
StereoPhonic: Depth from Stereo on Phones

Robert Konrad∗

Stanford University
CS 231N

Nitish Padmanaban∗

Stanford University
CS 231N

Abstract

Estimating depth of scenes using stereo image pairs is
a core computer vision task, which has benefited greatly
in recent years from the application of neural networks.
Depth estimation is also extremely important for mobile ap-
plications, for example, in virtual and augmented reality
(VR/AR), but many mobile devices lack the same compu-
tational clout as the servers traditionally used to run net-
works. We make use of the ARM Compute Library to im-
plement an efficient neural network–based depth estimation
algorithm with GPU acceleration on a phone capable of
taking stereo images.

1. Introduction
The problem of estimating three dimensional geometry

from stereo imagery is a core computer vision problem that
has applications in many areas such as robotics, self-driving
cars, and most recently mobile augmented and virtual real-
ity systems. While various types of 3D sensors have been
used, cameras remain attractive due to their cost effective-
ness and robustness to various environments. In this project,
we focus on capturing stereo images and computing high
quality depth maps on a mobile platform, the Huawei Mate
9. The phone has a dual f/2.2 camera, where one mod-
ule has a 20 MP RGB sensor while the other has a 12 MP
monochrome sensor.

The underlying problem for the depth from stereo task is
finding the disparity between corresponding pixels of a rec-
tified image pair captured with cameras, which can then be
converted to metric depth with camera calibration. Despite
decades of research, estimating depth from stereo pairs re-
mains an open problem due to difficulties with textureless
areas, reflective surfaces, thin structures and repetitive pat-
terns.

Many stereo algorithms aim to mitigate failures caused
by such cases by aggregating information from spatially lo-
cal patches. Methods such as cost aggregation, semi-global
block matching, and Markov random fields have been used
with some success. However, each of these cost functions

Baseline:
11mm

Figure 1. The device on which we conduct our final tests. It has
RGB and monochrome sensors mounted with an 11 mm stereo
baseline, and an ARM Mali GPU.

require hand crafted parameters or only learning a linear
function of the features.

In recent years, the entire area of computer vision un-
derwent a fundamental change by learning deep representa-
tions directly from raw pixel data as opposed to previously
used feature based methods. These new algorithms, specifi-
cally convolutional networks, significantly improve perfor-
mance on many high-level scene understanding tasks such
as image classification, segmentation, and detection. Even
more recently, convolutional networks have been exploited
to learn disparity from stereo image pairs.

2. Related Work
Several approaches exist in the literature to address the

problem of obtaining depth maps from stereo image pairs
using deep learning algorithms. Kendall et al. [1] recently
introduced a state-of-the-art framework that formulates the
problem using a cost volume. The approach uses 3D con-
volutional layers to learn contextual information, which al-

1



Left

9

9

9

Right

265

To grayscale

9
9

7
5

3
1

1

357

3

3

3

3 3

3

3

3

1
32

32
32

32

+256
+256

+256
+256

+256

conv
normalize

relu

conv
normalize

relu

conv

argmax
gives disparity

conv
normalize

relu

257

257

32

×
1

32

Figure 2. Diagram of the Siamese network architecture, based on Luo et al.’s work. Both left and right image patches are passed through 4
convolutional layers, and then the disparity is selected to be the index with the highest inner product between the two.

lows them to directly obtain a stereo map that can be used
without need for smoothing or other post-processing. How-
ever, this represents a relatively complex network that may
not adapt well to use on a phone. Another interesting ap-
proach used optical flow to aid in the calculation of dispar-
ity [3]. This implementation achieves competitive perfor-
mance with a runtime of less than a tenth of a second, but
requires a dense ground truth depth map to train, which re-
quired synthetic data.

However, these implementations work on the entire input
image pair and learn more spatial and semantic information.
This leads to them having millions of trained parameters.
The Huawei GPU lacks dedicated main memory, with only
at most 2MB of L2 cache on the GPU. For computational
efficiency, we find it necessary to forgo these approaches.

