, thus we
had to construct our own method to do so.)

4.1.3 Loss Function

Regression problems such as depth estimation can make use
of the standard L2 loss function for optimization. However,
the reverse Huber (berHu) loss function as proposed by [15]
and also employed by the initial paper [10] has been proven
to have several advantages over L2. It is defined as-

B(x) =

(
|x|, if |x|  c

x

2+c

2

2c , otherwise |x| > c

BerHu loss provides flexibility in handling two different
types of pixel values present in the outputs: those with small
residual have greater impacts on the final loss (due to the
absence of division by 2c), while those with large residual
account for the L2 terms in the final loss and thus produce
large gradient updates for the corresponding weights.

4.2. Semantic Segmentation

4.2.1 Network Architecture

For this task, similar to Section 4.1.1, we use a fully con-
volutional network, but pass both RGB images and their

corresponding ground-truth depth maps as input to the net-
work. For each of these depth maps, we rescale it from the
default size of 640⇥480 to 304⇥228, and create a channel
dimension where we copy the depth information thrice to
form a 304⇥ 228⇥ 3 image for input.

For each training example, we first obtain two separate
feature maps (each of size 160⇥ 128⇥ 64) from the fourth
(last) up-projection layer of the model in [10], shown in
Figure 8, one produced from the input RGB image and the
other produced from the ground truth depth map. Concate-
nating these two feature maps along the channel dimension
gives a 160 ⇥ 128 ⇥ 128 output which is in turn fed into
an up-convolution block which doubles the spatial dimen-
sions while reducing the number of channels by half, giving
a 320⇥ 256⇥ 64 output. We then pass this through 2 more
convolutional filters, reducing the number of channels grad-
ually to 38, in the case that we want to predict among 38
class labels, or 6 if we just want to predict among 6 class la-
bels. The up-sampling layer (bilinear interpolation) is used
to resize the resulting feature map to a 640 ⇥ 480 ⇥ 38 (or
640 ⇥ 480 ⇥ 6) final output. The full network architecture
is as depicted in Figure 3.

4.2.2 Segmentation Loss

We use pixel-wise softmax classifier to predict a class label
for each pixel for semantic labeling, as done by Eigen et
al. [2]. The pixel-wise softmax classifier is based on the
negative log likelihood, which is defined as:

L(C,C

⇤
) = � 1

n

X

i

C

⇤
i

log(C

i

)

where C is softmax of the predicted semantic label map
(i.e. C

i

=

e

ziP
C e

zi,c ) and C

⇤ is the ground truth label.
The tensor output from the up-sampling layer (640 ⇥

480 ⇥ 38), after applying softmax activation, is fed as in-
put to the 2d negative log likelihood loss function, which
compares these 38 (or 6) “one-hot” feature maps to a map
that has ground truth target labels (0  labels < c, where c

is the number of classes being considered) for each pixel.

4.3. Transfer Learning

One of the reasons why the semantic segmentation task
is somewhat easier than the depth estimation one is that the
softmax loss is much more stable and easier to optimize
than the L2 or berHu Loss. Therefore, due to time con-
straint, we just predict the depth map from Laina et al.’s
model [10] by using their pre-trained weights up to the last
up-projection layer. After that stage we split the model into
two branches, one that predicts the depth (and continues
using the pre-trained weights of Laina et al.’s model) and
another that predicts the semantic labels (developed and
trained by us using transfer learning), as shown in Figure
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Figure 3. Network architecture for 38 class labels

3. It should be noted that the RGB images and the corre-
sponding ground-truth depth maps are passed through two
identical but different modules of Laina et al.’s model and
hence the depth prediction task doesn’t take any input infor-
mation from the ground-truth depth maps, but the semantic
segmentation task incorporates information from both in-
puts.

5. Experimental Setup

5.1. Model conversion

Laina et al.’s [10] model and the corresponding pre-
trained weights are available in Tensorflow and MatCon-
vNet frameworks. Since we choose PyTorch as our frame-
work of choice, we decide to implement their entire model
in PyTorch. One of the challenges we face while per-
forming this model conversion is writing an implementation
of “interleaving” feature maps in the up-projection block,
which has been explained in Section 4.1.2. The original im-
plementation uses TensorFlow’s dynamic stitch method to
achieve this directly but PyTorch doesn’t have any equiv-
alent functionality. Thus, we code up this function and to
check that it works, we load the pre-trained weights into
our model and feed input images to acquire corresponding
depth maps.

5.2. Data Augmentation

To avoid overfitting the model to the training images,
we also implement Data Augmentation which includes ran-
dom flips, random crops, scaling and random rotations.
Since PyTorch, as of now, doesn’t support co-transforms,
i.e. transforms that are applied simultaneously to both input
and target images, we include code to do that from [12].

5.3. Training

Initially, we plan to replicate results from Laina et al.
[10] by transfer learning weights for the up-projection
blocks and freezing ResNet pre-trained weights for the

down-sampling part of their network. However, we face
problems in optimizing both the L2 and berHu regression
loss and since we are not able to learn effectively from just
a small subset of the NYU Depth Dataset, given that the au-
thors in [10] use 9k examples and [2],[3] use almost 95k,
120k respectively for this task. Thus we decide to explore
the potential of this model for semantic segmentation, a task
that has not been explored by the authors themselves. Given
the pre-trained weights for the depth estimation task, and
our new branch for semantic segmentation (as described in
Section 4.2.1), we apply transfer learning on this combined
model with loss function and ground truth target labels for
each pixel of each of the training images as mentioned in
Section 4.2.2. We split our dataset of 1449 images, into
1000 training, 300 validation and 149 test images. Optimal
learning rate (0.05) is found by first over-fitting the model
on just 20 examples, and the learning rate is decayed by a
factor of 0.5 whenever the loss starts to plateau. Final train-
ing is done on 25 epochs on 1000 examples with batch size
of 16 on NVIDIA Tesla K80 GPU. After that, we also fine-
tune the entire model (by allowing backpropogation through
all model parameters) to increase the accuracy by 2 � 3%

[[8]].