There are two approaches we consider here. First is work
by Žbontar et al [5]. They use a Siamese network architec-
ture that operates on a patch-level. They propose both a
fast and slow, but more accurate, implementation. The fast
version computes disparities based on a dot product of the
output of the left and right patch’s sub-layers. The slow ver-
sion instead concatenates the outputs of the sublayers and
follows those with several fully-connected layers. Unfor-
tunately, the slower network also takes about a minute to
run, making it unsuitable for mobile environments. Luo et
al. [2] implemented a similar approach with a patch-based
Siamese network that terminates with a simple dot prod-
uct. Their implementation is however, faster than that of
Žbontar et al., and more accurate. The number of features
is also relatively small, coming in at only about 100,000 for
their 19×19 receptive field model, though we use a smaller
9×9 receptive field to allow for faster computation.

3. Dataset
We use the KITTI 2015 dataset [4] which comprises of

400 dynamic scenes with 4 color images per scene, cap-
tured from a moving vehicle with ground truth supplied by

LIDAR. This has the result that not every pixel has a ground
truth depth due to the way LIDAR scans work, so our selec-
tion of training patches must take this into account. Further-
more, as described in the methods section we only train on
monochrome images, hence we convert the RGB images to
grayscale first. Because the images are 370×1224, which is
comparable to the size of the images we will be operating
with on the phone, we will train on the full-sized images.
Since we use a patch-based method to predict each pixel,
the 200 images in the training set represent several million
patches to learn.

Interestingly, there is a difference in the baseline be-
tween stereo images in the dataset we train on and the stereo
images from the phone (11 mm). Due to the patch based
architecture of the network, we believe these features will
transfer from the dataset to the captured images. In fact,
due to the reduced baseline there are less views that appear
in one camera but not the other, making the correspondence
matching problem significantly easier. This comes at the
trade-off of a potentially enlarged depth error estimate at
farther depths.

4. Model and Design

We adapt the Siamese network architecture proposed by
Luo et al. for our disparity estimator. In our case (Figure 2),
we use 4 convolutional layers in the sub-networks. Each
layer has 32 filters of size 3×3, and is followed by a spatial
batch normalization and ReLU. Our left input patch size is
9×9, to match the receptive field of the sub-network. The
left sub-network outputs a vector of length 32. The right
input is 9×265, to allow for 257 discrete disparity values,
and results in a 257×32 output from its sub-network. These
two are combined with a simple inner product, resulting in
a vector p̂ ∈ R257. The loss for example i is then computed
as the cross-entropy of this probability estimate against a



ground-truth probability based on the known pixel disparity,

Li = pTi log p̂i. (1)

Here, the ground truth pi is defined as 0.5 in element loca-
tion corresponding to the correct disparity offset, 0.2 if off
by 1 pixel, and 0.05 if off by 2 pixels. All other ground truth
probabilities are defined as 0.

For the training phase, we convert all the images to
grayscale (required here in order to maintain a Siamese net-
work for the final phone implementation because one of the
cameras only captures grayscale information), and use in-
put patches of size 9×9 from the left image, and 9×265
from the right, based on our receptive field size and num-
ber of disparities. The patches were centered around pixels
with ground truth disparity values, and chosen in random
minibatches across all training images. For efficiency dur-
ing the test phase, the sub-network can be run in parallel on
all pixels in the image, using a single pass through the con-
volutional layers. The resulting p̂ vectors can be reused as
needed for the inner products [2].

The training and validation are done server-side in Ten-
sorFlow1 to take full advantage of the higher computing
power. However, due to the benefits of having a mobile
implementation mentioned earlier, we implemented the for-
ward pass of the network on the Huawei Mate 9. We
used the recently released open source ARM Compute Li-
brary, provided by ARM, for low level optimizations of
many commonly used machine learning and image pro-
cessing operations, including certain neural network layers.
While using a low-level library on a mobile device makes
for a less-than-ideal workflow, recent announcements such
as Caffe2Go, TensorFlow Lite, and Core ML may intro-
duce higher-level and streamlined APIs for porting desktop-
trained networks to mobile.

In the following sections we investigate hyper-parameter
tuning to search for the best model taking into account the
limited memory constraint of the phone, as well as perfor-
mance optimizations in order to reduce computation time to
minimum.

4.1. Hyperparameter Tuning

For our network, we primarily experimented with tun-
ing the learning rate, gradient step optimizer, and the batch
size. TensorFlow’s default initializers in conjunction with
batch normalization was sufficient to obviate the need for
much tuning of the weight initialization. Furthermore, as
seen in Figure 4 for our final network, we do not suffer
from overfit to the training data. This was true for every
network we trained, including 19×19 receptive field net-
work, with 64 filters in each of the 9 layers, likely to due to

1Code for run model based on assignment 2 TensorFlow note-
book: http://cs231n.github.io/assignments2017/
assignment2/

Table 1. Architecture and Hyperparameters
Architecture Hyperparameters Training Validation

Layers Filters/layer Learning Rate Optimizer Batch size Loss % > 3px Loss % > 3px
9 32 0.1 Adam 512 5.5491 100 n/a n/a
4 32 0.01 Adagrad 512 3.4358 34.23 3.3875 32.6
4 32 0.01 RMSProp 512 3.2485 30.39 3.2319 29.43
4 32 0.001 Adam 512 3.2577 30.77 3.2208 29.17
4 32 0.01 Adam 128 3.2449 30.17 3.226 28.85
4 32 0.01 Adam 1024 3.1834 29.25 3.1968 28.78
4 32 0.01 Adam 256 3.197 29.43 3.1969 28.69
4 32 0.01 Adam 512 3.2002 29.5 3.1833 28.39
4 64 0.001 Adam 512 3.0807 27.9 3.0658 26.59
9 32 0.01 Adam 512 2.6154 19.58 2.7334 19.82
9 64 0.01 Adagrad 128 2.2317 11.59 2.1731 9.63

the large number of patches in the dataset. Therefore, we
found it unnecessary to apply regularization. A summary
of some representative results2 of various hyperparameters
can be found in Table 1. Our chosen architecture for run-
ning the network on a phone was 4 layers, with 32 filters
per layer, but we also experimented with 16 or 64 filters per
layer, and 2, 3, or 9 layers, in case the phone proved more or
less capable than we expected. All following results tended
to hold regardless of network size, though we did not run
all experiments on sizes besides 4 layer with 32 filters. We
conclude from these experiments that the loss function for
this network is extremely well behaved, with similar results
across a wide range of parameters.

4.1.1 Learning Rate

We first attempted to determine a range of learning rates for
which the network converged best. At one extreme, a learn-
ing rate of 10−1 caused exploding errors, and at the other,
learning rates 10−4 or lower tended to converge observ-
ably slower. While the 10−3 learning rate trained slightly
slower in general, it was not significantly different after an
epoch or two. The 10−3 learning rate didn’t seem to find
a lower eventual minimum, so we turned to learning rate
decay schedule.

Here, we tried various decay step rates ranging from after
1000 to 5000 iterations, at a rate of 0.9 or 0.95. Despite
running this for over 100 thousand iterations, we failed to
see any significant further reductions in loss or increases in
accuracy. Thinking that it was possible that the learning
rate had decayed too much, we loaded a warm-start of the
network after 3 epochs (78500 iterations) of training with
decay, then re-started training at a rate of either 10−2 or
10−3 with decay. This also failed to improve results.

2The table was generated with loss and accuracy using the disparity
mapped into the reference frame of the right instead of left image, which
we did not discover until after extensive tuning attempts. A few experi-
ments showed similar, but improved results with the correct mapping, so
we did not re-attempt the full suite of tuning experiments.

http://cs231n.github.io/assignments2017/assignment2/
http://cs231n.github.io/assignments2017/assignment2/


0 10050 150 250200 300
8

16

12

R
u

n
 T

im
e

 (
s
)

14

18

10

20

22

Number of rows

GPU
CPU

Figure 3. Run time of a single branch of the Siamese network on a
full 370×1224 image as a function of the number of rows that the
the image is blocked into per run. The largest block size is limited
by the hardware capacity.