(a) (b)
Figure 4. (a) Loss curve, (b) Accuracy curves for transfer learning
semantic labels for 38 classes
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Figure 5. Comparison of input RGB images, predicted depth im-
ages and ground-truth depth maps. The three samples consist of,
in order, a standard image, a flipped image and a rotated image.

6. Results

6.1. Depth Estimation

Since we haven’t explicitly trained our model for this
task but directly use pre-trained weights, for now, we will
just visualize out results and show how they compare to the
ground truth. As a quantitative evaluation of error, we pro-
vide Scale-Invariant Error for each prediction, which is de-
fined as:

D(y, y

⇤
) =

1

2n

nX

i=1

(log y

i

� log y

⇤
i

+ ↵(y, y

⇤
))

2

where y is the predicted depth map and y

⇤ is the ground
truth, each with n pixels indexed by i, and ↵(y, y

⇤
) =

1
n

P
i

(log y

⇤
i

� log y

i

) is the value of ↵ that minimizes the
error for a given (y, y).

Those results actually help verify our correct implemen-
tation of model conversion from TensorFlow into PyTorch,
particularly for the ”interleaving” module as mentioned in
Section 5.1.

Figure 5 shows 3 sample input RGB images, correspond-
ing predicted depth images and the ground-truth depth maps
from the dataset.

6.2. Semantic Segmentation

As explained earlier, we perform semantic segmentation
task on 6-class and 38-class labels, and compute the nega-
tive log likelihood loss (Section 4.2.2). The starting value of
this loss for 6-class prediction was close to log

e

(6) and that
for 38-class prediction was close to log

e

(38), as expected.
For our evaluation, the error metric on class predictions

considered is per pixel class prediction accuracy. We show
both our training and validation accuracy plots as well as the

(a) (b)

(c) (d)

(e) (f)
Figure 6. (a,b) Sample RGB images, (c,d) the corresponding col-
ored labeled images and (e,f) predicted labeled images, for 38-
class labels, from the NYU Depth Dataset [11]

Our model Val. Acc. Loss
6-class 66.91% 1.17
38-class 40.96% 2.44

Table 1. Experimental results

loss curve as a function of the number of epochs. For the
experiments that we have done until now, we have been able
to achieve 40.96% and 66.91% accuracy on the validation
set, as shown in Table 1. Even though this is less than what
was achieved by [2] on a different model but for the same
two tasks, it should be noted that the authors in that paper
have trained the model on 95k input images as compared
to our transfer learning based approach. Also, the 4-class
labels considered in [2] are different than ours. While we
consider the dominant 6-classes, they have grouped all 894
object labels into 4 broad categories.

Figure 6 shows our results for semantic segmentation on
38 class labels. Figure 7 shows results for 6 class labels.
Some quick observations can be made such as the artifact
due to the upsampling layer, and prediction of the “wall”
class almost correctly owing to its highest frequency of oc-

5



currence, even more than the “unknown” class, in the la-
beled dataset.

For now, we conclude that our model lacks the complex-
ity required to achieve values of accuracy higher than these
ones since the loss doesn’t decrease more than 2.44 from an
initial starting value of log

e

(38) = 3.637 and 1.17 from
an initial starting value of log

e

(6) = 1.79, for 38 and 6
classes prediction respectively. Another fact which bolsters
this conclusion is the higher value of validation accuracy
compared to the training accuracy as seen in Figure 4.

(a) (b)

(c) (d)

(e) (f)
Figure 7. (a,b) Sample RGB images, (c,d) the corresponding col-
ored labeled images and (e,f) predicted labeled images, for 6-class
labels, from the NYU Depth Dataset [11]

7. Conclusion & Future Work

Overall we demonstrate how a fully convolutional archi-
tecture based on residual learning removes the need for fully
connected layers while still giving highly accurate depth es-
timation, and how depth information can be an useful fea-
ture for other computer vision tasks such as semantic seg-
mentation. The architecture used in this paper has many
advantages: residual and skip layers that capture global in-
formation and pass it on much further down in the network,

efficient up-sampling blocks that increases output accuracy,
training with relatively few examples and parameters, and
a single-scale network unlike other related approaches that
require post-processing to refine coarser predictions.

Given more time and resources, we would want to ex-
plore how depth information can potentially help improve
the performance of other computer vision tasks besides seg-
mentation, such as object detection. Another option is to
alter the number of layers - increasing the number of up-
convolutions for instance - and see how the accuracy of the
predictions is affected. We can also try to apply our exist-
ing model to other datasets with different characteristics, an
example being KITTI [5] for outdoor scenes.

8. Appendix

Github repo to our PyTorch implementation
(https://github.com/iapatil/depth-semantic-fully-conv)
Figure 4 shows the full convolutional residual network used
in [10].
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