4.1.2 Gradient Step Optimizer

While we primarily used the Adam step optimization for its
general high performance in learning, we also briefly com-
pared results with other gradient step optimizers, particu-
larly RMSProp and Adagrad. While Adagrad took longer
to converge than the other two, the results were largely sim-
ilar for all of them.

4.1.3 Mini-batch Size

We initially chose the batch size of 512, since it was the
largest we could use in training based on the memory re-
quirements of the 9 layer, 32 filter architecture. However,
since our target was 4 layers, it was possible for us to try
increasing the batch size as high as 2048 to perhaps get
smarter steps. Unfortunately, this failed to improve final
performance. We also tried smaller batches to perhaps get
“lucky” with the more random updates, but this also did not
affect results.

4.2. Forward Pass Phone Optimizations

In order to maximize performance of the forward pass
on the phone we investigated multiple optimizations and al-
gorithms at various points in the architecture. Just using a
small network was not enough, as explained in the results
section.

4.2.1 Siamese Network Optimizations

Removing Batch-Normalization We note that all the
batch normalization layers in the network immediately fol-
low convolutional layers. Since the mobile network only

needs to run the forward pass, it doesn’t benefit from the ex-
plicit structure of a batch normalization layer, meaning that
it does us no harm to simply fold the batch normalization
into the convolutional layer. Let k and b be the kernel and
bias for a single channel of the convolutional layer output,
and let µ, σ2, β, and γ be the moving average, moving vari-
ance, center offset, and scale parameters for that channel’s
normalization, respectively. With this, we can compute the
equivalent convolution kernel and bias, k′ and b′, as

x′ = k ∗ x+ b (2)

x′′ =

(
x′ − µ√
σ2 + ε

)
γ + β

=

(
k ∗ x+ b− µ√

σ2 + ε

)
γ + β

=

(
γ√

σ2 + ε
k

)
∗ x+

(
(b− µ)γ√
σ2 + ε

+ β

)
= k′ ∗ x+ b′

(3)

k′ =
γ√

σ2 + ε
k

b′ =
(b− µ)γ√
σ2 + ε

+ β
(4)

where x, x′, and x′′ are the input, intermediate before nor-
malization, and output, and ε is some small constant. We
simplify our trained weights and biases using this approach
before loading them onto the device, reducing the complex-
ity of the mobile network.

Image Cropping The limited memory of the phone pre-
vented us from running an entire image through the Siamese
network at once. Instead, taking advantage of the flexibility
of the patch based method, we are able to run subsections
of the image through the network at a time and then stitch
the outputs into the full feature map. To minimize cache
misses, we copy over multiple rows of the image at once
due to the data being stored in contiguous memory. The re-
sults of performance tests run on a 370x1224 input image
with varying crop sizes is shown in Figure 3 for both CPU
and GPU implementations. Due to the even further reduced
GPU memory, we were only able to load up to 80 rows at
a time for the GPU implementation. Clearly, the CPU im-
plementation outperforms the GPU implementation across
the board, which we assume to be due to the slow memory
copy to GPU memory and the GPU not having many cores
(32 GPU cores vs 4 CPU core in the Mate 9). The spike in
run time around the 185 row mark for the CPU implemen-
tation is interesting, and we reason to be due to the fact that
a large portion of the last batch has wasted compute cycles
for a 370 row image.



2

9

0 100Iteration (thousands)

Lo
ss

Iteration

Lo
ss

0 500

9

3

Initial Learning

Train
Validation

0 100Iteration (thousands)
Ac

cu
ra

cy

0

0.9

Iteration

Ac
cu

ra
cy

0 500

0.9 Initial Learning

Figure 4. The loss and accuracy curves for our final trained net-
work. Accuracy is defined based on percent with over 3 px of
error in the disparity estimate. We see that the validation and the
training results are extremely similar in both cases, indicating no
overfit. The insets show the initial results from the first 500 itera-
tions, after which the network is almost done training.

4.2.2 Inner Product Optimizations

We also consider the impact of different methods when
computing the final inner product layer. In this layer the
core computation is the inner product between the 32 fea-
tures for a position in the left image with the features of each
of the possible 256 pixel disparities from the right image,
followed by an argmax over the resulting 256 dimensional
vector (Figure 2).

Our initial approach was to parallelize the computation
as much as possible: take the entire 370×1224 left image,
pointwise multiply with a 370×1224 region of the padded
right image, add to compute the dot product, and then shift
and repeat while keeping track of the argmax at each pixel.
Due to memory constraints, we performed this operation on
37 rows at a time.

Despite the operations being implemented with ARM
Compute Library functions on the GPU, this implementa-
tion took 4 minutes for 10% of the image (the full image
was 370x1224) – clearly too long. We suspected this to be
the result of wasteful copies to the from the GPU. To investi-
gate the impact of these memory copies we implemented the
naı̈ve nested loop CPU implementation, which is very mem-
ory efficient, but computationally inefficient. We observed
a decrease in run time for the 37x1224 image to 3 minutes.
With these initial results from the two extreme scenarios
we concluded that both memory inefficiencies and compu-
tational inefficiencies are capable of bottlenecking the sys-
tem when completely ignored. We therefore investigated
various methods that trade these two off to varying degrees:

1. The first method was based on the theory that the mem-
ory issues were due not to simply copying it too of-
ten, but rather that the copying occurred over several
non-contiguous blocks of memory; since the right im-
age is padded extra to allow for keeping a paralleliz-
able implementation at the edge pixels, reading multi-
ple rows of the image at once likely causes more cache

misses than otherwise, only exacerbated by having to
read more and more rows. Therefore, we tried to do
the same operation as before, but for a single row at a
time.

2. The second method assumes that the problem is pri-
marily caused by too many memory moving instruc-
tions, despite fully 256 of the 257 columns in the buffer
already needing to be reused. While this seems like it
could be solved by treating the right image’s columns
as a circular buffer, that would unfortunately then re-
quire the left image to have its columns shifted in
memory to match up for the next disparity. We need
some way to load each pixel’s features once for a single
GPU operation, and never again. However, there isn’t
an operation that allows us to simultaneously load all
the pixels, and then apply the inner product for only
the left/right pairs we desire. Therefore, we take the
closest approximation, choosing to waste computation
in exchange for having only a single memory copy: a
matrix multiplication of an entire 32 × 1224 row of
the left image features with the padded 32× 1480 row
of the right. This will compute all the requisite inner
products, but also 5 times as many extra ones. The
matrices in question may be small enough to be fully
parallel on the GPU however, mitigating some of the
temporal cost. We also note that the extra computa-
tions would be reduced when switching to images cap-
tured by the phone, which will only be 480 px wide af-
ter downsampling. It is also important to note that this
method also benefits from the increased memory local-
ity desired by first, since the matrix multiply forces a
single row at a time. However, if memory locality and
not redundant copying is the root cause of slow opera-
tions, the extra computation required here should show
this method to be worse.

3. The third method follows the rationale of the first, but
also considers whether any possible improvements of
the second method may be caused by the matrix mul-
tiplication implementation simply being faster than
pointwise multiply and sum. We apply the matrix mul-
tiplication as before, but only to a single 32 feature
vector in the left image with the corresponding 257
vectors of the right image as a 257×32 matrix. This is
the least parallelized method, doing only a single out-
put pixel at a time, but wastes no computation.

Our results showed that the second method was best, indi-
cating that our concern over redundant, repeated memory
access and copying were warranted. The resulting runtime
for 37 rows was merely 6.5 seconds.



Left Input Image Ground Truth Depth Map Estimated Depth Map Overlaid Error Map

Figure 5. Some example results from our trained neural network. The columns, in order from left to right, contain the original left view
input image, the ground truth depth map, our network’s estimated depth map, and the error overlaid on the image (blue low error to red
high error). It can be seen that the most common errors occur in regions of repetitive or no texture, similar to most patch-based algorithms
for stereo estimation. Note that the ground truth map is 0 (black) where there are no ground truth estimates.

5. Results

5.1. Trained Performance

We chose as our best network the 4-layer, 32-filter one
with highest validation accuracy. This corresponded to a
learning rate of 10−2 with decay 0.9 per 1000 iterations, a
batch size of 512, and the Adam optimizer. As seen in Fig-
ure 4, our network converges quickly and does not overfit.
We attain a training accuracy of 82.5% of pixels with an er-
ror of 3 px or less, compared to 82.1% on our validation set
and 80.3% on our test set. This corresponds to an average
error of 7.5 px from the true disparity estimate for all cases.

We also note that when using the 9-layer, 64-filter net-
work, we achieve 90.4% accuracy on our validation set.
When comparing this to the un-processed output of Luo et
al.’s network, we see that they achieved 91.1% accuracy.
These are similar enough that the difference may be caused
by a slightly different validation set, meaning that we can
be confident in having accurately reproduced their work.

5.2. Phone Runtime

While our initial attempt took 3 minutes for only 10%
of the image, our optimizations proved useful, with the fi-
nal phone implementation taking only 56 seconds on a full
KITTI dataset image for the optimized CPU implementa-
tion, and 58 seconds for the optimized GPU implementa-
tion. While this is certainly 120 times slower than the model
on our server-side GPUs, which take 0.46 sec for their com-
putation per KITTI image, it is within reason for a phone
with far fewer resources at its disposal. We were unable to
implement the full pipeline from taking the photo to out-
putting the depth map due to only one of the stereo cam-
eras being visible to the Android SDK. A special Huawei
SDK would be needed to access RAW data coming off of

the stereo camera module to implement the full pipeline.

5.3. Qualitative Evaluation

The images that result from running our trained network
over the KITTI dataset can be seen for some examples in
Figure 5. The efficiency of the forward model of our net-
work comes in part from the use of an inner product to com-
bine the left and right images. However, since this is similar
to the process used by classical patch-based stereo matching
approaches, we suffer from many of the same failure cases.
As can be seen in the figures, the most common locations
of errors tend to be places with occlusions, with spatially
repeated textures, or simply flat color regions.

Many of these issues can be addressed using post-
processing, such as simple smoothing or more sophisticated
algorithm. This was done by the by Luo et al., and dramat-
ically improved accuracy on average [2]. However, since
our primary objective was to have a neural-network based
stereo matching model running on a phone and evaluate the
performance of the network itself, we did not apply any
post-processing.

5.4. Discussion

This network does well given that it uses a patch-based
approach with only a 9×9 receptive field. However, we
were conservative in our choice of network architecture, and
thus, it may be possible to load larger, better-performing
networks onto the phone, or different, complex, architec-
tures entirely. It would also be useful to see the best CPU–
GPU optimization across the functions, since some parts of
the model, such as a single branch of the Siamese network,
seem to work better on the CPU.



6. Conclusion
We were able to successfully port a neural network

trained in Tensorflow on a server, and transfer it to a mobile
architecture using a low-level mobile GPU library. Mobile
computing is becoming, if not already, among the most im-
portant modes of computation. Though many learned mod-
els can be queried remotely, many mobile applications, es-
pecially in spaces such as VR and AR, require reliable and
fast results, which must be done on-device. Given the re-
cent dual trends toward mobile computing and neural net-
works, their combined used, as evidenced by recently an-
nounced frameworks such as Caffe2Go, TensorFlow Lite,
and Core ML, is inevitable. We investigate the potential for
one such use case, and achieve promising results, though
there is certainly more work to be done to find the optimal
balance between computation time, network size, and accu-
racy.

References
[1] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,

R. Kennedy, A. Bachrach, and A. Bry. End-to-end learning
of geometry and context for deep stereo regression. arXiv
preprint arxiv:1703.04309, 2017. 1

[2] W. Luo, A. Schwing, and R. Urtasun. Efficient deep learning
for stereo matching. In CVPR, June 2016. 2, 3, 6

[3] N. Mayer, E. Ilg, P. Husser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional net-
works for disparity, optical flow, and scene flow estimation. In
CVPR, June 2016. 2

[4] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 2

[5] J. Žbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. Journal
of Machine Learning Research, 17(1-32):2, 2016. 2


